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Abstract
Recall that $\mathrm{C}^{*}$-algebra $A$ has the $\mathrm{S}\mathrm{P}$-property if every non-zero hereditary

$\mathrm{C}^{*}$-subalgebra of A has a non-zero projection. Let $1\in A\subset B$ be a pair of
$\mathrm{C}^{*}$-algebras.

In this paper we investigate a sufficient condition for $B$ to have the SP-
property under $A$ holds. As an application, we will present the cancellation
property for crossed products of simple $\mathrm{C}^{*}$-algebras by discrete groups.

This paper basically comes from joint works with Ja A Jeong $([7][8])$ .

1 The SP-Property

In this section we present a sufficient condition for $B$ to have the SP-
property under $A$ holds.

The argument in [11, Lemma 10] gives the following general result.

Theorem 1.1 Let $1\in A\subset B$ be a pair of $C^{*}$-algebras. Suppose that $A$ has
the $SP$-property and there is a conditional ex..pectaion $E$ from-. $B$ t.o A. If
for any non-zero positive element $x$ in $B$ and an $ar.bitr’ ary$ positive number
$\epsilon>0$ there is an element $y$ in $B$ such that

$||y^{*}(_{X-}E(x))y||<\epsilon$ ,
$||y^{*}E(_{X)y}||\geq||E(x)||-\epsilon$

then $B$ has the $SP$-property. Moreover, every non-zero herediatery $C^{*}-$

subalgebra of $B$ has a projection which is $a$ equivalent to some projecion
$in$ A in the sence of Murray-von Neumann

Next we consider the following stronger assumption on a conditional ex-
pectation $E$ from $B$ to $A$ .

Definition 1.2 Let $1\in A\subset B$ be a pair of $C^{*}$-algebras. A conditional
expectation $E$ from $B$ to $A$ is called outer if for any element $x\in B$ with
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$E(x)=0$ and any non-zero hereditary $C^{*}$-subalgebra $C$ of $A$

$\inf\{||C.Xc||;c\in c^{+}, ||C||=1\}=0$ .

The following result comes from the same argument as in [10, Lemma 3.2]
and Theorem 1.1.

Corollary 1.3 Let $1\in A\subset B$ be a pair of $C^{*}$-algebras. Suppose that $A$

has the $SP$-property and there is a conditional expectaion $E$ from $B$ to $A$ .
If $E$ is outer, then $B$ has the SP-property.

We present some examples of a pair of $\mathrm{C}^{*}$-algebras with an outer condi-
tional expectations.

Example 1.4 Let $\rho$ be a corner endmorphism on a unital $C^{*}$-algebra $A$ ,
and let $E$ be a canonical conditional expectation from a crossed product

$A\cross_{\rho}\mathrm{N}$ by $\rho$ to A. Suppose that

$\tilde{\mathrm{T}}(\rho)=$ { $\lambda\in \mathrm{T}|\hat{\rho}(I)=I$ for $\forall I\in Prime(A\cross_{\rho}\mathrm{N})$} $=\mathrm{T}$ .

Then, $E$ is outer.

Proof. See Jeong-Kodaka-Osaka [6]. $\square$

Example 1.5 $(\mathrm{K}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{o}[10])$ Let $G$ be a discrete group and let $\alpha$ be
a $repre\mathit{8}entabi\mathit{0}n$ of $G$ by automorphisms of a simple unital $C^{*}$-algebra $A$ .
$s_{uppo}\mathit{8}e\alpha$ is outer. Then, a canonical conditional expectation from a crossed
product $A\cross_{\alpha}G$ to $A$ is outer.

In the case of a crossed product of a simple unital $\mathrm{C}^{*}$-algebra with the
$\mathrm{S}\mathrm{P}$-property by a finite group $G$ , we can deduce the $\mathrm{S}\mathrm{P}$-property for the
crossed product algebra $A\cross_{\alpha}G$ by any automorphism a on $A$ .

Theorem 1.6 ([7]) Let $A$ be a simple unital $C^{*}$-algebra with the SP-property,
and let $\alpha$ be an action by a finite group G. Then, a crossed product algebra
$A\cross_{\alpha}G$ has the SP-property.

2 $\mathrm{C}^{*}$-Index Theory
In this section, we brief the $\mathrm{C}^{*}$-index theory by Watatani ([16]).
Let $1\in A\subseteq B$ be a pair of $\mathrm{C}^{*}$-algebras. By a conditional expectation

$E:Barrow A$ we mean a positive faithful linear map of norm one satisfying

$E(aba’)=aE(b)a’$ , $a,$ $a’\in A,$ $b\in B$ .
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A finite family $\{(u_{1}, v_{1}), \cdots, (u_{n}, v_{n})\}$ in $B\cross B$ is called a quasi-basis for
$E$ if

$\sum_{i=1}^{n}u_{i}E(vib)=\sum_{i=1}^{n}E(bui)vi=b$ for. $b\in B$ .

We say that a conditional expectation $E$ is of index-finite type if there exists
a quasi-basis for $E$ . In this case the index of $E$ is defined by

IndexE $= \sum_{i=1}^{n}u_{i}v_{i}$ .

Note that IndexE does not depend on the choice of a quasi-basis and every
conditional expectation $E$ of index-finite type on a $\mathrm{C}^{*}$-algebra has a quasi-
basis of the form $\{(u_{1}, u_{1}^{*}), \cdots , (u_{n}, u_{n}^{*})\}$ ( $[16$ , Lemma 2.1.6]). Moreover,

IndexE is always contained in the center of $B$ , so that it is a scalar whenever
$B$ has the trivial center, in particular when $B$ is simple.

Let $E$ : $Barrow \mathrm{A}$ be a conditional expectation. Then $B_{A}(=B)$ is a pre-
Hilbert module over $A$ with an $A$-valued inner product

$\langle x, y\rangle=E(x^{*}y)$ , $x,$ $y\in B_{A}$ .

Let $\mathcal{E}$ be the completion of $B_{A}$ with respect to the norm on $B_{A}$ defined by

$||x||_{B_{A}}=||E(x^{*}x)||A1/2$ , $x\in B_{A}$ .

Then $\mathcal{E}$ is a Hilbert $C^{*}$ -module over $A$ . Since $E$ is faithful, the canonical
map $Barrow \mathcal{E}$ is injective. Let $L_{A}(\mathcal{E})$ be the set of all (right) A-module
homomorphisms $T:\mathcal{E}arrow \mathcal{E}$ with an adjoint $A$-module homomorphism $T^{*}$ :
$\mathcal{E}arrow \mathcal{E}$ such that

$\langle T\xi, \zeta\rangle=\langle\xi,T^{*}\zeta\rangle$ $\xi,$ $\zeta\in \mathcal{E}$ .

Then $L_{A}(\mathcal{E})$ is a $C^{*}$-algebra with the operator norm $||T||= \sup\{||T\xi||$ :
$||\xi||--1\}$ . There is an $\mathrm{i}\mathrm{n}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}*$-homomorphism $\lambda$ : $Barrow L_{A}(\mathcal{E})$ defined by

$\lambda(b)X=bx$

for $x\in B_{A},$ $b\in B$ , so that $B$ can be viewed as a $C^{*}$ -subalgebra of $L_{A}(\mathcal{E})$ .
Note that the map $e_{A}$ : $B_{A}arrow B_{A}$ defined by

$e_{A}x=E(x)$ , $x\in B_{A}$

is bounded and thus it can be extended to a bounded linear operator, de-

noted by $e_{A}$ again, on $\mathcal{E}$ . Then $e_{A}\in L_{A}(\mathcal{E})$ and $e_{A}=e_{A}^{2}=e_{A}^{*},$ that is, $e_{A}$

is a projection in $L_{A}(\mathcal{E})$ .
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The (reduce$d$) $C^{*}$ -basic constru$c$tion is a $C^{*}$ -subalgebra of $L_{A}(\mathcal{E})$ defined
to be

$C^{*}(B, e_{A})=\overline{span\{\lambda(X)e_{A}\lambda(y)\in L_{A}(\mathcal{E})\cdot.X,y\in B\}}||\cdot||$

see [16, Definition 2.1.2].
Then,

Lemma 2.1 ([16, Lemma 2.1.4]) (1) $e_{A}C^{*}(B, eA)eA=\lambda(A)e_{A}$ .
(2) $\psi$ : $Aarrow e_{A}C^{*}(B, e_{A})e_{A},$ $\psi(a)=\lambda(a)e_{A}$ , is $a*$ -isomorphism (onto).

Lemma 2.2 ([16, Lemma 2.1.5]) The following are equi.valent:
(1) $E:Barrow A$ is of index-finite type
(2) $C^{*}(B, e_{A})$ has an identity and there exists a number $c$ with $0<c<1$

such that
$E(x^{*}x)\geq c(x^{*}x)$ $x\in B$ .

The above inequality was shown first in [13] by Pimsner and Popa for the
conditional expectation $E_{N}$ : $Marrow N$ from a type $\mathrm{I}\mathrm{I}_{1}$ factor $M$ onto its
subfactor $N$ ( $c$ can be taken as the inverse of the Jones index $[M$ : $N]$ ).

The conditional expectation $E_{B}$ : $C^{*}(B, e_{A})arrow B$ defined by

$E_{B}(\lambda(X)e_{A}\lambda(y))=(\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}E)-1xy,$ $x,$ $y\in B$

is called th $\mathrm{e}$ dual conditional expectation of $E:Barrow A$ . If $E$ is of index-
finite tyle, so is $E_{B}$ with a quasi-basis $\{(w_{i}, w_{i^{*}})\}$ , where $w_{i}=\sqrt{\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}E}u_{i}e_{A}$ ,
and $\{(u_{i}, u_{i}^{*})\}$ are quasis-basis for $E$ ( $[16$ , Proposition 2.3.4]).

3 The Stable Rank for $\mathrm{C}^{*}$-Crossed Products
Let $\alpha$ be an action of a finite group $G$ on a unital $C^{*}$ -algebra $A$ by

automorphisms, and let $A\cross_{\alpha}G$ be its crossed product, that is, it is the
universal $C^{*}$ -algebra generated by a copy of $A$ and implementing unitaries
$\{u_{g}|g\in G\}$ with $\alpha_{g}(a)=u_{g}au_{g}^{*}$ for every $g\in G$ and $a\in A$ . Then there
exists a canonical conditional expectation $E:A\cross_{\alpha}Garrow A$ defined by

$E( \sum_{g}a_{\mathit{9}}u)g=ae$ ’

for $a_{g}\in A$ and $g\in G$ , where $e$ denotes the identity of the group $G$ .

Lemma 3.1 Under this $situati_{\mathit{0}}n_{J}$ the canonical conditional expectation $E$

is of index-finite type with a quasi-basis $\{(u_{\mathit{9}’ g}u^{*}):g\in G\}$ and
Index $(E)= \sum_{g}\in Gu_{g}u_{\mathit{9}}^{*}=|G|$ , the order of G. /
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Let $B=$ A $\mathrm{X}_{\alpha}G$ and $n=|G|$ . Then, a dual conditional expectation
$E_{B}$ is of index-finite type with a quasi-basis $\{(w_{\mathit{9}}, w_{g})* : g\in G\}$ , where
$w_{g}=\sqrt{n}u_{g}e_{A}$ (see section 2).

The following fact comes from a simple computation.

Lemma 3.2 ([8]) The expression $x= \sum_{g\in c}w_{\mathit{9}}bg(b_{g}\in B)$ is unique for
each $x\in C^{*}(B, e_{A})$ .

Let $A$ be a unital $C^{*}$ -algebra and $Lg_{n}(A)$ denote the $n$-tuples $(x_{1}, \ldots, x_{n})$

in $A^{n}$ which generate $A$ as a left ideal. The topological stable rank of $A$

$(sr(A))$ is defined to be the least integer for which $Lg_{n}(A)$ is dense in $A^{n}$ .
If there does not exist such an integer then $sr(A)$ is defined to be $\infty$ . For a
non unital $C^{*}$ -algebra $A$ we define $sr(A)=sr(\tilde{A})$ where $\tilde{A}$ is the unitization
of $A$ . See [15] for details about stable rank. It is not hard to see that for a
unital $C^{*}$ -algebra $A$ $sr(A)=1$ if. and only if the set of invertible elements

is dense in $A$ .

Theorem 3.3 ([8]) Let $G$ be a finite group, and $\alpha$ be an action of $G$ on a
unital $C^{*}$ -algebra $A$ with $sr(A)=1$ . Then $sr(A\cross_{\alpha}G)\leq|G|$ .

Proof Let $n=|G|$ , and $(b_{\mathit{9}1’\cdots,g_{n}}b)\in B^{n}$ , where $B=A\cross_{\alpha}G$ .
Put $y= \sum_{g\in}cw_{g}b_{g}\in C^{*}(B, e_{A})$ . Since $C^{*}(B, e_{A})$ is strong Morita equiv-

alent to $A$ and $sr(A)=1$ , we have $sr(C^{*}(B, e_{A}))=1([16$ , Proposition

1.3.4.]). Approximate $y$ by invertible elements $x$ in $C^{*}(B, e_{A})$ , and write
$x= \sum_{g\in G}w_{gg}c,$ $c_{g}\in B$ . Then by Lemma 3.2, $(c_{g_{1}}, \ldots , c_{g_{n}})$ is close to
$(b_{\mathit{9}1\mathit{9}n}, \ldots, b)$ . Note that

$x^{*}x=n \sum_{\mathit{9}}c^{*}ge_{A}cg$
.

By Lemma 2.2

$E_{B}(x^{*}x) \geq\frac{1}{n}x^{*}x$ , $x\in C^{*}(B, e_{A})$ .

Since $E_{B}(X^{*}X)= \sum_{g}C_{\mathit{9}}^{*}c_{g}$ , it follows that

$\sum_{g}c_{g^{C_{g}}}^{*}\geq\frac{1}{n}x^{*}x$

which is invertible in $C^{*}(B, e_{A})$ . Therefore $\sum_{g}c_{g^{C_{g}}}^{*}$ is invertible in $B$ , that

is, $(c_{g_{1}}, \ldots, c_{g_{n}})\in Lg_{n}(B)$ . $\square$
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Remark 3.4 If $sr(A)=m$ then it can be shown that $sr(A\cross_{\alpha}G)\leq|G|m$

whenever $A$ is a simple unital $C^{*}$ -algebra. Indeed, it can come from the
following two factsj (i) $C^{*}(B, e_{A})$ is isomorphic to the matrix algebra $M_{n}(A)$

$([\mathit{1}\theta]),$ $( \mathrm{i}\mathrm{i})sr(M_{n}(A))=\{\frac{sr(A)-1}{n}\}+1$ , where $\{t\}$ denotes the least integer

which $i\mathit{8}$ greater than or equal to $t([\mathit{1}\mathit{5}])$ .

4 The Cancellation Property

A $C^{*}$ -algebra $A$ is said to have cancellation ofprojections if for any pro-
jections $p,$ $q,$ $r$ in $A$ with $p\perp r,$ $q\perp r,$ $p+r\sim q+r$ , we have $p\sim q$ . If
$M_{n}(A)$ has cancellation of projections for each $n=1,2,$ $\ldots$ , then we simply
say that $A$ has cancellation. Note that every $C^{*}$ -algebra with cancellation
is stably finite, that is, every matrix algebra $M_{n}(A)$ with entries from $A$

contains no infinite projections for $n=1,2,$ $\ldots$ . It can be shown that if $A$

is a $C^{*}$ -algebra with $sr(A)=1$ then it has cancellation. In the previous
section we proved that the stable rank of the $C^{*}$ -crossed product $A\cross_{\alpha}G$ is
bounded by the order of the group $G$ if $\mathrm{s}\mathrm{r}(A)=1$ , and actually it seems that
the crossed product has stable rank 1, and therefore it would be natural to
ask if it has cancellation.

Theorem 4.1 ([2, Theorem 4.2.2]) Let $A$ be a simple unital $C^{*}$-algebra.
$s_{uppo\mathit{8}}e$ $A$ contains a sequence $(p_{k})$ of projections such that

1. for each $k$ there $i\mathit{8}$ a projection $r_{k}$ such that $2p_{k+1}\oplus r_{k}$ is equivalent
to a subprojection of $p_{k}\oplus r_{k}$ ,

2. there is a constant $K$ such that $sr(p_{k}Ap_{k})\leq K$ for all $k$ .
Then $A$ has cancellation.

Theorem 4.2 ([8]) Let $A$ be a simple unital $C^{*}$ -algebra with $sr(A)=1$

and $SP$-property. If $G$ is a finite group and $\alpha$ is an action of $G$ on A then
the crossed product $\mathrm{A}\cross_{\alpha}G$ has cancellation.

Sketch of a proof.
We give a proof in the case that $A\cross_{\alpha}G$ is simple.
Since the fixed point algebra $A^{\alpha}$ can be identified with a hereditary $C^{*}-$

subalgebra of the crossed product it has the $\mathrm{S}\mathrm{P}$-property by Theorem 1.6.
Thus there is a sequence of projections $\{p_{k}\}\in A^{\alpha}$ such that $2[p_{k+1}]\leq[p_{k}]$

by [9, Lemma 2.2], where $[p]$ denotes the equivalence class of $p$ . Since
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$p_{k}\in A^{\alpha},$ $p_{k}(A\cross_{\alpha}G)p_{k}$ is isomorphic to $(p_{k}Ap_{k})\cross_{\alpha}G$ for each $k\in N$ . Note

that each $p_{k}Ap_{k}$ has stable rank one. By Theorem 3.3
$sr(p_{k}Ap_{k}\cross_{\alpha}G)\leq|G|\square$

.
Therefore, the assertion follows from Theorem 4.1 $(K=|G|,r_{k}=0)$ .

Recall that a unital $C^{*}$ -algebra $A$ has real rank zero, $RR(A)=0$, if

the set of invertible self-adjoint elements is dense in $A_{sa}$ . It is well known

that $RR(A)=0$ is equivalent to say that every non-zero hereditar.y $C^{*}-$

subalgebra contains an approximate identity consisting of projections $(\mathrm{H}\mathrm{P})$

$([3])$ . From [2, Section 4] where the $\mathrm{H}\mathrm{P}$-property is studied for simple $C^{*}-$

algebras we can deduce the following.

Corollary 4.3 ([8]) Under the assumptions of the above theorem,

if $RR(A\cross_{\alpha}G)=0$ then its stable rank is one.

For crossed products by the integer group $Z$ we have the following can-
cellation theorem:

Theorem 4.4 ([8]) Let $A$ be a simple unital $C^{*}$ -algebra with $sr(A)=1$

and $SP$-property. If $\alpha$ is an outer action of the integer group $Z$ on $A$ such

that $\alpha_{*}--id$ on the $K_{0}$ group $K_{0}(A)$ of A then the crossed product $A\cross_{\alpha}Z$

has cancellation.

Example 4.5 If A $i\mathit{8}$ a $UHF$ algebra or an irrational rotation algebra then

the identity map is the only possible homomorphism on its $K_{0}$ group. There-

fore the theorem $\mathit{8}ays$ that any $cro\mathit{8}\mathit{8}ed$ product $A\cross_{\alpha}Z$ has cancellation.

Corollary 4.6 ([8]) Under the $\mathit{8}ameas\mathit{8}umpti_{\mathit{0}}n$ of Theorem 3.5

if $RR(A\cross_{\alpha}Z)=0$, then its $\mathit{8}table$ rank is one.
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