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1 Results.

In this report we consider the spectrum of the Dirac operator

$L= \sum_{j=1}^{3}\alpha jD_{j}+m(x)\beta+q(x)I_{4}$ $(x\in \mathrm{R}^{3},$ $D_{j}=-i \frac{\partial}{\partial x_{j}})$ ,

in the Hilbert space $\mathcal{H}=[L^{2}(\mathrm{R}^{3})]^{4}$ , where

$\alpha_{j}=$ $(1\leq j\leq 3),$ $\beta=$ , $I_{4}=$ ,

$\sigma_{1}=$ , $\sigma_{2}=$ , $\sigma_{3}=$ , $I_{2}=$ ,

and real valued functions $m(x)$ and $q(x)$ are assumed to be continuous in $\mathrm{R}^{3}$ and satisfy

$m(x)arrow+\infty$ (or $-\infty$ ) as $r=|x|arrow\infty$ .

or
$q(x)arrow+\infty$ (or $-\infty$ ) as $rarrow\infty$ .

Let us denote the unique self-adjoint realization of $L$ by $H$ . We will show below the the
structure of the spectrum of the Dirac operator by dividing the problem into three cases ;

$(\mathrm{a})(\mathrm{b})$ $\lim\lim_{rarrow}^{\sup}\sup_{\infty}^{\infty}|rarrow|\frac{q(x)}{\frac{m(X)m(X)}{q(x)}}|<1<1’$

,

(c) $q(x)\equiv m(x)$ (or- $q(x)\equiv-m(x)$ ).
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Theorem A (Yamada [9], Theorem 1). Assume (a). Let $m,$ $q\in C^{1}$ satisfy
(A.1) $m(x)arrow+\infty$ (or $-\infty$ ) as $rarrow\infty$ ,
(A.2) $|\nabla m|=O(m(x))$ , $|\nabla q|=o(m(x))$ as $rarrow\infty$ .

Then, we have $\sigma(H)=\sigma_{d}(H)$ (i.e., the set of discrete eigenvalues with finite multipicity),

which is unbounded $\mathrm{a}\mathrm{t}\pm\infty$ in R.

Theorem $\mathrm{B}$ (Schmidt and Yamada [6], Theorem 1). Let $m\in C^{1}$ and $q\in C^{0}$ be

spherically symmetric (i.e., $q=q(r),$ $m=m(r)$ ), and satisfy (b) and
(B.1) $q(r)arrow+\infty$ (or $-\infty$ ) as $rarrow\infty$ ,
(B.2) $\lim_{rarrow}\inf_{\infty}|m(r)|>0$ ,
(B.3) there exist a positive number $R_{0}$ and two distinct real values $\lambda_{1},$ $\lambda_{2}$ such that

$\frac{m}{q-\lambda_{j}}\in BV[R_{0}, \infty)$ $(j=1,2)$ ,

that is, they are of bounded variation in the interval $[R_{0}, +\infty)$ .
(B.4) there exist a positive number $R_{0}$ such that

$\frac{m’}{rmq}\in L^{1}(R0, \infty)$ .

Then, we have $\sigma_{aC}(H)=\mathrm{R}$ and $\sigma_{s}(H)=\emptyset$ where $\sigma_{ac}(H)(\sigma_{s}(H))$ is the absolutely
continuous (singular) spectrum of $H$ .

Remark 1. In Theorem $\mathrm{B}$ , if $m,$ $q\in C^{1}$ satisfy (B.1), (B.2) and

$\int_{R_{0}}^{\infty}(|\frac{m’}{q}|+\cdot|\frac{mq’}{q^{2}}|)dr<\infty$

for some $R_{0}>0$ , then (B.3) and (B.4) are satisfied.

Theorem $\mathrm{C}$ (Yamada [9], Theorem 2). Let $m,$ $q\in C^{0}$ satisfy
(C.1) $m(x)\equiv q(X)arrow+\infty$ as $rarrow\infty$ ,

Then, we have $\sigma(H)\cap(\mathrm{O}, +\infty)\subset\sigma_{d}(H)$ .

Theorem $\mathrm{C}’$ (Schmidt and Yamada [6], Theorem 2). Let $q\in C^{1}$ be a spherically
symmetric function. Assume (C.1) and

(C.2) there exists a positive number $R_{0}$ such that

$\frac{q’}{q^{3/2}}\in BV[R_{0}, \infty)\cap L2(R0, \infty)$ .

Then, we have

$\sigma(H)\cap(-\infty, 0)\subset\sigma_{a\mathrm{c}}(H),-$ and $\sigma_{s}(H)\cap(-\infty, 0)=\emptyset$ .
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Remark 2. In Theorem $\mathrm{C}’$ , if $q\in C^{2}$ satisfies

$\int_{R_{0}}^{\infty}[\frac{|q’’|}{q^{3/2}}+\frac{(q’)^{2}}{q^{5/2}}]dr<\infty$ ,

then (C.2) is satisfied.
If $m\equiv-qarrow-\infty$ , then we have the similar result as in Theorem $\mathrm{C}’$ . On the other

hand, if $m\equiv qarrow-\infty$ , or $m\equiv-qarrow+\infty$ , then see can see under the similar conditiions

that the negative spectrum is discrete, and the positive spctrum is absolutely continuous.

Remark 3. For the sake of simplicity we assumed the continuity of $m(x)$ and $q(x)$

in $\mathrm{R}^{3}$ . It turns out that, if real valued fumctions $m(x)$ and $q(x)$ belong to $L_{l\circ C}^{2}(\mathrm{R}^{3})$ , a

symmetric operator $L$ defined on $C_{0}^{\infty}=[C_{0}\infty(\mathrm{R}^{3})]^{4}$ has at least one self-adjoint extension.

For, the symmetric operator $L$ is real with respect to a conjugation $J$ such that

$Ju=\alpha_{13}\alpha\overline{u}$ .

2 $\mathrm{O}_{r}\mathrm{u}$tline of the Proofs.

We sketch the proof of Theorem $\mathrm{A},$ $\mathrm{C},$ $\mathrm{B},$
$\mathrm{C}’$ , successively.

The Proof of Theorem A. It suffices to prove that $(H-i)^{-1}$ is a compact opeerator

on $\mathcal{H}$ . Let $\{f_{n}\}_{n=1,2},\cdots$ be a bounded seq,uence in $\mathcal{H}$ , and set $u_{n}=(H-i)^{-1}fn$ . Then, $u_{n}$

satisfies
$(\alpha\cdot D)u_{n}+m(X)\beta u_{n}=[i-q(x)]u_{n}+f_{n}$ , (1)

and, by operating $(\alpha\cdot D)$ to (1),

$(-\triangle+m^{2}-q^{2}+1)$ u$=[n\beta(\alpha\cdot Dm)-2iq-(\alpha\cdot Dq)]$ $u_{n}$

$+[(\alpha\cdot D)+(i-q+m\beta)]f_{n}$

in the distribution sense, where $( \alpha\cdot D)=\sum_{j=1}^{3}\alpha j..D_{j}$ . Using the assumptions we can find a

positive constant $C$ such that

$\int_{\mathrm{R}^{3}}[|\nabla u_{n}|^{2}+m^{2}(x)|u_{n}(x)|^{2}]dx\leq C||f_{n}||^{2}$ ,

which and (A.1) imply the relative compactness of $\{u_{n}\}$ .

Remark 4. We may adopt some local singularities of $q(x)$ and $m(x)$ . If we assume

that there exist positive constants $C,$ $R_{0}$ and $\delta<1$

$\int_{|x|\leq 0}R|[m(X)\beta+q(x)I_{4}]u(x)|^{2}dX\leq\delta\int \mathrm{I}x|\leq R_{0+}1|\nabla u|^{2}dx+C\int_{|x}|\leq Ro+1|u(x)|2dX$ (2)
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for any $u\in C_{0}^{\infty}$ , instead of the differentiability of $m(x)$ and $q(x)$ in $|x|\leq R_{0}$ , then we
obtain similarly from (1), (A.1) and (A.2) that

$\int_{\mathrm{R}^{3}}|\nabla u_{n}|^{2}dX+\int_{|x|\geq R_{0}}m^{2}(x)|u_{n}(x)|^{2}dx\leq C||f_{n}||^{2}$ ,

which implies also the relative compactness of $\{u_{n}\}$ .
For example, if there exist positive constants $R_{0}$ and $\delta<1$ such that

$|m(x) \pm q(x)|\leq\frac{\delta}{2|x|}$ $(|x|\leq R_{0})$ ,

then (2) holds in view of the well-known inequality

$\int_{\mathrm{R}^{3}}\frac{|u(x)|^{2}}{|x|^{2}}dx\leq 4\int_{\mathrm{R}}\mathrm{a}\nabla|u|^{2}dx$

for any $u\in C_{0}^{\infty}$

The Proof of Theorem C. Let us show that any positive number $\lambda$ does not belong
to the essential spectrum $\sigma_{ess}(H)$ . If otherwise, there exist a positive number $\lambda$ and an
orhtonormal sequence $\{u_{n}\}_{n=1,2},\cdots$ in $\mathcal{H}$ such that

$(H-\lambda)u_{n}arrow 0$

in $\mathcal{H}$ . Then, write

$u_{n}=$ , $(H-\lambda)u_{n}=arrow$

Then, we have

$\{$

$(\sigma\cdot D)w_{n}+2qv_{n}-\lambda vn=f_{n}$

$(\sigma\cdot D)v_{n}-\lambda w_{n}=g_{n}$ ,
(3)

where $( \sigma\cdot D)=\sum_{j=1}^{3}\sigma_{j}D$ . Combining these identities we $\mathrm{o}\mathrm{b}$.tain
$-\triangle v_{n}+2\lambda qvn(=\sigma\cdot D)g_{n}+\lambda f_{n}+\lambda^{2}v_{n}$ . (4)

which implies

$\int_{\mathrm{R}^{3}}[|\nabla v|^{2}n+2\lambda|q(_{X)}||v(_{X})|^{2}]ndx\leq C(||f_{n}||^{2}+||gn||2+||vn||^{2})$ (5)

where $C$ is a positive constant independent of $n=1,2,$ $\cdots$ . Thus, we can select a strongly
convergent subsequence $\{v_{n_{j}}\}_{j1,2}=,\cdots$ in $\mathrm{h}=[L^{2}(\mathrm{R}^{3})]^{2}$ . Since $u_{n}$ tends weakly to $0$ in $\mathcal{H}$ ,
we see

$v_{n_{j}}arrow 0$ in $\mathrm{h}$ as $jarrow\infty$ ,
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which, (3) and (5) imply
$w_{n_{\mathrm{J}}}arrow 0$ in $\mathrm{h}$ as $jarrow\infty$ ,

This fact contradicts to $||u_{n}||=1(n=1,2, \cdots)$ .

Remark 5. In the proof of Theorem $\mathrm{C}$ , we may adopt a local singularity of $q(x)$ in a

ball, that is,
$\int_{|x|\leq R_{0}}|q(x)|^{2}dX<\infty$ ,

instead of the continuity in the ball. For, if $q(x)$ satisfies the above condition, then we

have

$\int_{|x|\leq R}0d_{X\leq\delta\int_{1}}|q(x)||f(x)|2x|\leq R\mathrm{o}+1|\nabla f|^{2}d_{X}+C\delta\int|x|\leq R\mathrm{o}+1|f(x)|^{2}dx$
,

$\int_{1}x|\leq R_{0}|q(x)f(X)|2dx\leq\delta\int|x|\leq R_{0}+1|\triangle f|^{2}dX+Cs\int_{|x|\leq R\mathrm{o}+}1|f(x)|^{2}dX$
(6)

for any $f\in C_{0}^{\infty}$ , any positive number $\delta<1$ , and a positive constant $C_{\mathrm{t}};$ . Therefore, we can

show (5) by means of (3) and (4). Thus, we can include Coulomb potentials in Theorem
$\mathrm{C}$ without the restriction of the size of the constant.

Remark 6. If $m(x)\equiv q(x)$ is an $L_{loC}^{2}(\mathrm{R}^{3})$ function, then the symmetric operator $H_{0}$

with the domain $D(H_{0})=C_{0}^{\infty}$ such that $H_{0}u=Lu(u\in D(H_{0})$ is essentially self-adjoint.

Indeed, we can see that the ranges of $(H_{0}\pm i)$ are dense in $\mathcal{H}$ . If otherwise, we could take

non-zero vectors $v$ and $w\in \mathrm{h}$ such that

$\{$

$(\sigma\cdot D)w+2qv=\eta v$ (7)
$(\sigma\cdot D)v=\eta w$ ,

where $\eta=i\mathrm{o}\mathrm{r}-i$ , and
$-\triangle v+2\eta qv=-v$ (8)

in the distribution sense. Then, we have $|\nabla v|\in L^{2}(\mathrm{R}^{3})$ by means of the latter of (7) and
$\triangle v\in \mathrm{h}$ in view of the asSump.tion and (6), (8), which give

$\int_{x|\leq R}||[\nabla v|^{2}+|v|^{2}]dx=\int_{x}||=R<{\rm Re}\frac{\partial v}{\partial r},\overline{v}>dS$ . (9)

Since the right hand side of (9) tends to $0$ by a sequence $\{R_{n}\}_{n1,2}=,\cdots$ with $R_{n}arrow\infty$ , we

have $v=0$ , which and the second identity of (7), gives $w=0$ . This is a contradiction.

The Proof Theorem B. If $m=m(r)$ and $q=q(r)$ are spherical symmetric functions,

the spectral problem of $H$ is reduces to the one of one-dimensional Dirac operators

$l_{k}=-i \sigma_{2}\frac{d}{dr}+m(r)\sigma 3+q(r)I_{2}+\frac{k}{r}\sigma 1$ $(k=\pm 1, \pm 2, \cdots)$

in $[L^{2}(0, \infty)]^{2}$ (see, e.g.,, Arai [1]).
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The proof of the Theorem $\mathrm{B}$ is given on the line of the follwoing Lemma 1 given by
Behncke [3], Theorem 1.

Lemma 1. Let $m,$ $p$ and $q$ be real valued functions and belong to $L_{loc}^{1}(\mathrm{o},’\infty),.\mathrm{a}$nd

$l=-i\sigma_{2^{\frac{d}{dr}+m}}(r)\sigma_{3}+q(_{\Gamma)}I_{2}+p(r)\sigma 1\cdot$

Let $h_{0}$ be the minimal operator such that

$h_{0}u=lu$ , $u\in D(h_{0})--\{u\in c_{0}\infty(0^{\cdot}, \infty)|lu\in \mathrm{h}\}$ ,

which is a densely defined symmetric operator in $\mathrm{h}$ (see, e.g., Weidmann [8], Theorem 3.7).
and let $h$ be a self-adjoint extension of $h_{0}$ (note that $h_{0}$ is a real operator). Assume that
$I$ is an interval such that every solution of

$lv=\lambda v$ $(\lambda\in I)$ (10)

is bounded at infinity. Then, we have

$I\subset\sigma_{ac}(h)$ and $\sigma_{s}(h)\cap I=\emptyset$ .

The above lemma is closely related to Gilbert-Pearson [4] and Weidmann [7]. There is
also a direct proof by Schmidt [5], Appendix.

In order to obtain the boundedness of $v$ of (10) at infinity, we prepare the following
Lemma 2.

Lemma 2. Let $M,$ $P$ and $Q$ be real valued functions and belong to $L_{l_{oC}}^{1}(0, \infty)$ such that

$\lim_{rarrow\infty}Q(r)=\infty$ (11)

$\lim_{rarrow}\sup_{\infty}\frac{\sqrt{M(r)^{2}+P(r)^{2}}}{Q(r)}<1$ , (12)

and
$\frac{\sqrt{M^{2}+P^{2}}}{Q-\sqrt{M^{2}+P^{2}}}$ , $\frac{M}{Q-\sqrt{M^{2}+P^{2}}}$ , $\frac{P}{Q-\sqrt{M^{2}+P^{2}}}$ $\in BV[R_{0}, \infty)$ (13)

for some $R_{0}>0$ . Then, every solution of

$-i \sigma_{2}\frac{d}{dr}v+M\sigma_{3}v+P\sigma_{1}v+Qv=0$

is bounded at infinity. If $P\equiv 0$ , the condition (13) may be read as ;

$\frac{M}{Q-M}\in BV[R_{0,\infty}$ ) $.$ . (14)
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Theorem $\mathrm{B}$ is shown by seeing the boundedness of any solution $\mathrm{v}$ of

$l_{k}v=-i \sigma_{2}\frac{d}{dr}v+m(r)\sigma_{3}+q(r)v+\frac{k}{r}\sigma_{1}v=\lambda v$ $(\lambda<0, k=\pm 1, \pm 2, \cdots)$

at infinity. If we set
$Q=q-\lambda$ , $M=m$ , $P= \frac{k}{r}$

in Lemma 2, we can guarantee (11), (12) and (13) in Lemma 2 by means of the asuumptions
(B.1), (B.2), (B.3) and (B.4). Therefore, we get the boundedness of $v$ at infinity, and the
absolute continuity of the spectrum of $H$ in view of Lemma 1.

Remark 7. If $q(r)$ and $m(r)$ are locally bounded in $[0, \infty)$ , every $l_{k}(k=\pm 1, \pm 2, \cdots)$

is of limit point type at $0$ and $\infty$ . If $m(r)$ is locally bounded near $0$ and $q(r)$ satisfies

$|q( \Gamma)|\leq\frac{\sqrt{3}}{2r}$

near $0$ , then every $l_{k}$ is of limit point type at $0$ . If $m(r)=b/r$ ( $b$ is a real constant) and

$|q(r)|^{2} \leq[\frac{3}{4}$

.
$+b^{2}] \frac{1}{r^{2}}$

near $0$ , tl\’ien every $l_{k}$ is of limit point type at $0$ (see, e.g., Arai [1] and Yamada [10], where
are more general results).

The Proof of Theorem $\mathrm{C}’$ . We shall make use of the Gilbert-Pearson theory
(Gilbert-pearson [4], Behncke [2]), showing that the differential equation

$l_{k}v=(-i \sigma_{2}\frac{d}{dr}+q(r)\sigma_{2}+q(r)I_{2}+\frac{k}{r}\sigma_{1})v=\lambda v$ $(\lambda<0)$ (15)

does not possess a subordinate solution at infinity, that is, any non-trivial soutions $v$ and
$w$ of (15) for $\lambda<0$ satisfy

$\lim \mathrm{i}\mathrm{n}\mathrm{f}rarrow\infty\frac{\int_{R_{0}}^{\infty}|v(S)|2dS}{\int_{R}^{\infty}0|w(S)|2dS}>0$ (16)

for some $R_{0}>0$ . To this end, for a solution $v={}^{t}(v_{1}, v_{2})$ of (15), we set

$\tilde{v}==(\sqrt{(-\lambda)/(2q-\lambda)}4v_{2}\sqrt{(2q-\lambda)/(-\lambda)}4v_{1})$

Then, $\tilde{v}$ satisfies

$(-i \sigma_{2}\frac{d}{dr}+M\sigma_{1}+QI_{2})\tilde{v}=0$ , (17)

where
$M(r)= \frac{-q’}{2(2q-\lambda)}$ , $Q(r)=\sqrt{(-\lambda)(2q-\lambda)}$ , $P\equiv 0$ .
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Under the assumptions (C.1) and (C.2) we have that the above $M$ and $Q$ satisfy the
conditions (11), (12) and (14) in Lemma 2 and, therefore, any solution $\tilde{v}$ of (17) is bounded
at infinity, which implies

$C^{-1}\leq|\tilde{v}(r)|^{2}\leq c$ $(r\geq R\mathrm{o})$

for some positive constants $R_{0}$ and $C>1$ . Thus, we have

$0< \mathrm{I}\mathrm{i}\mathrm{m}\inf_{rarrow\infty}\frac{|v(r)|^{2}}{\sqrt{2q(r)-\lambda}}\leq\lim_{rarrow}\sup_{\infty}\frac{|v(r)|^{2}}{\sqrt{2q(r)-\lambda}}<\infty$ .

The same estimate holds for $w$ , which yields (16).
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