自由対流における特性時間

飯間 信 · 藤 定義 (Makoto IIMA and Sadayoshi Toh) 京大.理.物理

1 はじめに

カスケード過程は、乱流を理解する上で重要である。リチャードソンの描像[1] では、カスケードは大き な渦から小さい渦への連続する崩壊として説明され、各崩壊の特徴的時間は eddy turnover time と呼ばれ る。この描像にはある種の動力学が含まれており、カスケードの素過程が暗に仮定されている。本報告で は、動力学の観点から、特にカスケード過程における eddy turnover time の意味についての研究結果を報 告する。

3次元 (3D) ナヴィエ・ストークス方程式 (NS) に支配される乱流では、1941 年のコルモゴロフ理論 (K41)[2] に基づく特性時間がリチャードソンの描像における eddy turnover time と理解されて来た。この 描像では、渦の特性時間として少なくとも以下の2種類が考えられる。一つは変形時間、つまり渦が変形 されるのにかかる時間である。もう一つは回転時間、つまりある大きさの渦のエネルギーがなくなるまで にかかる時間である。後者は (エネルギーの) 滞在時間または寿命と言い替えることができる。

リチャードソンの描像では、渦の世代が2つしかない。つまり渦(母渦)が変形もしくは崩壊により小さ な渦(娘渦)になるとき、さらに小さな渦(孫渦)はまだできていない。したがって、これらの特性時間は同 じものとみなせる。このときエネルギーの輸送時間を、母渦のエネルギーの主要な部分が娘渦に伝わる時 間として定義することにする。

一方、3つ以上の渦の世代が同時に存在するが、エネルギーは隣り合う世代間のみでやりとりされるという状況も考えられる。このような場合、一般に渦が活発な期間は渦の寿命よりも短くなる。このときのエネルギーの輸送時間を、活発な渦世代が交代する時間と定義すると、輸送時間は滞在時間より短くなる。こういう状況は、多くの世代の渦の相関が保たれているため奇妙に見えるが、排除するだけの理由はない。 実際、ここで説明した状況に合致すると思われる場合が、本研究会での報告である。

本研究では、系の取扱の簡便さから 3D NS 系ではなく、2 次元(2D) 自由対流乱流(FC) を用いた。FC 系は ハード乱流(HT) [3, 4, 5, 6] の中央領域のモデルであり、ここでの温度揺らぎのスペクトルを再現するために 提案された。このスペクトルはエントロピー($T^2/2$) カスケード [7, 8, 9] を仮定した Bolgiano-Obukhov(BO) スケーリング [10, 11] で説明される。FC 系の支配方程式はブシネ近似を用いて、

$$\frac{\mathbf{D}\boldsymbol{u}}{\mathbf{D}\boldsymbol{t}} = -\nabla \boldsymbol{p} + (\alpha \boldsymbol{g})T\boldsymbol{e}_{\boldsymbol{y}} + \boldsymbol{\nu}\Delta\boldsymbol{u}, \qquad (1)$$

$$\frac{DT}{Dt} = \kappa \Delta T, \tag{2}$$

$$7 \cdot \boldsymbol{u} = 0, \tag{3}$$

と書かれる。ここで、 $\nabla \equiv (\partial/\partial x, \partial/\partial y), \Delta \equiv \nabla^2, D/Dt \equiv \partial/\partial t + (\mathbf{u} \cdot \nabla)$ であり、 ν, κ, α and g はそれ ぞれ動粘性率、熱拡散率、体膨張率、重力加速度である。浮力は y 軸方向に働いており、 e_y は、 y 軸方 向の単位ベクトルである。

FC 系は非粘性の場合エントロピー $S \equiv \int |T|^2/2dV$ と全エネルギー $E \equiv \int |u|^2/2 + (\alpha g)yTdV$, を保存 量としてもつ。これらの保存量は、3D の系でも同じであり、この点は NS 系とは異なる。

BO スケーリングに基づく慣性領域でのエネルギーとエントロピーのスペクトル (それぞれ S(k) とE(k)) は、

$$S(k) \sim \epsilon_T^{4/5} (\alpha g)^{-2/5} k^{-7/5},$$
 (4)

$$E(k) \sim \epsilon_T^{2/5} (\alpha g)^{4/5} k^{-11/5}, \qquad (5)$$

と書かれる。ここで ϵ_{T} , は平均エントロピー散逸率である。

2D FC 系と 3D NS 系では、いままでに輸送時間 (あるいは eddy turnover time) に関連した現象が調べられている。

2D FC 系では、相関時間として見積もられた輸送時間が直交ウエーブレットを用いて調べられている。 [12] ここで得られた輸送時間のスケーリングは、BO スケーリングを用いて導かれる特性時間のスケーリ ング

$$r_l \sim \epsilon_T^{-1/5} (\alpha g)^{-2/5} l^{2/5}$$
 (6)

で良く説明される。

また超対称性を用いた 3D NS 系では、Fourier 空間でのシェルで和を取ったトランスファーを用いて見た場合、大きな揺らぎは $\tau_k \sim k^{-2/3}$ という K41 に基づく eddy turnover time のスケーリングに従って連続的に励起される。 [13]

ここで我々は、FC 系と 3D NS 系のカスケードの仕組みは本質的に同じだと仮定する。3D NS 系の実 験や直接数値計算では渦管や渦層のような高渦度領域がある種の構造と見なされ、この構造の動力学がエ ネルギーカスケードにおいて重要な役割を果たしていると考えられている。ところが、2D FC 系では構造 に基づくエントロピーカスケードの描像は存在せず、構造そのものも定義されていない。

しかし、FC 系における $\chi \equiv (\partial_y T, -\partial_x T)$ という量 (以後 T-渦度 と呼ぶ) の支配方程式は 3D NS 系における渦度方程式に良く似ている。本研究では、T-渦度 の構造の力学を通して、エントロピーカスケードの機構について考察する。

FC 系に関して、シェルモデルを用いたエントロピーカスケードの研究も行なわれてきている。[14, 15] Brandenburg は、このシェルモデルにおいては逆エネルギー輸送が BO スケーリングの再現に決定的であ ると結論づけている [14]。また鈴木と藤は、このシェルモデルをもちいて、エントロピー輸送の普遍性と 輸送過程の間欠性について調べた。[15]

2D FC 系の直接数値計算におけるエントロピー輸送の特性時間を説明するために、上とは異なるシェル モデルが著者達によって提案された [16]。このシェルモデルは T-渦度と速度勾配テンソルの発展方程式 (c.f. 式 (7) と (8))に基づいて作られている。このシェルモデルは BO スケーリングを満たす安定定常解 をもつ。

ここでは、直接数値計算とシェルモデルの両方を用いてエントロピーカスケードを研究する。次章では T-渦度と速度勾配テンソルを用いた新しいエントロピーカスケードを提案する。3章では直接数値計算と この描像との比較を行なう。4章でシェルモデルの復習と数値計算の結果を示す。5章では、摂動計算を用 いたシェルモデルの解析を行ない、時間発展の自己相似性を見る。

2 エントロピーカスケードの描像

2D FC 系の方程式 (式 (1) と (2)) に基づく直接数値計算では、 BO スケーリングが再現されることが 分かっている。つまり、ここではエントロピーカスケードが起こっている。このカスケード過程が普遍的 な機構に支配されていると仮定し、この意味でエントロピーカスケードがエネルギーカスケードと似てい るとすると、3D NS 系における渦度のような意味での物理量があり、その量がエントロピーカスケードの 力学的な理解に関わると考えられる。そこで本章では 3D NS 系の渦度方程式と、2D FC 系の T-渦度の方 程式の類似性に注目する事にする。

式 (1) と (2) は、T-渦度 χ と速度勾配テンソル $\sigma \equiv \nabla^t : u([\sigma]_{ij} = \partial_i u_j)$, を用いて、以下のように書 き直せる。

$$\frac{\mathbf{D}\boldsymbol{\sigma}}{\mathbf{D}t} = \alpha g \mathbf{R}(\frac{\pi}{2}):(\boldsymbol{\chi}:\boldsymbol{e}_{y}^{t}) - \boldsymbol{\sigma}:\boldsymbol{\sigma} - \nabla:\nabla^{t} p + \nu \Delta \boldsymbol{\sigma},$$
(7)

$$\frac{\partial \chi}{\partial t} = \chi \cdot \nabla u + \kappa \Delta \chi (= \sigma : \chi + \kappa \Delta \chi).$$
(8)

ここで¹ は転置を、R(θ) は角 θ の回転行列を、: はテンソル積をそれぞれ表す。式 (8) は、 χ が 3D NS 系の渦度と同じ役割を果たすと期待される事を示している。なお、2D NS 系の divorticity (χ の定義で、 *T* を渦度ベクトルの z 成分に置き換えたもの) もまた (8) と同様の式に支配されるが、2D FC 系とは異な り divorticity は渦度と直接結び付いている。この 2D NS 系と 2D FC 系の自由度の違いが、カスケード の存在には決定的であると思われる。

ここで提案するエントロピーカスケードの描像を説明するのに必要な事はあと3つある。一つは、2D FC系では、統計的にみると系のポテンシャルエネルギーは浮力によって、運動エネルギーに転換されて いるということである。もう一つは、運動エネルギーは大きなスケールに輸送されているということであ る。すなわち、浮力項が非線形項に卓越しているということが言える。また、あるスケールを選んだとき、 T-渦度から速度勾配テンソルが誘導される特徴的時間 (誘導時間) は、項 $\sigma: \chi$ によって小さなスケールの T-渦度が励起される時間 (励起時間) よりも長い (これは第3章で示される)。

これらの事実と式 (7), (8) に基づくと、エントロピーカスケードの描像を示す事ができる。あるサイズ の T-渦度があるとする。すると式 (7) の線形項 (浮力項) によって、おおむね同じサイズの速度勾配テン ソルが誘導される。この速度勾配テンソルが誘導されている間に、おおむね半分のサイズの T-渦度が非線 形相互作用 σ: χ によって励起される。以下同様にして、どんどん小さなサイズの T-渦度が励起され、エ ントロピーが小スケールにカスケードされてゆく。

この描像では、Richardson の連続的な渦崩壊の描像のように相互作用はスケール的に閉じており、エントロピーは小さなスケールにスケール毎に輸送されて行く。したがってエントロピーカスケードの理解には、T-渦度と速度勾配テンソルの方程式に基づくモデルが適していると考えられる。更に、エントロピーカスケードを説明することで、3D NS 系のエネルギーカスケード理解を助けることも期待できる。

なお、ここでは、 $-\sigma: \sigma$ という非線形項を無視したが、これは浮力項が非線形項に卓越しているからである。 χ と σ の移流項は、主に sweeping effect のみを表すとして無視した。圧力項は、簡単のため無視したが、この項は空間的に非局所な相互作用を担っているため、重要であるかも知れない。

3 2次元自由対流乱流における特性時間

この章では、第1章で定義された T-渦度 χ と速度勾配テンソル σ を用いて 2D FC 系のエントロピー 輸送を、特に特性時間に着目して解析する。T-渦度と速度勾配テンソルの時間発展を表現するために単純 なスカラーの代表量を導入する。

3.1 T-渦度と速度勾配の表現

あるスケールの T-渦度と速度勾配の表現を 2D ウェーブレット [17, 18] を用いて導入する。本研究では これらの物理量の空間分布の詳細には立ち入らない。以後、あるスケール *l_m* ~ 2^{-m} の T-渦度と速度勾 配の代表量をそれぞれ Σ_m と X_m とする。第4章では、 Σ_m と X_m に対応するスカラー量に対するシェルモデルを構築する。

まず、物理空間におけるモードに対応するウェーブレット速度 $u_{m,j}(x,y)$ ととウェーブレット温度 $\Theta_{m,j}(x,y)$ を、

$$u_{m,j}(x,y) \equiv (u_{m,j}(x,y), v_{m,j}(x,y))$$

$$\equiv (\sum_{q=1}^{3} \hat{u}_{m,j}^{(q)} \Psi_{m,j}^{(q)}(x,y), \sum_{q=1}^{3} \hat{v}_{m,j}^{(q)} \Psi_{m,j}^{(q)}(x,y)), \qquad (9)$$

$$\Theta_{m,j}(x,y) \equiv \sum_{q=1}^{3} \hat{\Theta}_{m,j}^{(q)} \Psi_{m,j}^{(q)}(x,y)$$
(10)

と定義する。ここで $\hat{u}_{m,j}^{(q)}$, $\hat{v}_{m,j}^{(q)}$, $\hat{\Theta}_{m,j}^{(q)}$, はそれぞれ u, v, T のウェーブレット係数である。次にあるスケールの局所速度 $u_m(x,y) \equiv (u_m, v_m)$, と局所温度 $\Theta_m(x, y)$ を、

$$\boldsymbol{u}_{m}(\boldsymbol{x},\boldsymbol{y}) = (\boldsymbol{u}_{m},\boldsymbol{v}_{m}) \equiv \sum_{\boldsymbol{j}} \boldsymbol{u}_{m,\boldsymbol{j}}, \qquad (11)$$

$$\Theta_m(x,y) \equiv \sum_{j} \Theta_{m,j}. \qquad (12)$$

と定義する。こうしておいて、 Σ_m をテンソル $\nabla : u$ の対称成分の最大固有値として定義する。何故なら、このストレインテンソルは T-渦度の動力学に本質的だからである。なお、局所ストレイン場 $\sigma_m(x,y)$ を

$$\sigma_m(x, y) = (\sigma_+(x, y) - \sigma_-(x, y))/2, \tag{13}$$

と定義する。ここで、

$$\sigma_{\pm}(x,y) = \frac{1}{2} \left\{ (\partial_x u_m + \partial_y v_m) \\ \pm \sqrt{(\partial_x u_m - \partial_y v_m)^2 + (\partial_x v_m + \partial_y u_m)^2} \right\}$$
(14)

である。なお σ_{\pm} はテンソル $\nabla^{t}: u_{m}$ の対称成分 (u_{m} を速度場とみなした場合のストレインテンソル)の固有値である。もし $\nabla \cdot u_{m} = 0$ ならばこの定義はストレインテンソルの正の固有値を与える。

あるスケール l_m での局所ストレインテンソルは、 $\sigma_m(x,y)$ の空間平均で与えられる。

$$\Sigma_m \equiv \frac{1}{L^2} \int \int \sigma_m(x, y) \mathrm{d}x \mathrm{d}y.$$
 (15)

ここで L は系の周期である。

ここでの直交ウェーブレットを用いた定義では、モードに対応するウェーブレット速度 $u_{m,j}$ も、スケー ル l_m の局所速度 u_m も非圧縮性を示さない。ただ、ここでの定義では $\sigma_{\pm}(x,y)$ が空間平均されているた めにたとえ s_+ の空間平均を取っても、式 (14)の圧縮性を示す成分 $\partial_x u_m + \partial_y v_m$ は消えてしまうので、 この圧縮性はそれほど重要ではない。($\Sigma_m = \frac{1}{L^2} \int \int \sigma_{\pm}(x,y) dx dy$)

我々のカスケード描像では、スケール l_m の T-渦度は同スケールのエントロピーに対応していたので、 $X_m \in (\partial_y \Theta_m, -\partial_x \Theta_m)$ の振幅を粗く空間平均した物

$$X_m \equiv l_m^{-1} T_m, \tag{16}$$

$$T_m \equiv \frac{1}{L^2} \int \int |\Theta_m(x,y)| \mathrm{d}x \mathrm{d}y \qquad (17)$$

として定義する。

3.2 直接数値計算の結果

本節では、直接数値計算の結果について述べる。方程式 (1), (2), (3) を空間は擬スペクトル法、時間は 4次のルンゲクッタ法を用いた。境界条件は $[0,2\pi] \times [0,2\pi]$ の周期境界条件である。自由度は $N^2 = 256^2$ で、エイリアジングエラーは、1/2-シフト法を用いて取り除いているので、有効なモード数は $(8/9)N^2$ であ る。慣性領域を明確に得るために、方程式 (1) および (2) の粘性の代わりに超粘性 $\nu_H \Delta^8 u$ および $\kappa_H \Delta^8 T$ を導入した。一般性を失うことなく $\alpha g = 1$ とおける。他のパラメータは、 $\nu_H = \kappa_H = 5 \times 10^{-31}$ とおい た。時間刻みは $\Delta t = 2.0 \times 10^{-3}$ である。温度場を駆動するために外力項 $F = \cos(2x)\cos(2y)$ を式 (2) に付け加え、系を統計的に定常に保つためにドラッグ項 $D = 0.5(1-\theta(|\mathbf{k}-3|))\Delta^{-1}u(\theta(x))$ は Heviside の 階段関数である) を式 (1) に付け加えた。なお、256² のフーリエモードを表現するために必要なウェーブ レットモードの数は $\{(m, j)|j = (j_x, j_y); 0 \le m \le 8, 0 \le j_x, j_y \le 2^m - 1\}$ である。

まず最初に、空間的なエントロピーの分布をみよう。図1は、エントロピーの小スケールへの輸送が顕 著に増大した時刻におけるエントロピー場のスナップショットを示したものである。図の右に、強い渦状 の構造が線状の構造を吐き出しているようすがみえる。なおここには示していないが、速度場をみるとこ の場所に対応する渦がみえる。このような渦は 2D NS 系の場合とは異なり、一般にスケール的に見ても 局在している。活発な期間中、渦構造は明確に存在し、線状構造を吐き出している。線状構造の周りでエ ントロピーの輸送が増大しているという結果が出ている [19]。

図 2 には、ウェーブレットのモード当たりのエントロピー $\sum_{q=1}^{3} (\Theta_{m,j}^{(q)})^2/2$ の空間分布を、m = 6の場合について示した。直交ウェーブレットの解析において、ウェーブレット基底に固有の位相情報に起因する撹乱が、観測した量を乱すことが知られている。この撹乱は、文献 [20] で提案された方法を用いて除去した。影をつけた部分は、60のスナップショットに対する度数分布である。この 60のスナップショットのうち、もっとも活発な時間 (m = 6 におけるモード当たりのエントロピーが最大になる時刻) に対する度数分布が四角で、最も不活発な時間 (m = 6 におけるモード当たりのエントロピーが最大になる時刻) における度数分布が黒丸で示されている。また、これら3つの場合に対する平均、標準偏差が表1に示されている。これら3つの度数分布は良く似ている。これは上で述べた活発な構造に対応する活発な空間的部位は狭く、残りの部分は活発な部位から影響を受けない事を示している。さらに、残りの部分(構造以外の背景部分)が平均的に見た時のエントロピー輸送を支えていると推論される。この意味で、構造もしくは活発な部位は間欠性に寄与しているようである。ただ、ここでは特性時間に着目し、空間分布の詳細な研究は行なわない。

続いて、T-渦度と速度勾配の相互作用による動力学を、 Σ_m と X_m の相関時間を測ることで調べる。

まず、 X_m と Σ_m の撹乱の大きさと平均値を比較した。図 3 には、 X_m と Σ_m の平均、標準偏差、それらの比が表示されている。もし Σ_m と X_m の統計が、BO スケーリングに従うとすれば、平均値 (<> で表す) は慣性領域で

$$<\Sigma_m> ~ l_m^{-2/5}, \qquad (18)$$

$$\langle X_m \rangle \sim l_m^{-4/5}, \tag{19}$$

のようにスケールされる。2 ≤ m ≤ 6 と言う範囲で式 (18) と (19) のスケーリングはおおむね満たされて いる。また標準偏差と平均との比はともに 0.1 以下である。よって、平均周りの撹乱の大きさは、平均値 に比べて小さい。

エントロピー輸送の特徴的時間は文献 [12] に従って、相互相関がピークとなる時刻で定義する。この定 義は、第1章で説明した輸送時間 (世代交代に要する時間) に対応している。ここで信号 A(t) と B(t) の 相互相関係数は、

$$F(A,B)(\tau) \equiv \frac{(\langle A(t) - \langle A \rangle \rangle)(\langle B(t+\tau) - \langle B \rangle \rangle)}{\sqrt{(\langle A^2(t) \rangle - \langle A \rangle^2)(\langle B^2(t) \rangle - \langle B \rangle^2)}}.$$
(20)

と定義される。

図4には $F(X_m, X_{m+1})(\tau)$, $F(\Sigma_m, \Sigma_{m+1})(\tau)$, $F(X_m, \Sigma_m)(\tau)$ という3つの相互相関関数が示されている。 $F(X_m, X_{m+1})(\tau)$ から、 X_m と X_{m+1} の相関が高いことが分かる。この関数は $m \ge 3$ のとき極大値が0.8を超えている。また $F(X_m, X_{m+1})(\tau)$ が極大を迎える τ の値は $m \ge 2$ で正である。よって X_m あるいはエントロピーは慣性領域で小スケールに運ばれていることが分かる。

相互相関関数 $F(\Sigma_m, \Sigma_{m+1})(\tau)$ は $m \ge 4$ で極大値が 0.8 を迎えている。 $F(\Sigma_m, \Sigma_{m+1})(\tau)$ が極大を迎 える τ の値は $m \ge 3$ で正である。しかし、 X_m の場合とは異なり、この結果は必ずしも Σ_m 内での非線 形相互作用では説明できない。というのは、 Σ_m の誘導の初期の段階で浮力が非線形相互作用を上回るか らである。 $F(\Sigma_m, \Sigma_{m+1})(\tau)$ の幅は $m \ge 4$ でおおむね $F(X_m, X_{m+1})(\tau)$ の幅と同じである。

関数 $F(X_m, \Sigma_m)(\tau)$ の最大値は関数 $F(X_m, X_{m+1})(\tau)$ や $F(\Sigma_m, \Sigma_{m+1})(\tau)$ の最大値程大きくはなく、 m = 6 もしくは m = 7 のときせいぜい 0.8 であり、 $m \leq 5$ のとき 0.7 以下である。このことは以下のよ うな説明が可能である。 Σ_m の輸送として、少なくとも式 (7) の右辺の二つの項から期待される二種類の ものが考えられる。一つは浮力による X_m から Σ_m の誘導、もう一つは Σ_m 同士での相互作用である。 後者は X_m とは直接関係ないため、 Σ_m と X_m の間の相互相関は Σ_m と Σ_{m+1} の間の相互相関や X_m と X_{m+1} の間の相互相関よりも小さい。

 X_m から X_{m+1} , Σ_m から Σ_{m+1} , X_m から Σ_m の特性時間をそれぞれ $\tau_m^{DNS}(X)$, $\tau_m^{DNS}(\Sigma)$ $\tau_m^{DNS}(X \to \Sigma)$ とする。それぞれは相互相関関数が最大値を迎える時間として定義されている。図5において、特性時間 $\tau_m^{DNS}(X)$, $\tau_m^{DNS}(\Sigma)$, $\tau_m^{DNS}(X \to \Sigma)$ が示されている。1 $\leq m \leq 6$ の全ての領域で誘導時間 $\tau_m^{DNS}(X \to \Sigma)$ は $\tau_m^{DNS}(X)$ や $\tau_m^{DNS}(\Sigma)$ の2倍以上大きい。このことから、単一のエントロピー輸送が考慮されている限り、 Σ_m 内での非線形相互作用はあまり重要ではないようである。 $\tau_m^{DNS}(X \to \Sigma) > \tau_m^{DNS}(X)$ であるので、 Σ_m 内での相互作用は、 Σ_m と X_m の相互作用で X_{m+1} が励起されたあとで後で支配的になる。それゆえ Σ_m の誘導は初期段階では浮力が支配的である。

続いて、特性時間のスケーリングについて議論する。図 5 の破線は、時間に対する BO スケーリング ~ $l_m^{2/5}$ を表している。この線は、3 < m < 6 で $\tau_m^{DNS}(X) \ge \tau_m^{DNS}(X \to \Sigma)$ に合致しているが、 $\tau_m^{DNS}(\Sigma)$ とは合致していない。もし $\tau_m^{DNS}(\Sigma)$ が巾則にあっているとすれば、その指数は時間に対する BO スケー リングの指数 2/5 よりも小さい。ただ、我々のシミュレーションでは有効なモード数が十分に多くはない。 第 4 章で、我々の提案したシェルモデルが小さなシェル数では $\tau_m^{DNS}(\Sigma)$ と同じ傾向を表すことを示す。 従って、時間に対する BO スケーリング と $\tau_m^{DNS}(\Sigma)$ が会わないことは慣性領域が狭いからだと推測される。

エントロピー輸送が活発な時間帯を調べるために、時間的に局所的な相関時間 $\tau(A, B, Tc)$ を、以下の 関数が極大になる時間として定義する。

$$F_l(A,B)(Tc,Tw,\tau) \equiv \frac{(\langle A(t) - \langle A \rangle_l \rangle_l)(\langle B(t+\tau) - \langle B \rangle_l \rangle_l)}{\sqrt{(\langle A^2(t) \rangle_l - \langle A \rangle_l^2)(\langle B^2(t) \rangle_l - \langle B \rangle_l^2)}}.$$
(21)

この定義では、 < * >_l はある時間 *Tc* を中心とする時間帯 *Tw* の平均を表す ((1/*Tw*) $\int_{T_c-T_w/2}^{T_c+T_w/2} * dt$)。 ここでは、*Tw* = 2 とえらんだ。これは、図 4 に示されている関数の特徴的な幅である。

図 6 では、 $\tau(X_m, X_{m+1}, Tc)$ と $\tau(X_m, \Sigma_m, Tc)$ が m = 4,5,6 に対して表示されている。ただし、相関係 数が 0.8 を超えているものに限っている。図で $\tau(X_m, \Sigma_m, Tc)$ がプロットされている数は、 $\tau(X_m, X_{m+1}, Tc)$ よりも少ない。つまり X_m と X_{m+1} の局所的な相関は X_m と Σ_m の局所的な相関よりも大きいことを表 している。m = 4,5,6 で、 $F(X_m, X_{m+1})(\tau)$ の極大値は $F(X_m, \Sigma_m)(\tau)$ よりも大きい。点の数は m と ともに増える。これは $F(X_m, X_{m+1})(\tau)$ と $F(X_m, \Sigma_m)(\tau)$ の最大値が m とともに増えるからである。

 $\tau_m^{DNS}(X)$ からの $\tau(X_m, X_{m+1}, Tc)$ の偏差は、mが大きくなるにつれて小さくなる。このことは、慣性 領域では T-渦度の撹乱の輸送はいつでも起こっていることを示唆している。前に相互相関関数から、 Σ_m の励起には複数の過程が関わっていると推論したが、 $\tau(X_m, \Sigma_m, Tc)$ が散らばっていることからもこの推 論は裏付けられている。 この時間の中で、第2章で提案したエントロピーカスケードが実現しているとおもわれる時間帯がある。 それらを A, B, B' とする。これは $\tau(X_m, X_{m+1}, Tc) \simeq \tau_m^{DNS}(X)$ かつ $\tau(X_m, \Sigma_m, Tc) \simeq \tau_m^{DNS}(X \to \Sigma)$ となる時間帯を選んだものであり、エントロピーカスケード過程の良い例となっている時間帯である。こ こで 図7と 図8 における $X_m(t)$ と $\Sigma_m(t)$ を観察し、T-渦度と速度勾配テンソルの輸送について定性的 な特徴を議論する。図7と 図8 には例えば $A_{\Sigma4}$ のような記号が示されている。これは上で述べた特徴的 な時間帯をあらわしている。ただし、図7と 図8 では、B と同一の輸送現象をあらわすと思われる B' は B と置き換えられている。時間帯 B に属する $X_m(t)$ と $\Sigma_m(t)$ の形は殆んど同じである。しかしその 形自体は時間帯 A のものとは異なっている。ここで時間帯 B に着目する。この時間帯では T-渦度の撹乱 B_{X5}, B_{X6}, B_{X7} は互いに強く相関を持っている。また T-渦度および速度勾配テンソルの撹乱 $B_{X5}, B_{\Sigma5}, B_{X6}, B_{\Sigma7}$.の時間幅は 2 単位時間と殆んど同じである。もしあるスケールの滞在時間、つまり B_{Xm} の幅が BO スケーリングを満たしているとすると幅は m が大きくなるにつれて短くなる筈である。例え ば撹乱 B_{X7} と B_{X5} の幅は $(2^{-2/5})^2 \sim 0.57$ となる。従って、 X_m あるいは Σ_m の幅は時間の BO スケー リングを満たさない。滞在時間は X_m と X_{m+1} のピークの時間差として定義される輸送時間とは異なっ ている。

以上、特性時間という観点で見て来たエントロピー輸送の過程は、従来のカスケード過程とは異なって いる。が、我々が導入した多世代のカスケード描像はむしろこれらの特徴的な輸送を記述するのに適して いると思われる。次の章ではシェルモデルを用いてこれらの過程が良く説明できることを示す。

4 シェルモデルによる特性時間の再現

文献 [16] で提案されたシェルモデルは次の式で支配される。

$$\frac{\mathrm{d}\sigma_m}{\mathrm{d}t} = (\alpha g)\chi_m - \sigma_m^2 - \nu \lambda^{2m}\sigma_m + F_D(m),$$

$$\frac{\mathrm{d}\chi_m}{\mathrm{d}t} = \lambda^2 \sigma_{m-1}\chi_{m-1} - \sigma_m \chi_{m+1} - \kappa \lambda^{2m}\chi_m + F_F(m).$$
(23)

ここで χ_m と σ_m は正の実数変数で、それぞれスケール $l_m \equiv \lambda^{-m}$ の χ と σ の振幅をあらわしている。 (λ は隣接シェルの特徴的な長さスケールの比である) シェル数 m は、大まかにいって波数 ~ $1/l_m$ の対数をあらわしている。

このシェルモデルは 第2章で描かれた描像に基づいて導かれた。直接数値計算ではエネルギーは平均し て逆方向に輸送されているのであるスケールでの非線形効果は、より小さいスケールのモードが十分励起さ れるまでは弱いままである。よって σ_m に対するこのモデル方程式は浮力が支配的である。ここではエネル ギーの輸送を非線形飽和項 $-\sigma_m^2$ で置き換え、式 (22)をあるシェルで閉じさせている。この非線形項によっ て、慣性領域での定常解は BO スケーリング $\sigma_m \sim \lambda^{2m/5}$ および $\chi_m \sim (\alpha g)^{-1} \lambda^{4m/5}$ を満たすようになる。 なお、移流項、圧力項は簡単のために無視した。ドラッグ項 $F_D(m) = -D(\delta_{m,1}/\lambda + \delta_{m,2}/\lambda^2 + \delta_{m,3}/\lambda^3)$ は系が発散しないように付け加えた。

 χ_m の方程式は、 T_m と u_m はそれぞれ $l_m\chi_m$ と $l_m\sigma_m$ と置き換えば本質的に従来型のシェルモデルにおける T_m の方程式と同じである。[14, 15]相互作用の局所性は通常のシェルモデルと同様に仮定されている。よって全エントロピー $\Sigma_m T_m^2/2$ は、非粘性の場合保存している。外力項 $F_F(m) = F\delta_{m,4}$ は系を定常に保つために導入されている。従来型のシェルモデルとは異なり、この系はカオス的振舞を示さない。

4.1 BO Case

上のシェルモデルは、直接数値計算で観察されたエントロピー輸送の特徴を調べるために導入された。これは、エントロピーカスケードの候補になるものである。これらの輸送過程を通して撹乱を構成する Σ_m と X_m は互いに相関を持っており、その説明のためにはカオス的な振舞は必要がない。これらの過程の撹乱は背景場と比べた時小さい。つまり統計的に準定常な状態である。ここではまず慣性領域で BO スケーリングをみたす定常解を得て、次に大きなスケールで定常解に加えられた撹乱の時間発展を観察することにする。

シェルモデルのシミュレーションは 4 次のルンゲクッタ法を用いて実行された。以後、 $\lambda = 2$ とする。 定常解は、 $F = D = 1.0 \times 10^3$, $\nu = \kappa = 1.0 \times 10^{-12}$, $\alpha g = 1$ と言う条件のもとで得た。

図 9 を見ると分かるようにこれら定常解は、(それぞれ < σ_m^{BO} >, < χ_m^{BO} > と書く) 10<m<20 という範囲で BO スケーリングを満たしている。この範囲を慣性領域と呼ぶことにする。シミュレーションの初期条件は、< $\chi_{m=4}^{BO}$ に $\delta\chi = 1.0 \times 10^{-2}$ を付け加えて作った。このシミュレーションを BO case と呼び、解を $\sigma_m^{BO}(t)$ および $\chi_m^{BO}(t)$ とする。時間刻みは、 $\Delta t = 1.0 \times 10^{-6}$ とした。

この BO case を特性時間に着目して、輸送時間と滞在時間という観点から調べた。ここでモード m の 特性時間 τ_m^{σ} , τ_m^{χ} , $\tau_m^{\chi \to \sigma}$, は、それぞれ $\tau_m^{\sigma} = t_{m+1}^{\sigma} - t_m^{\sigma}$, $\tau_m^{\chi} = t_{m+1}^{\chi} - t_m^{\chi}$, $\tau_m^{\chi \to \sigma} = t_m^{\sigma} - t_m^{\chi}$ と定義した。 なお、 t_m^{σ} と t_m^{χ} はそれぞれ σ_m と χ_m が最大値をとる時間として定義した。

図10には、 τ_m^{σ} , τ_n^{χ} , $\tau_n^{\chi \to \sigma}$ が m の関数として定義されている。慣性領域では、全てが時間の BO スケー リングを満している。5 \leq m \leq 10 のときは、 τ_n^{χ} と $\tau_n^{\chi \to \sigma}$ は時間の BO スケーリングを満しているが、 τ_n^{σ} は、m の増加に伴って時間の BO スケーリングより早く減少する。この特性時間の振舞いは、図 5 にみ られる直接数値計算の結果と似ている。つまり、この $\tau_n^{DNS}(\Sigma)$ の BO スケーリングからのずれは、慣性 領域が狭いことによるとおもわれる。

慣性領域のモードにたいする関数 $\sigma_m^{BO}(t) \geq \chi_m^{BO}(t)$ の形は、適当な正規化を行なうことで重なる。正規 化された時間 τ_m および τ'_m をそれぞれ $\tau_m \equiv (t - t_m^{\sigma})/t_m^{\sigma}$ および $\tau'_m \equiv (t - t_m^{\chi})/t_m^{\chi}$ と定義すると、関数 $S_m(\tau_m) \equiv [\sigma_m^{BO}(t) - \langle \sigma_m^{BO} \rangle] / \langle \sigma_m^{BO} \rangle$ および $K_m(\tau'_m) \equiv [\chi_m^{BO}(t) - \langle \chi_m^{BO} \rangle] / \langle \chi_m^{BO} \rangle$ は m に依 存しない。 l_m が慣性領域、つまり m が大きいとき、 $\tau_M^{\chi} \ll t_M^{\chi}$ かつ $\tau_m^{\sigma} \ll t_m^{\sigma}$, であるので正規化因子 t_M^{χ} あるいは t_m^{σ} はほとんど定数である。つまり $\tau_m \geq \tau'_m$ の導入は実質的には原点の移動を表わす。これは 直接数値計算の結果と一致している。図 7 において、 B_{X7} のスケールと B_{X5} のスケールの比は 1/4 であ るにもかかわらず撹乱 B_{X5} , B_{X6} , B_{X7} はほとんど同じ形であった。この $S_m \geq K_m$ の相似性は次の章で 摂動計算で説明される。

ここでの結果はエントロピー輸送には2つの特性時間(第1章で説明した輸送時間と滞在時間)を導入 すべきであることを意味している。輸送時間(たとえば r_{Λ}^{χ})は撹乱がシェル m から m+1 に輸送される 時間である。また撹乱の滞在時間は t_{Λ}^{χ} のオーダーであり、あるスケール l_{m} の撹乱がその大部分を失な う時間である。BO case では、輸送時間のみが時間の BO スケーリングに従う。一方、滞在時間は慣性領 域ではほとんど同じである。この結果は特性時間が一つしかない従来のカスケード描像とは異なっている。 BO case は、どちらかというと多世代カスケード描像に対応している。なお、ここでは輸送時間という概 念を σ_{m} や χ_{m} のような非保存量に拡張したことを強調しておきたい。

3D NS 系では、輸送時間は輸送関数の撹乱を観察することにより、間接的に調べられた。 [13] そこで は、輸送時間はコルモゴロフの時間スケーリングと矛盾しないことが示された。しかし、3D NS 系では滞 在時間は調べられていない。従って、この段階では 2 つの特性時間の差が 2D FC 系と 3D NS 系とで共通 なのかどうかは結論づけられない。ただ、第5章では輸送時間は BO スケーリングを満すことが解析的に 示されている。また、FC 系に対する従来型のシェルモデルと、 NS 系のシェルモデルも同様の相似性を 持つ [18]。このことから、 NS 系でも準定常状態まわりの撹乱の輸送を調べれば、2 つの特性時間がある ことが示唆される。

5 摂動法を用いた解析

前の章において、もし適切に正規化されたら、数値的には $\sigma_m(t)$ と $\chi_m(t)$ が同じ形になることを見た。 本章では、摂動論を用いてこの $\sigma_m(t)$ と $\chi_m(t)$ の相似性を説明することを試る。

我々は $\sigma_m(t)$ と $\chi_m(t)$ の無次元化された相似解を、

$$\epsilon S(\tau) \equiv \frac{\sigma_m(t) - \langle \sigma_m^{\rm BO} \rangle}{\langle \sigma_m^{\rm BO} \rangle},\tag{24}$$

$$\epsilon K(\tau') \equiv \frac{\chi_m(t) - \langle \chi_m^{\rm BO} \rangle}{\langle \chi_m^{\rm BO} \rangle}$$
(25)

とする。ここで微少パラメータ ϵ は、撹乱と背景場の強さの比をあらわす。よって、 $S \geq K$ のオーダーは 1 である。正規化された時間 $\tau \geq \tau'$ は、あるシェル m について $\tau \equiv (t - t_m^{\sigma})/t_m^{\sigma}$ および $\tau' \equiv (t - t_m^{\chi})/t_m^{\chi}$ として定義される。また、もうひとつの微少パラメータ $\epsilon_m \equiv (t_m^{\sigma} < \sigma_m^{BO} >)^{-1}$ を導入し、式 (24) と (25) を式 (22) に $D = \nu = 0$ として代入すると、以下の方程式を得る。

$$\epsilon \epsilon_m \frac{\mathrm{d}S}{\mathrm{d}\tau} = \epsilon \{ K(\tau') - 2S(\tau) \} - \epsilon^2 S^2(\tau).$$
⁽²⁶⁾

ここで $S \ge K$ が存在することを仮定している。

また、特性時間の和が m が大きくなるにつれて同じ値に収束することを仮定する:

$$\lim_{m \to \infty} t_m^{\sigma} = \lim_{m \to \infty} t_m^{\chi} = t_{\infty} < \infty.$$
⁽²⁷⁾

すると < $\sigma_m^{BO} > \sim \lambda^{3m/5}$ かつ $\lambda > 1$ なので $\lim_{m\to\infty} \epsilon_m = 1/(t_m^{\sigma} < \sigma_m^{BO} >) = 0$ である。条件 (27) はま た $\lim_{m\to\infty} \tau_m^{\sigma} = 0$, $\lim_{m\to\infty} \tau_m^{\chi} = 0$, $\lim_{m\to\infty} \tau_m^{\chi\to\sigma} = 0$ を意味する。 $|\tau| \ll 1$ という時間に着目すると、 $t_m^{\sigma} = t_m^{\chi\to\sigma} \tau_m^{\chi\to\sigma}$ だから

$$\tau' = \tau + \frac{\tau_m^{\chi \to \sigma}}{t_m^{\sigma}} + O((\frac{\tau_m^{\chi \to \sigma}}{t_m^{\sigma}})^2)$$
$$= \tau + \epsilon_m \tau_m^{\chi \to \sigma} \langle \sigma_m^{\rm BO} \rangle + O((\epsilon_m \tau_m^{\chi \to \sigma} \langle \sigma_m^{\rm BO} \rangle)^2)$$
(28)

である。そこで K(τ') を

$$K(\tau') = K(\tau) + \epsilon_m \tau_m^{\chi \to \sigma} <\!\!\!\sigma_m^{\rm BO}\!\!> \!\!\frac{\mathrm{d}K}{\mathrm{d}\tau} + O((\epsilon_m \tau_m^{\chi \to \sigma} <\!\!\!\sigma_m^{\rm BO}\!\!>)^2)$$
(29)

と見積ることができる。さて相似解 S および K の間の関係を $O(\epsilon\epsilon_m)$ まで計算すると、

$$0 = \epsilon \{K(\tau) - 2S(\tau)\} - \epsilon^2 S^2(\tau) + \epsilon \epsilon_m \left(\tau_m^{\chi \to \sigma} < \sigma_m^{BO} > \frac{\mathrm{d}K}{\mathrm{d}\tau} - \frac{\mathrm{d}S}{\mathrm{d}\tau}\right) + O(\epsilon (\epsilon_m \tau_m^{\chi \to \sigma} < \sigma_m^{BO} >)^2)$$
(30)

となる。十分大きな m に対して、 $\epsilon_m \ll \epsilon \ll 1$ かつ $\epsilon\epsilon_m \ll \epsilon^2 \ll \epsilon$ であることを考慮して、式 (30) の右 辺の第1項と第2項の釣合を $O(\epsilon^2)$ まで考えると、

$$K(\tau) = 2S(\tau) + \epsilon S(\tau)^2$$

$$\simeq 2S(\tau)$$
(31)

という関係式を得る。そのほかの項の大きさは、 $O(\epsilon\epsilon_m \tau_m^{\chi \to \sigma} < \sigma_m^{BO} >)$ 以下である。ここで式 (30)の異なるオーダーの関係は独立に満されることを要請する。特に、オーダー $\epsilon\epsilon_m$ の項は、

$$<\sigma_m^{\rm BO} > \tau_m^{\chi \to \sigma} = \frac{1}{2}$$
 (32)

となる。この関係は誘導時間が BO スケーリングを満すことを示している。 $\tau_m^{\chi \to \sigma} = \langle \sigma_m^{BO} \rangle^{-1} / 2 \sim \lambda^{-2m/5}$. なお、この関係式は、式 (22) を直接解くことによっても得られる。 $\sigma_m = \langle \sigma_m^{BO} \rangle + \delta \sigma_m$ およ び $\chi_m = \langle \chi_m^{BO} \rangle + \delta \chi_m$ を式 (22) に代入して、 $(\delta \sigma_m)^2$ の項を無視することで、 $\delta \chi_m$ と $\delta \sigma_m$ に対する 線形化された式を導くことができる。

$$\frac{d}{dt}(\delta\sigma_m) = (\alpha g)\delta\chi_m - 2 < \sigma_m^{\rm BO} > \delta\sigma_m.$$
(33)

解は、

$$\delta\sigma_m(t) = \alpha g \int^t e^{-2 \langle \sigma_m^{\rm BO} \rangle (t-t')} \delta\chi_m(t') dt'$$
(34)

となる。つまり $\delta\sigma_m$ の特性時間は < $\sigma_m^{BO} >^{-1}$ である。もしこの特性時間を誘導時間 $\tau_m^{\chi \to \sigma}$ とみなせば、 誘導時間は BO スケーリングを満たすことを示すことができる。

直接数値計算で得られた結果がこれらの結論を満すかどうかを確認する。図 11(a) と 図 11(b) は、条件 (31) が満されていることを示している。 K_m のピークは S_m のピークの 2 倍ほどである。図 10 は、 $\tau_m^{X \to \sigma}$ が時間の BO スケーリングを満していることを示している。また、< $\sigma_m^{BO} > \tau_m^{X \to \sigma}$ がほとんど定数で大体 0.5 であることもわかる。このことは、式 (30) の右辺の $\epsilon\epsilon_m$ の大きさの項が釣合っていることを示して いる。

式(30)の導出と同様にして、式(23)から、慣性領域で以下の方程式をえる。

$$\epsilon \epsilon_m \frac{\mathrm{d}T}{\mathrm{d}\tau} = \epsilon \epsilon_m \lambda^{\frac{4}{5}} < \sigma_m^{\mathrm{BO}} > (\frac{1}{2}\tau_{m-1}^{\sigma} + \tau_{m-1}^{\chi} + \tau_m^{\chi})\frac{\mathrm{d}T}{\mathrm{d}\tau}.$$
(35)

この場合、オーダー ϵ および ϵ^2 の項は明らかに保存する。すなわち、相似解 S が存在するための条件は、 < $\sigma_m^{BO} > (\frac{1}{2}\tau_{m-1}^{\sigma} + \tau_{m-1}^{\chi} + \tau_m^{\chi}) = \lambda^{-\frac{4}{3}}$ である。実際、数値的に $\lambda^{\frac{4}{3}} < \sigma_m^{BO} > (\frac{1}{2}\tau_{m-1}^{\sigma} + \tau_{m-1}^{\chi} + \tau_m^{\chi})$ の値 を見積ってみると、これは m によらず大体 1.0 である。今図 10 から τ_m^{σ} が τ_m^{χ} より小さく ($\tau_m^{\sigma} \ll \tau_m^{\chi}$)、 $\frac{1}{2}\tau_{m-1}^{\sigma}$ と τ_m^{χ} の比が大体 0.2 なので、 τ_m^{σ} は相似解の存在のためには重要ではないと思われる。

関係式 (31)($K(\tau) = 2S(\tau)$)は、直接数値計算については 図 7 と図 8 から、シェルモデルについては 図 11 で確かめられる。直接数値計算では、以下の 3 組 A_{X4} と A_{D4} , B_{X5} と B_{D5} , B_{X6} と B_{D6} が関係式 (31)を調べるのに選ばれた。高い相関は関数 $X_m(t)$ および $\Sigma_m(t)$ の相似性による。さらに A_{X4} と A_{D4} の組の形は B_{X5} と B_{D5} および B_{X6} と B_{D6} の組の形とは異なる。これは、 S_m と K_m はほとんど一緒の 形だが、その形は一意には決らないという摂動計算の結果と一致している。なお、 S_m や K_m の形は初期 条件にも依存する。[18] これらのことから、シェルモデルは直接数値計算の結果をよく説明していること がわかる。ここでの解析では $|\tau| \ll 1$ あるいは $t \approx 0$ という仮定が入っていた。この条件については、以 下のような説明が可能である。時間帯 $\tau \sim -1$ は初期状態、つまり $t \sim 0$ に対応している。この状態では、 図 11 に示されたように、主要な励起されたモードは慣性領域にはない。これらのモードは直接は慣性領 域には影響しないので慣性領域にあるモードの S_m あるいは K_m はかならずしも初期状態での相似性を 満さない。一方、 $\tau > 0$ という時間帯は大きな m については $t > t_\infty$ を意味する。このとき粘性がなけ れば無限のモードが励起されている。 t_∞ よりあとの時間は数値計算できないのでこれは非現実的である。 実際の数値計算では、粘性のために t_∞ でも解がある。

条件 $|r| \ll 1$ は |r| < 1 と緩和できる。これは図 11 に見られるように *S* と *K* の相似性が |r| < 1 でも 成立しているからである。このことは、初期状態でも、大スケールの中途変動の影響は考えているスケー ルが慣性領域の奥(大きな *m*) にいくにつれて弱められることを示している。また $t > t_{\infty}$ でも相似性が成 立していることは興味深い。ただ、その相似性が粘性が効きだしてからも保たれる理由はわからない。

6 まとめ

この論文では、自由対流乱流においてエントロピーカスケードを形成する素過程の存在を調べた。我々 はエントロピーカスケードは本質的にエネルギーカスケードと同じだと信じている。つまり、カスケード には共通の本質がある。

エネルギーカスケードの描像では、渦、つまりエネルギーの塊がいわゆる turnover time という時間で 連続的に小さな渦に崩壊していく。この描像は統計やスケーリングに基礎をおいてはいるが、過程は極め て力学的である。つまり、発達した乱流では、エネルギーは無数の素過程によって小さいスケールに伝達 されていく。それぞれの素過程は母渦から娘渦へと世代に渡る連続した渦の崩壊に対応している。これら の過程の間に、たとえ相互作用は局所的でも多世代に渡って相関が保たれている。実際、特徴的なエント ロピーカスケードを観察すると強いエントロピーまたは T-渦の撹乱が慣性領域を通って伝達されている。 つまりこういう特徴的な輸送過程はカスケードの候補の一つなのである。それぞれの過程は第1章で導入 した多世代の描像に対応しているかもしれない。というのは、この過程は輸送時間と滞在時間という2つ の特性時間を持つからである。前者は時間の BO スケーリングに従うが、後者はスケールによらずほとん ど一定のようである。多くのスケールでの長距離相関は少し奇妙である。なぜなら伝統的なカスケード過 程では特性時間は一つしかなく、スケール間の相関はスケール間に対して急速に減少するからである。

特徴的な輸送過程の輸送時間が BO スケーリングに従うというのは自然なことである。というのも特徴 的な輸送過程はそれぞれ動力学的過程であるからである。ここでの疑問に対する鍵はランダムな部分の存 在である。すなわち < X_m > や < Σ_m > のような時間平均で表わされる、背景場の部分である。輸送時 間のスケーリングは背景場のスケーリングによっている。

我々はシェルモデルを用いてこの事実を確かめた。また慣性領域でBOスケーリングを満す定常解に大きなスケールで撹乱を与えて、その撹乱がある相似性をもって、小さなスケールに輸送されていくことを示した。この相似性は摂動論を用いた解析で証明され、輸送時間がBOスケーリングを満すことを要請する。この解析がうまくいった理由は、特徴的な輸送過程はBOスケーリング周りの一種の線形過程であることを指し示している。この意味で、特徴的なこの輸送過程は決してカスケードの素過程そのものではない。

我々のシェルモデルはあるスケールの T-渦が、この T-渦が浮力によって誘導したストレインとの相互 作用によって、小さな T-渦に引き伸ばされるという描像に基いている。この描像では、ある種の構造の時 間発展が記述され、ランダム性は陽には入ってこない。もし伝統的なカスケードが統計的に BO スケーリ ングを満す背景場を維持しているだけだとすれば、我々のシェルモデルは伝統的なカスケード過程に生み 出だされた定常解としての平均を含んでいるだけである。これは、構造の動力学が背景場に影響を受ける ことを示している。もちろん構造の特徴や間欠性との関係は明確にはわかっていないが、この結果は構造 の時間発展は間欠性の表われであることを示唆している。

我々は turnover time の意味を動力学的な観点から知ることに興味があった。相関時間という方法で望 ましい特性時間を定義した。しかし特性時間は伝統的なカスケード描像でいう turnover とは違っている。 これは伝統的なカスケードは連続する渦ではなくランダムな渦でできていることを示唆している。この意 味で、turnover time は輸送時間ではなく滞在時間として理解されるべきである。

参考文献

- [1] L. F. Richardson, Weather Prediction by Numerical Process(Cambridge University Press, Cambridge)(1922).
- [2] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 31(1941)538
- [3] F. Heslot, B. Castaing and A. Libchaber: Phys. Rev. A. 36(1987)5870.
- [4] B. Castaing et al.: J. Fluid. Mech. 204(1989)1.
- [5] S. C. Ching, et al.: Physica D58(1992)414.
- [6] E. D. Siggia: Ann. Rev. Fluid. Mech. 26(1994)137.
- [7] V. S. L'vov: Phys. Rev. Lett. 67(1991)687.
- [8] S. Toh and E. Suzuki: Unstable and Turbulent Motion of Fluid (World Scientific, Singapore, 1993)p.272
- [9] S. Toh and E. Suzuki: Phys. Rev. Lett. 73(1994)1501.
- [10] T. Bolgiano: J. Geophys. Res., 64(1959)2226.
- [11] A. M. Obukhov : Dokl. Akad. Nauk. SSSR, 125(1959)1246.
- [12] S. Toh: J. Phys. Soc. Japan. 64(1995)685.
- [13] S. Kida and K. Ohkitani, Phys. Fluid A, 4(1992)1602.
- [14] A. Brandenburg: Phys. Rev. Lett. 69(1992)605.
- [15] E. Suzuki and S. Toh: Phys. Rev. E. 51(1995)5628.
- [16] M. Iima and S. Toh: J. Phys. Soc. Japan. 67(1998)373
- [17] S. Toh, M. Iima and E. Suzuki:
 RIMS Koukyuuroku (in Japanese) 892(1995)85.
- [18] S. Toh and M. Iima: Phys. Rev. E, submitted.
- [19] M. Iima and S. Toh:
 RIMS Koukyuuroku (*in Japanese*) 974(1996)170.
- [20] M. Iima and S. Toh: J. Phys. Soc. Japan. submitted

図目次

- 1 エントロピー場のナップショット。等値面は、 m_S を平均、 V_S をエントロピーの標準偏差 としたとき、 m_S , $m_S + V_S^{1/2}$, $m_S + 2V_S^{1/2}$, $m_S + 3V_S^{1/2}$ に書かれている。エントピー値が $m_S + 3V_S^{1/2}$ を超える部分に影がつけられている。
- 2 m=6としたときの、~2^{-m}というスケール内でのウェーブレットエントロピーの度数分布。位相に起因するノイズは取り除かれている。60のスナップショットに対する平均の度数分布は実線で示されている。黒丸は活発なスナップショットを、白い四角は不活発なスナップショットを表わす。
- 3 (a) X_m(b) Σ_m の、平均 (白丸),標準偏差 (白三角),標準偏差の平均に対する比 (黒四角)。.
- 4 相互相関関数。 $\tau = 0$ での値は m とともに大きくなり、一番上が m = 6 である。(a) $F(X_m, X_{m+1})(\tau)$ (b) $F(\Sigma_m, \Sigma_{m+1})(\tau)$ (c) $F(X_m, \Sigma_m)(\tau)$
- 5 $F(X_m, X_{m+1})(\tau), F(\Sigma_m, \Sigma_{m+1})(\tau)$ と $F(X_m, \Sigma_m)(\tau)$ の相関時間。破線は時間に対する BO スケーリングを表す。
- 6 (a) $\tau(X_m, X_{m+1}, Tc)$ (Tcの関数)。(b) $\tau(\Sigma_m, \Sigma_{m+1}, Tc)$ (Tcの関数)。
- 7 $X_m(t)$ のm = 4,5,6に対する時系列。それぞれの関数は $3 V_m^{1/2}$ (V_m はそれぞれの関数の標準偏差)で正規化されている。
- 8 $\Sigma_m(t)$ に対するもの。要素は図7と同じ。
- 9 定常解 < χ_m^{BO} > と < σ_m^{BO} >。直線は BO スケーリングを表わす。
- 10 BO case における σ_m と χ_m の特性時間。直線は時間に対する BO スケーリングを表わす。
- 11 BO case における $S_m(\tau_m)$ および $T_m(\tau'_m)$ の時系列。 $S_m(\tau_m)$:(a) for m = 5, 6, ..., 10 (b) 慣性領域 $T_m(\tau'_m)$:(c) for m = 5, 6, ..., 10 (d) 慣性領域

Figure 4 (c)

Figure 10

Ċ

0

N

Ϋ́

0

N

N

5400

20