
余次元 2ではめ込まれた多様体の多重点と同境類について

東大数理鈴鰍啓– (KEIICHI SUZUOKA)

1. INTRODUCTION AND KNOWN RESULTS

Throughout this paper, we will work in the smooth category.
Any immersion can be approxinated by a self-transverse one. So we suppose that

all immersions are self-transverse.

We will study multiple points and cobordism classes of orientable $4m$-manifolds

which are immersed into $\mathrm{R}^{4m+2}$ .
Notation:

$f$ : $M^{k(\mathrm{r}-1)}*\mathrm{R}^{k\mathrm{r}}$ is an immersion of an oriented closed $k(r-1)$-manifold in kr-
$\mathrm{s}_{\mathrm{P}^{\mathrm{a}\mathrm{C}\mathrm{e}.(}}r>2)$

$\nu$ is the normal bundle of $f$ .
$e$ is the Euler class of $\nu$ .
$w_{i}-$ is the i-th Stiefel-Whitney class of $M$ .
$\overline{w}_{i}$ is the i-th normal Stiefel-Whitney class of $M$ .
$P_{i}$ is the i-th Pontryagin class of $M$ .

$\overline{P}\dot{.}$ is the i-th normal Pontryagin class of $M$ .
$[M^{k(r-1)}](\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}.[M^{k}(r-1)]_{2})$ is the fundamental homology class of $M^{k(r-1)}$ with $\mathrm{Z}$

(resp. $\mathrm{Z}_{2}$ ) coefficient.
$\Theta_{r}(f)$ is the set of $\mathrm{r}$-tuple points of $f$ in $\dot{\mathrm{R}}^{kr}$ .
$\triangle_{r}(f)=f^{-1}(\Theta_{r}(f))$ .
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For $f$ is a self transverse immersion, $\Theta_{r}(f)$ and $\triangle_{r}(f)$ are finite point sets.
If $k$ is even, a sign can be attached to each point in $\Theta_{r}(f)$ by comparing the standard
orientation of $\mathrm{R}^{k\mathrm{r}}$ with that provided by the orientation of the $r$ normal planes at
that point. We attach the same sign to each point $p\in\Delta_{r}(f)$ as $f(p)\in\Theta_{r}(f)$ .

Definition 1.1. The algebraic number of $r$ -tuple points of $f$ is the number of $\Theta_{r}$

counted in a signed way. We write $[\Theta_{r}(f)]$ for it. The algebraic number $[\triangle_{f}(f)]$ is
defined in the same way.

We write $[\Theta_{r}(f)]_{2}$ (resp. $[\triangle_{r}(f)]_{2}$ ) for the mod 2 reduction of the number $\mathrm{o}\mathrm{f}\ominus r(f)$

(resp. $\triangle_{f}(f)$ ).

In case $k$ is odd, however, we cannot attach a sign to an $r$ -tuple point, and we do
not define the algebraic number of $r$-tuple points. In this case, the only $[\Theta_{\Gamma}(f)]_{2}$

and $[\triangle_{r}(f)]_{2}$ make sense.

In [7], Herbert proved the following;

Theorem 1.2.

$[\triangle_{r}(f)]_{2}=\langle\overline{w}_{k}^{(r-1)}, [M^{k(r-1})]_{2}\rangle_{2}$ . (1.1)

In case $k$ is $even_{f}$

$[\triangle_{r}(f)]=(-1)’-1\langle e^{(r-1}, [)M^{k(1}r-)]\rangle$ . (1.2)

$(, )$ (resp. $(, \rangle_{2})$ is the Kronecker product with $\mathrm{Z}$ (resp. $\mathrm{Z}_{2}\rangle$ coefficient.
These are very simple versions of his beautiful formulae.

By definition, it is easy to see that

$[\triangle(rf)]=\Gamma[\Theta r(f)]$ . (1.3)

So if $r$ is even,

$[\triangle_{r}(f)]_{2}=0$ . (1.4)
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In [6], Felali proved the following $(\mathrm{c}\mathrm{f}.[4])$ ;

Theorem 1.3. There exist an orientable $2(r-1)$ -manifold $M^{2(r-1)}$ and an immer-

sion $f$ : $M^{2(1}’-)_{9\mathrm{R}}arrow r2$ with $[\Theta_{r}(f)]=d$ if and only if $d$ can be divided by $(r-1)!$ .

2. MULTIPLE POINTS OF CODIMENSION 2 IMMERSIONS

In this section, we consider the case $k=2$ and $r$ is odd $(r=2m+1).\mathrm{O}\mathrm{u}\mathrm{r}$ aim

is to prove the following theorem;

Theorem 2.1. Let $M^{4m}$ be a closed $4m$ -manifold and $f$ : $M^{4m}*\mathrm{R}^{4m+2}$ be an

immersion. If $M^{4m}$ is a spin manifold $(i.e$ . $M^{4m}$ is oriented and $w_{2}=0)_{\mathrm{Z}}$ then the

algebraic. number of $(2m+1)$ -tuple points of the immersion $[\Theta_{2m+1}(f)]$ can be divided

by $2^{2m}(2m)!$ . $Moreover_{f}$ if $m$ is $odd_{f}$ then $[\Theta_{2m+1}(f)]$ can be divided by $2^{2m+1}(2m)!$

To prove Theorem2.1 we need two lemmas.

In [1], Atiyah and Hirzebruch proved the following lemma.

Lemma 2.2. If $M^{4m}$ is a spin manifold , then $\hat{A}(M^{4m})$ (the $\hat{A}$-genus of $M^{4m}$ ) is

an integer. Moreover, if $m$ is $odd_{f}$ then $\hat{A}(M^{4m})$ is an even integer.

The total Pontryagin class of $M^{4m}$ can be written in the form of

$P(M^{4m})=1+P_{1}+P_{1}^{2}+\cdots+P_{1}^{m}+\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{S}$ of order 2, (2.1)

because

$T(M^{4m})\oplus\nu=\epsilon^{4m+2}$ (2.2)

is the trivial $(4m+2)$ -bundle.

Therefore, $\hat{A}(M^{4m})$ can be represented by the $P_{1}^{m}$ only.

The following lemma was proved in [2].
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Lemma 2.3. If $M^{4m}$ can be immersed into $\mathrm{R}^{4m+2}f$ then

$\hat{A}(M^{4m})=\frac{(-1)^{m}}{2^{2m}(2m+\dot{1})!}\langle P_{1}^{m}, [M^{4m}]\rangle$ . (2.3)

Now we prove our main theorem.

Proof of Theorem2.1.
The relation between $e$ (the Euler class of $\nu$ ) and $\overline{P}_{1}$ (the first normal Pontryagin

class of $M^{4m}$ ) is

$e^{2}=\overline{P}_{1}$ . (2.4)

By Theorem1.2 (in this case $k=2$ and $r=2m+1$ ), we have

$.[\Delta_{2m+1}(f)]=\langle e^{2}m,$ $[M4m])$ (2.5)

$=\langle\overline{P}_{1}^{m},$ $[M^{4m}])$

$=(-1)^{m}\langle P^{m}1, [M4m]\rangle$ .

By (1.3)

$[\triangle_{2m+1}(f)]=(2m+1)[\Theta_{2m+1}(f)]$ . (2.6)

Thus the algebraic number of $(2m+1)$-tuple points is

$[ \Theta_{2m+1}(f)]=\frac{(-1)^{m}}{2m+1}(P^{m},$$[1M^{4m}]\rangle$ . (2.7)

By Lemma2.2 and Lemma2.3, we can easily see that $\langle P_{1}^{m}, [M^{4m}]\rangle$ can be divided

by $2^{2m}(2m+1)!$ . Together with (2.7), we obtain that $[\Theta_{2m+1}(f)]$ can be divided by

$2^{2m}(2m)!$ . In case $m$ is odd, we can obtain the result in the same way.

This completes the proof of Theorem2.1. $\square$

3. COBORDISM CLASSES OF CODIMENSION 2 IMMERSED MANIFOLDS

Theorem 3.1. Let $f$ : $M^{4m}*\mathrm{R}^{4m+2}$ and $g$ : $N^{4m}+arrow \mathrm{R}^{4m+2}$ be immersions of
oriented closed $4m$ -manifolds.
Then $M^{4m}$ and $N^{4m}$ are oriented cobordant if and only if $[\Theta_{2m+1}(f)]=[\Theta_{2m+1}(g)]$

In particular, $M^{4m}i_{\mathit{8}}$ oriented cobordant to $0$ if and only if $[\Theta_{2m+1}(f)]=0$ .
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Proof of Theorem3.1.

At first we want to show that $M^{4m}$ and $N^{4m}$ are unoriented cobordant to $0$ .
By (2.2), the total Stiefel-Whitney class of $M^{4m}$ is

$w(M^{4m})=1+w_{2}+w_{2}^{2}+\cdots+w_{2}^{2m}$ . (3.1)

Thus the only non-trivial Stiefel-Whitney number of $M^{4m}$ is $\langle w_{2}^{2m},$ $[M^{4m}]_{2})_{2}$ .

For $2m+1$ is odd,

$[\triangle_{2m+1}(f)]2=[\Theta_{2m}+1(f)]2$ .

By (1.1)

$[\triangle_{2m+1}(f)]2=\langle\overline{w}^{2m},$$[2]_{2}M^{4m})2$

$=(w_{2}^{2m}, [M^{4m}]_{2})2$ .

Theorem1.3 implies that $[\Theta_{2m+1}(f)]$ is even, so

$\langle w_{2}^{2m}, [M^{4m}]_{2}\rangle 2=0$ . (3.2)

Therefore, $M^{4m}$ is unoriented cobordant to $0$ . And so is $N^{4m}$ .

By (2.1), the only non trivial Pontryagin number of $M^{4m}$ (resp. $N^{4m}$ ) is $\langle P_{1}^{m}, [NI^{4m}]\rangle$

(resp. $(P_{1}^{m}, [N^{4m}]\rangle)$ . Thus we can see that $M^{4m}$ and $N^{4m}$ are oriented cobordant if

and only if $(P_{1}^{m}, [M^{4m}])=\langle P_{1}^{m},$ $[N^{4m}])$ . By (2.7), the latter condition is equivalent

to saying that the algebraic number of $(2m+1)$-tuple points of $f$ and $g$ attain the

same value $(\mathrm{i}.\mathrm{e}.[\Theta_{2+1}m(f)]=[\Theta_{2m+1}(g)])$ .
In particular, $M^{4m}$ is oriented cobordant to $0$ if and only if $[\Theta_{2m+1}(f)]=0$ . This

completes the proof of Theorem3.1. $\square$

Remark 3.2. Stong [12] proved that if $M^{n}$ is an oriented closed $n$-manifold im-

mersed in $\mathrm{R}^{n+2}$ , then $M^{n}$ is $\mathrm{u}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{n}\dot{\mathrm{t}}\mathrm{e}\mathrm{d}$ cobordant to $0$ .

Moreover, he proved that if $n\not\equiv \mathrm{O}$ (mod 4), then $M^{n}$ is oriented cobordant to O.Here

we gave a proof to the first assertion for completeness.
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Corollary 3.3. $M^{4m}$ is as in Theorem3.1.
If $M^{4m}$ satisfies the following conditions (1) or (2), the.n $M^{4m}$ is oriented cobordant
to $0$ .
(1) $M^{4m}$ can be immersed in $\mathrm{R}^{4m+2}$ with less than $(2m)!(2m+1)$ -tuple points.
(2) There exists an integer $i\mathit{8}uch$ that $0<i<2m$ and $H_{2i}(M^{4}m\mathrm{Z};)$ has no free
part.

Proof of Corollary3.3.

Case (1). $[\Theta_{2m+1}(f)]$ is divided by $(2m)!$ . Thus if the number of $2m+1$-tuple points
is less than $(2m)!$ , then $[\Theta_{2m+1}(f)]=0$ . Therefore, $M^{4m}$ is oriented cobordant to $0$

by Theorem3.1.

Case (2). If such an $i$ exists, then $e^{2m}$

. is a torsion element.
Thus

$[ \Theta_{2m+1}(f)]=\frac{1}{2m+1}\langle e, [2mM^{4m}]\rangle$

must be O.Therefore , $M^{4m}$ is oriented cobordant to $0$ by Theorem3.1.

Remark 3.4. If $M^{4m}$ is not oriented cobordant to $0$ , then the number of $(2m+1)-$

tuple points is more than or equal to $(2m)!$ .
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