余次元 2 ではめ込まれた多様体の多重点と同境類について東大数理 鈴岡 啓一（KEIICHI SUZUOKA）

1．Introduction and Known Results

Throughout this paper，we will work in the smooth category．
Any immersion can be approximated by a self－transverse one．So we suppose that all immersions are self－transverse．

We will study multiple points and cobordism classes of orientable $4 m$－manifolds which are immersed into $\mathbf{R}^{4 m+2}$ ．

Notation ：
$f: M^{k(r-1)} \rightarrow \mathbf{R}^{k r}$ is an immersion of an oriented closed $k(r-1)$－manifold in $k r$－ space．$(r>2)$
ν is the normal bundle of f ．
e is the Euler class of ν ．
w_{i} is the i－th Stiefel－Whitney class of M ．
\bar{w}_{i} is the i－th normal Stiefel－Whitney class of M ．
P_{i} is the i－th Pontryagin class of M ．
\bar{P}_{i} is the i－th normal Pontryagin class of M ．
［ $\left.M^{k(r-1)}\right]$（resp．$\left[M^{k(r-1)}\right]_{2}$ ）is the fundamental homology class of $M^{k(r-1)}$ with \mathbf{Z} （resp． \mathbf{Z}_{2} ）coefficient．
$\Theta_{r}(f)$ is the set of r－tuple points of f in $\dot{\mathbf{R}}^{k r}$ ．
$\Delta_{r}(f)=f^{-1}\left(\Theta_{r}(f)\right)$ ．

For f is a self transverse immersion, $\Theta_{r}(f)$ and $\Delta_{r}(f)$ are finite point sets. If k is even, a sign can be attached to each point in $\Theta_{r}(f)$ by comparing the standard orientation of $\mathbf{R}^{k r}$ with that provided by the orientation of the r normal planes at that point. We attach the same sign to each point $p \in \Delta_{r}(f)$ as $f(p) \in \Theta_{r}(f)$.

Definition 1.1. The algebraic number of r-tuple points of f is the number of Θ_{r} counted in a signed way. We write $\left[\Theta_{r}(f)\right]$ for it. The algebraic number $\left[\Delta_{r}(f)\right]$ is defined in the same way.

We write $\left[\Theta_{r}(f)\right]_{2}$ (resp. $\left.\left[\Delta_{r}(f)\right]_{2}\right)$ for the mod 2 reduction of the number of $\Theta_{r}(f)$ (resp. $\Delta_{r}(f)$).
In case k is odd, however, we cannot attach a sign to an r-tuple point, and we do not define the algebraic number of r-tuple points. In this case, the only $\left[\Theta_{r}(f)\right]_{2}$ and $\left[\Delta_{r}(f)\right]_{2}$ make sense.

In [7], Herbert proved the following;

Theorem 1.2.

$$
\begin{equation*}
\left[\Delta_{r}(f)\right]_{2}=\left\langle\bar{w}_{k}^{(r-1)},\left[M^{k(r-1)}\right]_{2}\right\rangle_{2} . \tag{1.1}
\end{equation*}
$$

In case k is even,

$$
\begin{equation*}
\left[\Delta_{r}(f)\right]=(-1)^{r-1}\left\langle e^{(r-1)},\left[M^{k(r-1)}\right]\right\rangle . \tag{1.2}
\end{equation*}
$$

$\langle\rangle,\left(\right.$ resp. \langle,\rangle_{2}) is the Kronecker product with \mathbf{Z} (resp. $\mathbf{Z}_{\mathbf{2}}$) coefficient. These are very simple versions of his beautiful formulae.

By definition, it is easy to see that

$$
\begin{equation*}
\left[\Delta_{r}(f)\right]=r\left[\Theta_{r}(f)\right] . \tag{1.3}
\end{equation*}
$$

So if r is even,

$$
\begin{equation*}
\left[\Delta_{r}(f)\right]_{2}=0 \tag{1.4}
\end{equation*}
$$

In [6], Felali proved the following (cf.[4]);
Theorem 1.3. There exist an orientable $2(r-1)$-manifold $M^{2(r-1)}$ and an immersion $f: M^{2(r-1)} \rightarrow \mathbf{R}^{2 r}$ with $\left[\Theta_{r}(f)\right]=d$ if and only if d can be divided by $(r-1)$!.

2. Multiple Points of Codimension 2 Immersions

In this section, we consider the case $k=2$ and r is odd $(r=2 m+1)$. Our aim is to prove the following theorem;

Theorem 2.1. Let $M^{4 m}$ be a closed $4 m$-manifold and $f: M^{4 m} \leftrightarrow \mathbf{R}^{4 m+2}$ be an immersion. If $M^{4 m}$ is a spin manifold (i.e. $M^{4 m}$ is oriented and $w_{2}=0$), then the algebraic number of $(2 m+1)$-tuple points of the immersion $\left[\Theta_{2 m+1}(f)\right]$ can be divided by $2^{2 m}(2 m)$!. Moreover, if m is odd, then $\left[\Theta_{2 m+1}(f)\right]$ can be divided by $2^{2 m+1}(2 m)$!

To prove Theorem2.1 we need two lemmas.
In [1], Atiyah and Hirzebruch proved the following lemma.
Lemma 2.2. If $M^{4 m}$ is a spin manifold, then $\hat{A}\left(M^{4 m}\right)$ (the \hat{A}-genus of $\left.M^{4 m}\right)$ is an integer. Moreover, if m is odd, then $\hat{A}\left(M^{4 m}\right)$ is an even integer.

The total Pontryagin class of $M^{4 m}$ can be written in the form of

$$
\begin{equation*}
P\left(M^{4 m}\right)=1+P_{1}+P_{1}^{2}+\cdots+P_{1}^{m}+\text { elements of order } 2 \tag{2.1}
\end{equation*}
$$

because

$$
\begin{equation*}
T\left(M^{4 m}\right) \oplus \nu=\varepsilon^{4 m+2} \tag{2.2}
\end{equation*}
$$

is the trivial $(4 m+2)$-bundle.
Therefore, $\hat{A}\left(M^{4 m}\right)$ can be represented by the P_{1}^{m} only.

The following lemma was proved in [2].

Lemma 2.3. If $M^{4 m}$ can be immersed into $\mathbf{R}^{4 m+2}$, then

$$
\begin{equation*}
\hat{A}\left(M^{4 m}\right)=\frac{(-1)^{m}}{2^{2 m}(2 m+1)!}\left\langle P_{1}^{m},\left[M^{4 m}\right]\right\rangle \tag{2.3}
\end{equation*}
$$

Now we prove our main theorem.
Proof of Theorem2.1.
The relation between e (the Euler class of ν) and \bar{P}_{1} (the first normal Pontryagin class of $M^{4 m}$) is

$$
\begin{equation*}
e^{2}=\bar{P}_{1} \tag{2.4}
\end{equation*}
$$

By Theorem1.2 (in this case $k=2$ and $r=2 m+1$), we have

$$
\begin{align*}
{\left[\Delta_{2 m+1}(f)\right] } & =\left\langle e^{2 m},\left[M^{4 m}\right]\right\rangle \tag{2.5}\\
& =\left\langle\bar{P}_{1}^{m},\left[M^{4 m}\right]\right\rangle \\
& =(-1)^{m}\left\langle P_{1}^{m},\left[M^{4 m}\right]\right\rangle .
\end{align*}
$$

By (1.3)

$$
\begin{equation*}
\left[\Delta_{2 m+1}(f)\right]=(2 m+1)\left[\Theta_{2 m+1}(f)\right] \tag{2.6}
\end{equation*}
$$

Thus the algebraic number of $(2 m+1)$-tuple points is

$$
\begin{equation*}
\left[\Theta_{2 m+1}(f)\right]=\frac{(-1)^{m}}{2 m+1}\left\langle P_{1}^{m},\left[M^{4 m}\right]\right\rangle \tag{2.7}
\end{equation*}
$$

By Lemma2.2 and Lemma2.3, we can easily see that $\left\langle P_{1}^{m},\left[M^{4 m}\right]\right\rangle$ can be divided by $2^{2 m}(2 m+1)!$. Together with (2.7), we obtain that $\left[\Theta_{2 m+1}(f)\right]$ can be divided by $2^{2 m}(2 m)!$. In case m is odd, we can obtain the result in the same way.
This completes the proof of Theorem2.1.

3. Cobordism Classes of Codimension 2 Immersed Manifolds

Theorem 3.1. Let $f: M^{4 m} \rightarrow \mathbf{R}^{4 m+2}$ and $g: N^{4 m} \leftrightarrow \mathbf{R}^{4 m+2}$ be immersions of oriented closed $4 m$-manifolds.
Then $M^{4 m}$ and $N^{4 m}$ are oriented cobordant if and only if $\left[\Theta_{2 m+1}(f)\right]=\left[\Theta_{2 m+1}(g)\right]$. In particular, $M^{4 m}$ is oriented cobordant to 0 if and only if $\left[\Theta_{2 m+1}(f)\right]=0$.

Proof of Theorem3.1.
At first we want to show that $M^{4 m}$ and $N^{4 m}$ are unoriented cobordant to 0.
By (2.2), the total Stiefel-Whitney class of $M^{4 m}$ is

$$
\begin{equation*}
w\left(M^{4 m}\right)=1+w_{2}+w_{2}^{2}+\cdots+w_{2}^{2 m} \tag{3.1}
\end{equation*}
$$

Thus the only non-trivial Stiefel-Whitney number of $M^{4 m}$ is $\left\langle w_{2}^{2 m},\left[M^{4 m}\right]_{2}\right\rangle_{2}$. For $2 m+1$ is odd,

$$
\left[\Delta_{2 m+1}(f)\right]_{2}=\left[\Theta_{2 m+1}(f)\right]_{2}
$$

By (1.1)

$$
\begin{aligned}
{\left[\Delta_{2 m+1}(f)\right]_{2} } & =\left\langle\bar{w}_{2}^{2 m},\left[M^{4 m}\right]_{2}\right\rangle_{2} \\
& =\left\langle w_{2}^{2 m},\left[M^{4 m}\right]_{2}\right\rangle_{2}
\end{aligned}
$$

Theorem1.3 implies that $\left[\Theta_{2 m+1}(f)\right]$ is even, so

$$
\begin{equation*}
\left\langle w_{2}^{2 m},\left[M^{4 m}\right]_{2}\right\rangle_{2}=0 \tag{3.2}
\end{equation*}
$$

Therefore, $M^{4 m}$ is unoriented cobordant to 0 . And so is $N^{4 m}$.
By (2.1), the only non trivial Pontryagin number of $M^{4 m}$ (resp. $N^{4 m}$) is $\left\langle P_{1}^{m},\left[M^{4 m}\right]\right\rangle$ (resp. $\left\langle P_{1}^{m},\left[N^{4 m}\right]\right\rangle$). Thus we can see that $M^{4 m}$ and $N^{4 m}$ are oriented cobordant if and only if $\left\langle P_{1}^{m},\left[M^{4 m}\right]\right\rangle=\left\langle P_{1}^{m},\left[N^{4 m}\right]\right\rangle$. By (2.7), the latter condition is equivalent to saying that the algebraic number of $(2 m+1)$-tuple points of f and g attain the same value (i.e. $\left[\Theta_{2 m+1}(f)\right]=\left[\Theta_{2 m+1}(g)\right]$).
In particular, $M^{4 m}$ is oriented cobordant to 0 if and only if $\left[\Theta_{2 m+1}(f)\right]=0$. This completes the proof of Theorem3.1.

Remark 3.2. Stong [12] proved that if M^{n} is an oriented closed n-manifold immersed in \mathbf{R}^{n+2}, then M^{n} is unoriented cobordant to 0 .
Moreover, he proved that if $n \not \equiv 0(\bmod 4)$, then M^{n} is oriented cobordant to 0 .Here we gave a proof to the first assertion for completeness.

Corollary 3.3. $M^{4 m}$ is as in Theorem3.1.
If $M^{4 m}$ satisfies the following conditions (1) or (2), then $M^{4 m}$ is oriented cobordant to 0 .
(1) $M^{4 m}$ can be immersed in $\mathbf{R}^{4 m+2}$ with less than $(2 m)!(2 m+1)$-tuple points.
(2) There exists an integer i such that $0<i<2 m$ and $H_{2 i}\left(M^{4 m} ; \mathbf{Z}\right)$ has no free part.

Proof of Corollary3.3.

Case (1). $\left[\Theta_{2 m+1}(f)\right]$ is divided by $(2 m)$!. Thus if the number of $2 m+1$-tuple points is less than $(2 m)!$, then $\left[\Theta_{2 m+1}(f)\right]=0$. Therefore, $M^{4 m}$ is oriented cobordant to 0 by Theorem3.1.

Case (2). If such an i exists, then $e^{2 m}$ is a torsion element.
Thus

$$
\left[\Theta_{2 m+1}(f)\right]=\frac{1}{2 m+1}\left\langle e^{2 m},\left[M^{4 m}\right]\right\rangle
$$

must be 0 .Therefore, $M^{4 m}$ is oriented cobordant to 0 by Theorem3.1.

Remark 3.4. If $M^{4 m}$ is not oriented cobordant to 0 , then the number of $(2 m+1)$ tuple points is more than or equal to $(2 m)$!.

Acknowledgment. The author would like to express sincere gratitude to Professor Yukio Matsumoto for his instructive advice and encouragement.

References

[1] M. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276-281
[2] , Charakteristische Klassen und Anwendungen, Enseignement Math. 7 (1961), 188-213
[3] N. Boudriga and S. Zarati, Points multiples isolés d'immersion de codimension 2, C. R. Acad. Sci. Paris Ser. I Math. 296 no. 14 (1983), 573-576
[4] P.J. Eccles, Characteristic numbers of immersions and self-intersection manifolds, Topology with Applications,(Szekszárd 1993), Bolyai Soc. Math. Stud 4 (1995), 197-216
[5] P.J. Eccles and W.P.R. Mitchell, Triple points of immersed orientable $2 n$-manifolds in $3 n$ space, J. London Math. Soc. 39(2) (1989), 335-346
[6] K.S. Felali, Intersection points of immersed manifolds, Ph. D. thesis, University of Manchester (1982)
[7] R.J. Herbert, Multiple points of immersed manifolds, Memoirs AMS no. 25034 (1981)
[8] J. F. Hughes, Triple points of immersed $2 n$-manifolds in $3 n$-space, Quart. J. Math. Oxford (2) 34 (1983), 427-431
[9] H.B. Lawson JR. and L. Michelson, Clifford bundles ,immersions of manifolds and the vector field problem, J. Differential Geom. 15 (1980), 237-267
[10] , Spin Geometry , Princeton Mathematical Series 38 (1989), Princeton University Press
[11] J.W. Milnor and J. Stasheff, Characteristic Classes, Ann. of Math. Studies no. 76 (1974) Princeton University Press
[12] R.E. Stong, Manifolds which immerse in small codimension, Illinois J. Math. 27 (1983) ,182223
[13] J.H. White, Twist invariants and the Pontryagin numbers of immersed manifolds, Proc. Sympos. Pure Math. 27 (1975), 429-437

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153 Japan

