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1 Introduction
It is widely known that for an inviscid fluid an elliptical region with uniform vorticity,
the Kirchhoff elliptic vortex, rotates at a constant angular velocity without changing its
shape(Lamb 1957). The motion of a vortex region with uniform vorticity in a linear shear
flow was investigated by Moore&Saffman(1971) and Kida(1981). Moore&Saffman(1971)
obtained steady elliptic vortex and examined its stability. Kida(1981) showed that an
initially elliptic vortex region in a linear shear flow remains elliptic but changes its aspect
ratio and angular velocity. He also derived the evolution equations for the aspect ratio and
the orientation of the ellipse. By analysing these equations, he showed that the elliptic
vortex may rotate, nutate, or be elongated.

Polvani&Wisdom(1990) and Dahleh(1992) numerically investigated the motion of fluid
particles around a rotating elliptic vortex in a linear shear flow, as an example of the
Lagrangian chaos for a two-dimensional time-periodic flow. Polvani&Wisdom(1990) found
that there exist chaotic regions surrounding the vortex even for small shear and that a
fluid particle can eventually escape from the vicinity of the rotating vortex for a certain
value of the shear. They also mentioned that the chaotic region appears first around
the heteroclinic orbits connecting the hyperbolic fixed points of the flow field around the
Kirchhoff elliptic vortex. They, however, did not confirm the appearance of the chaos
analytically. Dahleh(1992) examined the spatial variability that is characterized by the
separation rate of nearby particles in the chaotic region using the finite-time spreading
rate and showed that particles passing near a stagnation point of the flow have a high
spreading rate.

In the present paper, we study in more detail the motion of fluid particles in the same
flow as Polvani&Wisdom(1990) and Dahleh(1992) used. Our purpose is to examine the
dependence of the chaotic motion of fluid particles around a rotating elliptic vortex on
the rate of the strain $s$ of the external flow and on the initial aspect ratio of the ellipse.
Particularly, it is aimed to confirm analytically the appearance of chaos for small $s$ using
a perturbation method. We also aim at examining the dependence of the escape motion
of fluid particles on their initial positions for relatively large $s$ .

2 Elliptic vortex in a linear shear flow

2.1 Motion of an elliptic vortex
We consider the two-dimensional motion of an elliptic vortex in a linear shear flow of an
inviscid incompressible fluid. The center of this elliptic vortex with uniform vorticity $\omega$
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is located at $(x, y)=(0,0)$ , where $(x, y)$ is two-dimensional Cartesian coordinates. The
stream function of the external shear flow is given by

$\psi_{e}=-\frac{1}{4}(\gamma+s)X^{2}-\frac{1}{4}(\gamma-S)y^{2}$ , (1)

where 7 is vorticity and $s$ is the rate of strain.
It was shown by Kida(1981) that the vortex region remains elliptic in this external flow

and that the time evolution of the shape of this vortex region is governed by

$(\dot{\theta}\dot{r}$

$==$
$\frac{-srr\omega\sin}{(r+1)^{2}}+\frac{1}{2}2\theta,(s\frac{1+r^{2}}{1-r^{2}}\cos 2\theta+\gamma \mathrm{I}$

, (2)

where $r$ is the aspect ratio and $\theta$ is the angle between the major axis and the $x$ axis. The
dot denotes the differentiation with respect to the time $t$ . The relation

$\cos 2\theta=\frac{2\omega}{s}(\frac{r}{r^{2}-1}\log\frac{(r+1)^{2}}{4pr}+\frac{\gamma}{2\omega}\frac{(r-1)}{(r+1)}\mathrm{I}\equiv\frac{2\omega}{s}g(r;\gamma, \omega,p),$ (3)

is obtained from $\mathrm{E}\mathrm{q}.(2)$ , where $p$ is a constant determined by the initial values of $r$ and $\theta$ .
Therefore, $(r, \theta)$ evolves along a curve specified by $\mathrm{E}\mathrm{q}.(3)$ .

Since $-1\leqq\cos 2\theta\leqq 1$ , only the $r$-dependence of $g$ within the range $-S/2\omega\leqq g\leqq s/2\omega$

is relevant. Kida(1981) showed that the motion of the vortex is classified into three types
: rotation, nutation and elongated motion.

Without loss of generality, the uniform vorticity $\omega$ and the area of the elliptic vortex
are fixed to 1 and $\pi$ , respectively. For given values of $\gamma$ and $s$ , the motion of the elliptic
vortex is obtained by the numerical integration of $\mathrm{E}\mathrm{q}.(2)$ with initial conditions $r=r_{0}$ and
$\theta=\theta_{0}$ . In the present paper, we consider only the case of $s\geqq 0$ and $\gamma=0$ . We usually
use the initial conditions satisfying $0<r_{0}<1$ and $\theta_{0}=0$ . It is found from $\mathrm{E}\mathrm{q}.(2)$ that $r$

is always less than 1 under these conditions.

2.2 Motion of fluid particles around a vortex
The motion of a fluid particle in a two-dimensional flow of an incompressible fluid is
governed by

$\dot{x}=\frac{\partial\Psi}{\partial y}$ , $\dot{y}=-\frac{\partial\Psi}{\partial x}$ , (4)

where $\Psi$ is a stream function and $(x, y)$ is the location of the particle. Equation (4)
can be interpreted as the Hamilton’s canonical equation with (generally time-dependent)
Hamiltonian $\Psi$ . Therefore, the motion of a fluid particle in the $(x, y)$ plane corresponds to
the motion of a representative point in the phase space of a Hamiltonian system with one
degree of freedom.

The stream function of the external shear flow is already given in Eq.(l). The stream
function of the flow induced by the elliptic vortex is given by

$\psi_{v}=-\frac{1}{4}e^{-2\xi}\cos 2\eta-\frac{1}{2}\xi$ , (5)
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where $(\xi, \eta)$ are elliptic coordinates fixed to the vortex. This $(\xi, \eta)$ is related to Cartesian
coordinates (X, $Y$) by

$X=k\cosh\xi\cos\eta$ , $Y=k\sinh\xi\sin\eta$ , (6)

where $k^{2}=(1-r^{2})/r$ . The $X$ and $\mathrm{Y}$ axes rotate with the vortex and correspond to the
major and minor axes, respectively. Therefore, relations

$x=X\cos\theta-Y\sin\theta$ , $y–x_{\mathrm{s}}\mathrm{i}\mathrm{n}\theta+Y\cos\theta$ , (7)

are satisfied.
Total stream function $\Psi$ is given by

$\Psi=\psi_{e}+\psi v$ . (8)

In the numerical computations of the motion of fluid particles, we use the elliptic coordi-
nates. Using Eqs.(6), (7) and (8), $\mathrm{E}\mathrm{q}.(4)$ can be rewritten as

$\{$

$\dot{\xi}$ $=$ $\frac{h^{2}}{2}[-\Omega\sin 2\eta+2k-2_{\frac{\partial\psi_{v}}{\partial\eta}}+\frac{s}{2}\mathcal{F}(\xi, \eta;r, \theta)]$ ,

$\dot{\eta}$ $=$ $\frac{h^{2}}{2}[-\Omega\sinh 2\xi-2k-2\frac{\partial\psi_{v}}{\partial\xi}+\frac{s}{2}\mathcal{G}(\xi, \eta;r, \theta)]$ ,
(9)

(Polvani&Wisdom 1990), where $(\xi, \eta)$ is the location of a fluid particle expressed by the
elliptic coordinates, and

$| \mathcal{F}=\sin 2\eta\cos_{\theta \mathrm{i}\mathrm{h}}\theta+\mathrm{s}\mathrm{i}^{-\mathrm{c}}\mathrm{n}_{2}\mathrm{h}\Omega=\frac{r}{(r+1)^{2},(\cosh 2-\Lambda\xi’}\mathcal{G}=\Lambda=\frac{1+r^{2}+\Lambda}{1-r^{2}}.(\sin 2\eta\cos \mathrm{s}\mathrm{n}\sin 2)(\sin 2\eta\sin 2\theta^{+\xi\theta}-\sinh 2\xi\cos 2h^{2}=(\mathrm{c}_{2}\mathrm{o}\mathrm{s}\mathrm{h}2\xi \mathrm{o}\mathrm{s}\eta 2\xi\cos 2\eta’,\sin 2\theta)2)^{-1}\theta,$ (10)

Here the error in the expression of the second term of $\mathcal{G}$ in the paper by Polvani&Wis-
dom(1990) was corrected. It should be noted that the right-hand side of $\mathrm{E}\mathrm{q}.(9)$ explicitly
depends on $t$ because $r$ and $\theta$ generally change with $t$ as the solution to equations

$\dot{r}=-sr\sin 2\theta$ , $\dot{\theta}=\Omega+\frac{1}{2}S\Lambda\cos 2\theta$. (11)

In the following sections, we examine the motion of fluid particles around the vortex

both analytically and numerically using Eqs.(9) and (11). Here we restrict our study to

the range of $s$ for which the vortex rotates. It can be shown from Eq.(ll) that the vortex
rotates if $s$ is less than a certain value under the initial conditions $0<r_{0}<1$ and $\theta_{0}=0$ .

For example, this value is 0.173 for $r0=0.5$ .
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3Motion of fluid particles in two special flows

3.1 Flow due to the Kirchhoff elliptic vortex
If we assume that $s=0$ (no external flow) in Eq.(ll), we obtain

$r=r_{0}$ , $\theta=\Omega_{0}t$ , (12)

where
$\Omega_{0}=\frac{r_{0}}{(r_{0}+1)^{2}}$ . (13)

This vortex which rotates at the constant angular velocity $\Omega_{0}$ without deformation is well
known as the Kirchhoff elliptic vortex. Substituting $\mathrm{E}\mathrm{q}.(12)$ into $\mathrm{E}\mathrm{q}.(9)$ with $s=0$ , we
obtain

$\{$

$\dot{\xi}$ $=$ $\hat{f}_{1}(\xi, \eta)$ $\equiv$
$\frac{h^{2}}{2}(-\Omega_{0}+k_{0}-2e^{-2}\xi)\sin 2\eta$,

$\dot{\eta}$ $=$ $\hat{f}_{2}(\xi, \eta)$ $\equiv$ $\frac{h^{2}}{2}[-\Omega_{0}\sinh 2\xi-k_{0}-2(e^{-2\xi}\cos 2\eta-1)]$ ,
(14)

as the equation governing the motion of a fluid particle in the flow due to the Kirchhoff
elliptic vortex, where $k_{0}^{2}=(1-r^{2})0/r_{0}$ .

Equation (14) has two pairs of equilibrium points $(\xi, \eta)=(\overline{\xi},\overline{\eta})$ expressed by

$( \overline{\xi},\overline{\eta})=(\xi_{1^{\pm}}^{-},\overline{\eta}1^{\pm})\equiv(\frac{1}{2}\log[\frac{3r_{0}+1}{1-r_{0}}],$ $- \frac{\pi}{2}\pm\frac{\pi}{2})$ , (15)

and
$( \overline{\xi},\overline{\eta})=(\overline{\xi}_{2}^{\pm},\overline{\eta}2^{\pm})\equiv(\frac{1}{2}\log[\frac{3+r_{0}}{1-r_{0}}],$ $\pm\frac{\pi}{2})$ . (16)

The Jacobian matrix $J$ of $\mathrm{E}\mathrm{q}.(14)$ at $(\xi, \eta)=(\overline{\xi},\overline{\eta})$ is expressed as

$J=\overline{h}^{2}$ ( $-\Omega_{0^{\cos}}\mathrm{h}2\overline{\xi}+-k_{0}^{-}2-e\mathrm{i}2\overline{\xi}k^{\frac{\mathrm{s}}{0}}2\mathrm{n}2e^{-2}\overline{\eta\overline{\xi}}\cos 2\overline{\eta}$
$-\Omega_{0}\cos\overline{\eta}+kk^{\frac{2}{0}2}e-2\overline{\xi}\mathrm{i}\mathrm{n}2\overline{\eta}\mathrm{c}0-2\mathrm{s}e-2\overline{\xi}\mathrm{o}\mathrm{s}2\overline{\eta}$ ), (17)

where $\overline{h}^{2}=(\cosh 2\overline{\xi}-\cos\overline{\eta})-21$ .
Substituting $\mathrm{E}\mathrm{q}.(15)$ into $\mathrm{E}\mathrm{q}.(17)$ , we obtain the Jacobian matrix for both equilibrium

points $(\overline{\xi}_{1^{\pm}},\overline{\eta}_{1^{\pm}})$ . The eigenvalues of this matrix are given by

$\lambda_{1}^{\pm}=\pm\frac{\sqrt{(1-r_{0)}(3r0+1)}}{2(1+r\mathrm{o})^{2}}$ ,

and are real with different signs since $0<r_{0}<1$ . Therefore, these equilibrium points are
saddles.

Substituting $\mathrm{E}\mathrm{q}.(16)$ into $\mathrm{E}\mathrm{q}.(17)$ , we obtain the Jacobian matrix for both equilibrium

points $(\overline{\xi}_{2^{\pm},\overline{\eta}_{2^{\pm}}})$ . The eigenvalues of this matrix are given by

$\lambda_{2}^{\pm}=\pm\frac{r_{0}\sqrt{(1-r\mathrm{o})(3+r\mathrm{o})}}{2(1+r\mathrm{o})^{2}}i$. (18)

Since $\lambda_{2}^{\pm}$ are pure imaginary, these equilibrium points are centers.
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The motion of fiuid particles on the (X, $Y$ ) plane fixed to the vortex is shown in Fig.1 (a).
In this figure, the saddles $(\xi, \eta)=(\overline{\xi}_{1^{\pm}\overline{\eta}_{1^{\pm}}},)$ are on the major axis of the elliptic vortex
as expressed by A and $\mathrm{B}$ , whereas the centers $(\xi, \eta)=(\overline{\xi}_{2^{\pm}},\overline{\eta}_{2^{\pm}})$ are on the minor axis
as expressed by $\mathrm{C}$ and D. There are also four heteroclinic orbits $\mathrm{H}_{1}^{\pm}$ and $\mathrm{H}_{2}^{\pm}$ connecting
these saddles. These equilibrium points and heteroclinic orbits rotate relative to the $(x, y)$

plane fixed to the fluid at infinity. However, if we introduce the Poincare’ map of the $(x, y)$

coordinates of the locations of fluid particles after every period of the vortex’s rotation (at
$t=2n\pi/\Omega_{0}$ , where $n$ is an integer), these points and orbits are also the fixed points and
heteroclinic orbits of this map, respectively.

3.2 Flow in the point-vortex approximation
The velocity of the external shear flow is proportional to $s$ and is larger at the point of larger
distance from the origin, whereas the velocity induced by the vortex is smaller at the point
of larger distance from the origin. Therefore, if $s$ is small, these velocities are expected to
be of the same order in a region appropriately far from the vortex. In the consideration
of the flow in a region far from the elliptic vortex, this vortex can be approximated by a
point vortex of the same circulation $\pi$ . The stream function due to a point vortex at the
origin with strength $\pi$ in a linear shear flow expressed by Eq.(l) with $\gamma=0$ is given by

$\psi_{1}=-\frac{1}{4}sR^{2}\cos 20--\frac{1}{2}\log R$ , (19)

where $(R, )$ are polar coordinates defined by

$x=R\cos \mathrm{O}-$ , $y=R\sin$ . (20)

Therefore, the evolution of a particle’s position $(R, )$ is governed by

$\dot{R}=\frac{1}{R}\frac{\partial\psi_{1}}{\partial}=\frac{1}{2}SR\sin 20-$ , $\dot{}=-\frac{1}{R}\frac{\partial\psi_{1}}{\partial R}=\frac{1}{2}s\cos 20-+\frac{1}{2R^{2}}$ . (21)

Equation (21) has a pair of equilibrium points expressed by

Figure 1: (a)Motion of fluid particles around the Kirchhoff elliptic vortex on the (X, $Y$ )
plane fixed to the vortex. $r_{0}=0.5$ . (b)Motion of fluid particles in the point-vortex
approximation. $s=0.03$.
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$(R, )=(R_{1}^{\pm}, _{1} \pm)\equiv(\frac{1}{\sqrt{s’}}\pm\frac{\pi}{2})$ . (22)

The Jacobian matrix $J_{2}$ of $\mathrm{E}\mathrm{q}.(21)$ at these points is given by

$J_{2}=($ $\frac{1}{2}s\mathrm{s}-\frac{\mathrm{i}\mathrm{n}_{1}2}{R_{1}^{\pm}3}_{1}\pm$ $sR_{1}^{\pm}\cos 2-s\sin 2_{1^{\pm}}^{\pm}1)=(-s\sqrt{s}0$ $-\sqrt{s}0)$ .

The eigenvalues of this matrix $\mathrm{a}\mathrm{r}\mathrm{e}\pm s$ . Since these are real with different signs, the equi-
librium points are saddles.

The motion of fluid particles in this flow of the point-vortex approximation is shown in
Fig.1 (b). Here $\mathrm{A}_{\mathrm{P}}$ and $\mathrm{B}_{\mathrm{P}}$ are saddles given by $\mathrm{E}\mathrm{q}.(22)$ . There are also a pair of heteroclinic
orbits $\mathrm{H}_{\mathrm{P}}^{\pm}$ connecting these saddles. These points and orbits are also the fixed points and
heteroclinic orbits of the Poincar\’e map introduced at the end of the preceding subsection.

4 Melnikov’s method applied to the flow for small $s$

4.1 Melnikov function
We consider a two-dimensional system expressed by

$\tilde{x}=f_{1}(\tilde{x},\tilde{y})+\epsilon g_{1}(\tilde{x},\tilde{y};t)$ , $\tilde{y}=f_{2}(\tilde{x},\tilde{y})+\epsilon g_{2}(\tilde{x},\tilde{y};t)$ , (23)

where $\epsilon$ is a small parameter. The perturbation terms $g_{1}$ and $g_{2}$ are assumed to be time-
periodic with a period $2\pi/v$ . We also assume that the unperturbed system ((23) with
$\epsilon=0)$ has two saddles $\mathrm{P}_{0}^{\pm}$ and two heteroclinic orbits $\mathrm{H}_{0}^{\pm}$ , expressed by $\tilde{x}=\tilde{x}_{0}^{\pm}(t)$ and
$\tilde{y}=\tilde{y}_{0}^{\pm}(t)$ , connecting them. Therefore,

$\lim_{tarrow\pm\infty}(\tilde{x}^{+}(\mathrm{o}t),\tilde{y}_{0}^{+}(t))=\mathrm{P}_{0}^{\pm}$ and $\lim_{tarrow\pm\infty}(\tilde{X}^{-}0(t),\tilde{y}_{0}^{-}(t))=\mathrm{P}_{0}^{\mp}$ , (24)

are satisfied.
Since the right-hand side of $\mathrm{E}\mathrm{q}.(23)$ is time-periodic, we can define a two-dimensional

map which maps each value of $(\tilde{x},\tilde{y})$ at $t=0$ onto its value at $t=2\pi/v$ . From the above
assumptions on the unperturbed system, this map has two saddles $\mathrm{P}_{\epsilon}^{\pm}$ , near $\mathrm{P}_{0}^{\pm}$ .

Here we introduce the Melnikov functions $M^{\pm}(\phi)$ for the heteroclinic orbits $\mathrm{H}_{0}^{\pm}$ defined
by

$M^{\pm}(\phi)$ $=$ $\int_{-\infty}^{\infty}\{f_{1}(\tilde{x}_{0}^{\pm}(t),\tilde{y}^{\pm}0(t))g2(\tilde{x}_{0}^{\pm}(t),\tilde{y}^{\pm}0(t);t+\phi)$

$-f_{2}(\tilde{x}_{0}(\pm t),\tilde{y}^{\pm}0(t))g1(\tilde{x}_{0}^{\pm}(t),\tilde{y}_{0}(\pm tt);+\phi)\}dt$ , (25)

where $\phi$ is a phase variable. These functions are periodic with period $2\pi/v$ . The following
result is known in the Melnikov theory (e.g. Wiggins 1990) : If there are $\phi_{0}^{+}$ and $\phi_{0}^{-}$

satisfying

$M^{+}(\phi_{0}+)=0$ , $\frac{dM^{+}(\phi)}{d\phi}|_{\phi=\phi^{+}}0\neq 0$, $M^{-}(\phi_{0}^{-})=0$ , $\frac{dM^{-}(\phi)}{d\phi}|_{\phi=\phi_{0}^{-}}\neq 0$ , (26)

then for non-zero 6 the stable manifold $\mathrm{W}_{\mathrm{s}}^{+}[\mathrm{W}_{\mathrm{s}}^{-}]$ of saddle $\mathrm{P}_{\epsilon}+[\mathrm{p}_{\mathit{6}}^{-}]$ and the unstable manifold
$\mathrm{W}_{\mathrm{u}}^{-}[\mathrm{W}_{\mathrm{u}}+]$ of saddle $\mathrm{P}_{\epsilon}^{-}[\mathrm{p}_{\in}+]$ intersect transversely. This means that the system (23) has a
chaotic dynamics for non-zero $\epsilon$ near the heteroclinic orbits $\mathrm{H}_{0}^{\pm}$ .
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4.2 Perturbation from the flow due to the Kirchhoff elliptic
vortex

In this subsection, we consider Eqs.(9) and (11) under the assumption of small $s$ . We first
expand $r$ and $\theta$ with respect to $s$ as

$r=\hat{r}_{0}+S\hat{r}1+s^{2}\hat{r}_{2}+\cdots$ , $\theta=\hat{\theta}_{0}+s\hat{\theta}_{1}+s2\hat{\theta}_{2}+\cdots$ . (27)

Substituting $\mathrm{E}\mathrm{q}.(27)$ into Eq.(ll), we obtain

$\hat{r}_{0}=r_{0}$ , $\hat{\theta}_{0}=\Omega_{0}t+\frac{\pi}{4}$ , (28)

from the equations in $\mathrm{O}(1)$ , under the initial conditions $r=r_{0}$ and $\theta=\pi/4$ at $t=0$ .
Here this initial value of $\theta$ was chosen so that the average value of $r$ is still $r_{0}$ even if $\mathrm{O}(s)$

variation determined below is included. In $\mathrm{O}(s)$ ,

$\hat{r}_{1}=-\hat{r}_{0}\sin 2\hat{\theta}_{0}$ , (29)

is derived. Using $\mathrm{E}\mathrm{q}.(28)$ and the initial condition $\hat{r}_{1}=0$ at $t=0,$ $\mathrm{E}\mathrm{q}.(29)$ is solved to give

$\hat{r}_{1}$ $=$ $\frac{(1+r_{0)^{2}}}{2}\sin 2\Omega_{0}t$, (30)

Substituting $\mathrm{E}\mathrm{q}.(27)$ into $\mathrm{E}\mathrm{q}.(9)$ , and using Eqs.(28) and (30), we obtain

$\dot{\xi}=\hat{f}_{1}(\xi, \eta)+s\hat{g}1(\xi, \eta;t)$ , $\dot{\eta}=\hat{f}_{2}(\xi, \eta)+s\hat{g}2(\xi, \eta;t)$ , (31)

after truncating terms of $\mathrm{O}(s^{2})$ , where $\hat{f}_{1}(\xi, \eta)$ and $\hat{f}_{2}(\xi, \eta)$ are given in $\mathrm{E}\mathrm{q}.(14)$ and

$\{$

$\hat{g}_{1}(\xi, \eta;t)$ $=$ $\frac{h^{2}}{4}[-\frac{1-r_{0}}{1+r_{0}}\sin 2\eta\sin 2\Omega 0^{t}$

$+ \frac{1+r_{0}^{2}}{(1-r_{0})2}e^{-2\xi}\sin 2\eta\sin 2\Omega_{0}t+\mathcal{F}(\xi,$ $\eta;r_{0},$ $\Omega_{0}t+\frac{\pi}{4})]$ ,

$\hat{g}_{2}(\xi, \eta;t)$ $=$ $\frac{h^{2}}{4}[-\frac{1-r_{0}}{1+r_{0}}\sinh 2\xi\sin 2\Omega 0t$

$- \frac{1+r_{0}^{2}}{(1-r_{0})^{2}}(e^{-2\xi}\cos 2\eta-1)\sin 2\Omega_{0}t+\mathcal{G}(\xi,$ $\eta;r_{0,0^{t}}\Omega+\frac{\pi}{4})]$ .
(32)

The first and second terms in the expressions of $\hat{g}_{1}$ and $\hat{g}_{2}$ come from the expansion of $\Omega$

and $k$ included in the first-order terms of $\mathrm{E}\mathrm{q}.(9)$ with respect to $s$ . The perturbation terms
$\hat{g}_{1}$ and $\hat{g}_{2}$ are time-periodic with period $\pi/\Omega_{0}$ .

As shown in section 3.1, the non-perturbed system ( $\mathrm{E}\mathrm{q}.(31)$ with $s=0$) have two pairs
of heteroclinic orbits $\mathrm{H}_{1}^{\pm}$ and $\mathrm{H}_{2}^{\pm}$ . If the motion of a fluid particle on these heteroclinic
orbits is expressed by $(\xi_{1}\pm(t), \eta_{1}(\pm)t)$ and $(\xi_{2}\pm(t), \eta_{2}(\pm t))$ , the Melnikov functions for these
orbits are given by

$M_{j}^{\pm}(\phi)$ $=$ $\int_{-\infty}^{\infty}\{\hat{f}_{1}(\xi j(\pm t),$ $\eta_{j}(\pm))\hat{g}2(\xi j(\pm),$$\eta j(\pm t);tt+\phi)t$

$-\hat{f}_{2}(\xi_{j}^{\pm}(t),$ $\eta^{\pm}j(t))\hat{g}_{1}(\xi_{j}^{\pm}(t),$ $\eta_{j}^{\pm}(t);t+\phi)\}dt$ $(j=1,2)$ , (33)
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These functions are periodic $\mathrm{i}\mathrm{n}_{\wedge}\phi$ with period $\pi/\Omega_{0}$ . The flow field of $\mathrm{E}\mathrm{q}.(31)$ has the
symmetry that $\hat{f}_{j}(\xi, \eta+\pi)=f_{j}(\xi, \eta)$ and $\hat{g}_{j}(\xi, \eta+\pi;t)=\hat{g}_{j}(\xi, \eta;t)$ for $j=1$ and 2.
Therefore, if we assume that $(\xi_{j}^{+}(0), \eta_{j}+(0))=(\xi_{j}^{-}(0), \eta j(-\mathrm{o})+\pi)$ then $(\xi_{j}^{+}(t), \eta_{j}^{+}(t))=$

$(\xi_{j}^{-}(t), \eta_{j}(-t)+\pi)$ is satisfied for all $t$ . This yields the relations $M_{j}^{+}(\phi)=M_{j}^{-}(\phi)$ for $j=1$

and 2.
Figure $2(\mathrm{a})$ and (b) shows these Melnikov functions numerically computed for $r_{0}=0.5$ .

Both of these functions intersect the zero transversely. Therefore, we expect that there
exist chaotic dynamics for. non-zero $s$ near the heteroclinic orbits $\mathrm{H}_{1}^{\pm}$ and $\mathrm{H}_{2}^{\pm}$ .

4.3 Perturbation from the flow in the point-vortex approxima-
tion

In this subsection, we study the perturbation from the flow in the point-vortex approxima-
tion for small $s$ . If we consider the flow due to the elliptic vortex with aspect ratio $r$ and
inclination angle $\theta$ in the external shear flow, the stream function of this flow in a region
far $\mathrm{h}\mathrm{o}\mathrm{m}$ this vortex is expanded as

$\psi_{2}=-\frac{1}{4}sR^{2}\cos 2\mathrm{O}--\frac{1}{2}\log R+\frac{k^{2}}{16R^{2}}\cos 2(\mathrm{O}--\theta)+\mathrm{O}(R^{-4})$, (34)

where $R$ and $$ are defined by $\mathrm{E}\mathrm{q}.(20)$ . The terms on the right-hand side of $\mathrm{E}\mathrm{q}.(34)$ except
for the first one are derived by expanding $\mathrm{E}\mathrm{q}.(5)$ for large $\xi$ and using the relations (6),
(7) and (20).

Figure 2: Melnikov functions for $r_{0}=0.5$ . $(\mathrm{a})M_{1}^{\pm}(\phi),$ $(\mathrm{b})M_{2}^{\pm}(\phi)$ . $(\mathrm{c})M_{\mathrm{P}}^{\pm}(\phi;s)$ for a few $s$ .

(d)Dependence of the maximum value of $M_{\mathrm{P}}^{\pm}(\phi;s)$ on $s$ .
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From $\mathrm{E}\mathrm{q}.(34)$ , we find that the velocities caused by the external shear and by the vortex
are of the same order in a region of distance $\mathrm{O}(1/\sqrt{s})$ from the origin. Therefore, we
introduce a stretched radial variable $\tilde{R}=\sqrt{s}R$ . Using this variable, we obtain

$\{$

$\frac{d\tilde{R}}{dt\sim}$

$=$ $\frac{1}{\tilde{R}}\frac{\partial\psi_{2}}{\partial}$ $=$ $\tilde{f}_{1}(\tilde{R}, )+s\tilde{g}1(\tilde{R},$ $_{;\frac{t\sim}{s}})$ ,

$\frac{d}{dt\sim}$ $=$ $- \frac{1}{\tilde{R}}\frac{\partial\psi_{2}}{\partial\tilde{R}}$ $=$ $\tilde{f}_{2}(\tilde{R}, )+s\tilde{g}2(\tilde{R},$ $; \frac{t\sim}{s})$ ,
(35)

from $\mathrm{E}\mathrm{q}.(34)$ after truncating $\mathrm{O}(s^{2})$ terms, as the equation which governs the evolution of
the location $(\tilde{R}, )$ of a fluid particle. Here $t\sim=st$ is the slow time variable, and

$\{$

$\tilde{f}_{1}(\tilde{R}, \Theta)=\frac{1}{2}\tilde{R}\sin 2\ominus$ , $\tilde{f}_{2}(\tilde{R}, \ominus)=\frac{1}{2}\cos 2\Theta+\frac{1}{2\tilde{R}^{2}}$ ,

$\tilde{g}_{1}(\tilde{R},$ $\Theta;\frac{t\sim}{s})=-\frac{k_{0}^{2}}{8\tilde{R}^{3}}\sin 2(-\frac{\Omega_{0}}{s}t\sim)$ ,

$\tilde{g}_{2}(\tilde{R},$ $\Theta;\frac{t^{\sim}}{s})=\frac{k_{0}^{2}}{8\tilde{R}^{4}}\cos 2(-\frac{\Omega_{0}}{s}t\sim)$ .

(36)

In the derivation of above expressions, since $r$ and $\theta$ were included only in the perturbation
terms, these variables were replaced by $r_{0}$ and $\Omega_{0}t$ .

As shown in section 3.2, the non-perturbed system ( $\mathrm{E}\mathrm{q}.(35)$ with $s=0$) has two hetero-
clinic orbits $\mathrm{H}_{\mathrm{P}}^{\pm}$ . If the motion of a fluid particle on these heteroclinic orbits is expressed
by $(\tilde{R}_{0}^{\pm}(t), 0(\pm t))$ , the Melnikov functions for these orbits are given by

$M_{\mathrm{P}}^{\pm}(\phi;S)$ $=$ $\int_{-\infty}^{\infty}\{\tilde{f}_{1}(\tilde{R}_{0}^{\pm}(t),$$\pm(0)t)\sim\sim 2\tilde{g}(\tilde{R}_{0}^{\pm}(^{\sim}t),$ $^{\pm}0(^{\sim}t); \frac{t^{\sim}}{s}+\phi)$

$-\tilde{f}_{2}(\tilde{R}_{0}^{\pm}(^{\sim}t),$ $_{0}\pm(t\sim))\tilde{g}_{1}(\tilde{R}_{0}^{\pm}(t),$$^{\pm}0 \sim(^{\sim}t);\frac{t\sim}{s}+\phi)\}dt^{\sim}$, (37)

These functions are periodic in $\phi$ with period $\pi/\Omega_{0}$ . The flow field of $\mathrm{E}\mathrm{q}.(35)$ has the
symmetry that $\tilde{f}_{j}(\tilde{R}, +\pi)=\tilde{f}_{j}(\tilde{R}, )$ and $\tilde{g}_{j}(\tilde{R}, +\pi)=\tilde{g}_{j}(\tilde{R}, )$ for $j=1$ and 2.
Therefore, if we assume that $(\tilde{R}_{0}^{+}(0), _{0}^{+}(\mathrm{o}))=(\tilde{R}_{0}^{-}(0), _{0}-(0)+\pi)$, then $(\tilde{R}_{0}^{+}(t), _{0}+(t))=$

$(\tilde{R}_{0}^{-}(t), _{0}-(t)+\pi)$ is satisfied for all $t$ . This yields the relation $M_{\mathrm{P}}^{+}(\phi;s)=M_{\mathrm{P}^{-(\phi;s}})$ .
Here it should be noted that $\mathrm{E}\mathrm{q}.(35)$ is different from the standard form cosidered in the
Melnikov theory, such as $\mathrm{E}\mathrm{q}.(23)$ , in that the period of the perturbation terms $\tilde{g}_{1}$ and $\tilde{g}_{2}$

depends on the perturbation parameter $s$ . This results in the $s$-dependence of the functions
$M_{\mathrm{P}}^{\pm}$ . However, we still call these functions the Melnikov functions because it seems that
from the following reason these functions can be used to estimate the distance between
the stable and unstable manifolds of the saddles. The functions $M_{\mathrm{P}}^{\pm}$ can be interpreted
as a Fourier transform of a function which tends to zero exponentially as $t\simarrow\pm\infty$ . Here
$2\Omega_{0}/s$ corresponds to the “frequency” variable. In the theory of the Fourier transform, it
is known that the Fourier transform of a rapidly decreasing function tends to zero faster
than any minus powers of the “frequency” variable as this variable increases to the infinity.
This suggests that as $s$ decreases to zero, $M_{\mathrm{P}}^{\pm}$ tends to zero faster than any powers of $s$ .
Furthermore, the higher-order terms in the expansion of $\psi_{2}$ have the $s$-dependence of the
form $\cos(2^{n}\Omega 0^{\sim}t/s)(n=2,3,4, \ldots)$ . Therefore, it seems reasonable to expect that $M_{\mathrm{P}}^{\pm}$ is
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the leading-order term in the estimation of the distance between the stable and unstable
manifolds of the saddles.

Figure $2(\mathrm{c})$ shows the Melnikov functions $M_{\mathrm{P}}^{\pm}(\phi;S)$ numerically computed for a few $s$

with $r_{0}=0.5$ . Since these functions transversely intersect the zero, we can expect that
there exist chaotic dynamics for non-zero $s$ near the heteroclinic orbits $\mathrm{H}_{\mathrm{P}}^{\pm}$ . Moreover, the
maximum of $|M_{\mathrm{P}}^{\pm}(\phi;s)|$ for all $\phi$ rapidly decreases to zero with $s$ , as shown in Fig. $2(\mathrm{d})$ .
This is consistent with the above theoretical prediction.

5 Results of numerical computations
In this section, the motion of fluid particles for several $s$ and $r_{0}$ is examined by the numeri-
cal integration of Eqs.(9) and (11). Here, we used the Adams-Moulton’s predictor-corrector
method with variable step size and variable degrees of the prediction and correction for-
mulas. The relative accuracy in the computation was chosen as $3.6\cross 10^{-13}$ .

5.1 Poincar\’e plots
In this subsection, the particles’ motion is examined using the Poincar\’e plots of their
locations at the times when the major axis of the elliptic vortex agrees with the $x$ axis.
We first show the dependence of the motion on $s$ for $r_{0}=0.5$ .

Figure 3 shows the $\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{e}\text{ノ}$ plots near the vortex for small $s$ . A chaotic region appears
as a narrow band region near the heteroclinic orbits $\mathrm{H}_{1}^{\pm}$ and $\mathrm{H}_{2}^{\pm}$ introduced in section 3.1,
as found from the comparison of Fig.3 with Fig. $1(\mathrm{a})$ . This is consistent with the result
of the application of the Melnikov’s method in section 4.2. Outside this chaotic region,
fluid particles move regularly on closed lines in the Poincar\’e plot. These closed lines are
similar to the streamlines in Fig. $1(\mathrm{a})$ , and can be interpreted as the KAM tori in a two-
dimensional map corresponding to a near-integrable Hamiltonianian system. Furthermore,
several small island regions are also observed. For example, in Fig. $3(\mathrm{d})$ , we find two pairs
of island regions of period 2 surrounded by the chaotic region, and island regions of period
5 near the outermost KAM torus.

Figure 3: Poincar\’e $\mathrm{P}\mathrm{l}\mathrm{o}\mathrm{t}\mathrm{S}$ near the vortex for small $s$ . $s$ is $(\mathrm{a})\mathrm{o}.\mathrm{o}\mathrm{O}\mathrm{O}\mathrm{o}1,$ $(\mathrm{b})0.003,$ $(\mathrm{c})0.005$ ,
(d)O.Ol. Initially, 10 fulid particles are put on the $x$ axis within the range $1.5\leqq x\leqq 2.5$ ,
and 10 fulid particles are put on the $y$ axis within the ranges $-2.5\leqq y\leqq-1.5$ and
$1.5\leqq y\leqq 2.5$ . The locations of particles in 2500 periods of the vortex’s rotation are
shown.
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Next, the Poincar\’e plots in the region far from the vortex are shown in Fig.4, where
121 fluid particles are initially put within a small square around the fixed point $\mathrm{A}_{\mathrm{P}}$ in
Fig. $1(\mathrm{b})$ . For small $s$ , these fluid particles move near the heteroclinic orbits $\mathrm{H}_{\mathrm{P}}^{\pm}$ introduced
in section 3.2. Some particles stay near these heterolinic orbits for a long period, whereas
other particles move to the infinity to the upper-right or lower-left direction after a short
time. When $s$ is small enough, it is difficult to $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{f}\gamma$ a chaotic motion near $\mathrm{H}_{\mathrm{P}}^{\pm}$ from the
Poincar\’e plots (see Fig. $4(\mathrm{a})$ ). For larger $s$ , however, we observe a chaotic region near $\mathrm{H}_{\mathrm{P}}^{\pm}$ .
This chaotic region expands rapidly with increasing $s$ , as found from Figs. $4(\mathrm{b})$ and (c).

Figure $4(\mathrm{c})$ and its magnification Fig. $4(\mathrm{d})$ show a wavy outer boundary of the region
where the particles move. This wavy boundary can be interpreted as the result of the
transverse intersection of the stable and unstable manifolds of the saddles, near $\mathrm{A}_{\mathrm{P}}$ and $\mathrm{B}_{\mathrm{P}}$

in Fig.1(b), of the Poincare’ map yielded from $\mathrm{E}\mathrm{q}.(9)$ . That is, in Fig.5, a typical structure
of the transversely intersecting stable and unstable manifolds of two saddles $\mathrm{P}$ and $\mathrm{Q}$ of the
Poincar\’e map of a two-dimensional time-periodic system, called the heteroclinic tangle, is
shown. Some of the particles starting near $\mathrm{P}$ move toward a region close to $\mathrm{Q}$ , where the
locations of these particles are bounded by the unstable manifold of Q. Therefore, when
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Figure 5: Schematic diagram of the transversely intersecting stable and unstable manifolds
of saddles $\mathrm{P}$ and Q.
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some of these particles return to a region close to $\mathrm{P}$ , their locations are still bounded by
the unstable manifold of $\mathrm{Q}$ , which has a wavy structure near P. From this consideration,
it is suggested that the wavy structure in Fig. $4(\mathrm{d})$ expresses the unstable manifold of the
saddle near $\mathrm{B}_{\mathrm{P}}$ . Furthermore, in Fig.5, since the locations of the particles which return to
a region close to $\mathrm{P}$ are bounded by the unstable manifold of $\mathrm{P}$ , a similar wavy suructure is
expected near $\mathrm{Q}$ as the manifestation of this unstable manifold. This explains the similar
wavy structure in the lower part of Fig. $4(\mathrm{c})$ . Therefore, the particles’ motion shown in
Figs. $4(\mathrm{c})$ and (d) is consistent with the result of the application of the Melnikov theory in
section 4.3 which predicts the transverse intersection of the stable and unstable manifolds
of the saddles of the Poincar\’e map.

Figure 6 shows the Poincar\’e plots both near and far from the vortex for a few $s$ . When
$s$ is small, the inner and outer chaotic regions near the heteroclinic orbits $\mathrm{H}_{1}^{\pm},$ $\mathrm{H}_{2}^{\pm}$ , and $\mathrm{H}_{\mathrm{P}}^{\pm}$

have small widths, and the distance between them is large (of $\mathrm{O}(1/\sqrt{s})$ ). Furthermore,
many KAM tori surrounding the vortex and some island regions are observed between
these chaotic regions, as illustrated in Fig. $6(\mathrm{a})$ . However, as $s$ increases, the widths of
these chaotic regions become larger and their distance becomes smaller. Finally, after the
disappearance of all the KAM tori surrounding the vortex, these regions merge, as shown
in Figure 6. For $r_{0}=0.5$ , the KAM tori are observed if $s\leqq 0.028$ , as shown in Figs. $6(\mathrm{a})-$

(c). However, we could not find any evidence of the KAM torus in the Poincar\’e plot for
$s=0.029$ , shown in Fig. $6(\mathrm{d})$ , even from magnified Poinar\’e plots for many initial points.
We define $s_{C}$ as the value of $s$ at which this merging occurs. Therefore, $s_{c}$ is close to 0.029
for $r_{0}=0.5$ .

From the theory on the KAM torus in a two-dimensional map, if there exists at least
one KAM torus surrounding the vortex, then fluid particles starting near the vortex never
move to the infinity. However, when all such KAM tori disappear, these particles may be
able to move to the infinity. In our computations, the movement of some fluid particles
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Figure 6: Poincar\’e plots for $r_{0}=0.5$ . $s$ is $(\mathrm{a})0.020,$ $(\mathrm{b})0.022,$ $(\mathrm{c})0.028,$ $(\mathrm{d})0.029,$ $(\mathrm{e})0.030$ ,
$(\mathrm{f})0.032.21$ particles are initially put on the $y$ axis with a constant interval within the
range $1.5\leqq y\leqq 1/\sqrt{s}$ . The locations of particles in 5000 periods are shown.
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$\mathrm{h}\mathrm{o}\mathrm{m}$ their initial locations near the vortex to the infinity was observed only for $s\geqq 0.031$ .
For $s=0.029$ and 0.030, no example of the movement to the infinity was obtained in the
computation for 20 initial positions near the vortex for 200000 periods. This discrepancy
between the disappearance of the KAM torus and the particle’s movement to the infinity
may because the particle’s motion near the KAM torus which finally disappeared in the
direction normal to the torus is quite slow. Polvani &Wisdom(1990) reported that a
particle starting near the vortex moves to the infinity for $s=0.03$ . Since they did not give
the initial position of this particle definitely, we could not find whether this discrepancy is
due to the difference in the numerical schemes used or the difference in the initial positions
examined. For $s$ much larger than $s_{C}$ , most fluid particles starting near the vortex move to
the infinity in a short time unless their initial positions are within island regions. However,
if $s$ is larger than $s_{C}$ by only a little amount, most of the particles which finally escape from
the vicinity of the vortex move chaotically for along time near the vortex. Furthermore, the
Poincar\’e plots for such $s$ still have the chaotic regions and island regions of the structure
similar to that for $s<s_{c}$ , as illustrated in Fig. $6(\mathrm{f})$ .

As found from Figs.3, 4 and 6, for small $s$ , the width of the inner chaotic region is much
larger than that of the outer chaotic region.

Next, the dependence of the critical value $s_{C}$ on the initial aspect ratio $r_{0}$ is examined.
Figure 7 shows examples of the Poincar\’e $\mathrm{p}\mathrm{l}\mathrm{o}\mathrm{t}\mathrm{S}$ for a few $r_{0}$ . For $r_{0}=0.7$ , since the inner
and outer chaotic regions do not merge even at $s=0.035$ , as shown in Fig. $7(\mathrm{b}),$ $s_{c}$ is larger
than 0.035. On the other hand, $s_{C}$ for $r_{0}=0.3$ and 0.2 are smaller than 0.025, because the
two chaotic regions already merge at this $s$ , as shown in Figs. $7(\mathrm{d})$ and (f). Figure 8 shows
the $r_{0}$-dependence of $S_{C}$ determined from the $\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{e}\text{ノ}$ plots for several $s$ . The value of $s_{c}$ is
larger for $r_{0}$ closer to one. One reason for this $r_{0}$-dependence of $s_{C}$ is the slower growth of
the inner chaotic region with increasing $s$ for $r_{0}$ closer to one, as illustrated in Figs.6 and 7.
These figures also show that the outer chaotic region for the same $s$ is narrower if $r_{0}$ is closer
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shown.
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to one. This is because the perturbation from the point-vortex approximation is smaller
for $r_{0}$ closer to one. Furthermore, heteroclinic orbits $\mathrm{H}_{\mathrm{P}}^{\pm}$ , whose location is independent of
$r_{0}$ , are more distant from saddles A and $\mathrm{B}$ in Fig. $1(\mathrm{a})$ for $r_{0}$ closer to one. All these facts
suggest the above dependence of $s_{\mathrm{C}}$ on $r_{0}$ .

Figure 8: Dependence of $s_{C}$ on $r_{0}$ . $s_{C}$ is determined as the smallest value of $s$ for which no
KAM torus can be seen in the Poinare’ plot.
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