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- Koecher-Maaf} Dirichlet series for Eisenstein
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1 Introduction

Let f(Z) be a Siegel modular form of weight k belonging to the symplectic group
I = Spn(Z). Then f(Z) has a Fourier expansion of the form:

f(Z) = ; ag(A)exp(2ni tr(AZ)),

where A runs over all semi-positive definite half-integral matrices over Z of degree
n and tr(X) denotes the trace of a matrix X. We then define the Koecher-Maaf}
Dirichlet series L(f,s) by

| as(A)
=
where A runs over a complete set of representatives of G Ln(Z)-equivalence classes of
positive definite half-integral matrices of degree n, and e(A) denotes the order of the
orthogonal group of A. The Koecher-Maa$ Dirichlet series can also be obtained as
the Mellin transform of F, and therefore its analytic properties are relatively known.
As for this, we refer to MaaB [M], and Arakawa, [Ar1],[Ar2]. However we had little
knowledge about its arithmetic properties. Thus we present the following problem:

Problem 1: Investigate the arithmetic‘properties of L(f,s).

To this problem, Bocherer and Shulze-Pillot have made a large contribution.
As for this, we refer to [B-R1],[B-R2], and [B-R3]. In those papers, they mainly
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treat the case of Yoshida lifting. In this note, we take another approach to this
problem. Namely we consider the Koecher-Maaf§ Dirichlet series for Eisensetin series
of Klingen type; let f be a cusp form of weight k belonging to I', (0 < r < n,) and
define [f|(Z) as :

2= Y M <Z>i(M,2)"
MeA, \T'n

B
where A, , = {( 0 : ) € I'.}, and for M = ( g D
n—rn4r

Z >* denote the upper left r» x r—block of the matrix (AZ + B)(CZ 4 D)~" and
§(M,Z) = det(CZ + D). We note that [1]5(Z) is nothing but the Siegel Eisenstein
series E, 1(Z) of weight k. We then propose the following problem:

*

>€Fnlet./1/_f<

Problem 2. Let 0 < r < n. Then give an explicit form of L([f]},s) in terms of

f.

In [B2] among others Bocherer gave an explicit form of L([f]?,s) for r = 0,1.
In [I-K1] we gave an explicit form of L(En1(Z),s) for an arbitrary n. We note that
L(Enx(Z),s) is also regarded as the zeta function of prehomogeneous vetcor space.
From this point of view, Saito gave a generalization of our result (cf. [Sa]). In
relation to Problem 2 we should remark that a certain Dirichlet series attached to
f appears in the explicit formula for L([f]%,s) by [B2]. This Dirichlet series is a
modification of the Dirichlet series originally defined by Kohnen and Zagier [K-Z],
and is of importance in its own right. Bocherer obtained a functionnal equation
for the Dirichlet series from a general theory of the Koecher-Maaf Dirichlet series.

Hence the following problem seems very interesting.

Problem 3. Investigate the analytic and arithmetic properties of the Dirichlet
series related to f appearing in an explicit formula for L([f], s).

In this note, we give an answer to Problems 2 and 3 for the case [f]} with f a
cusp form belonging to I'; and n-even. This also gives a certain generalizafidn of
Bocherer’s result in [B2]. ‘ ' ,

Now to state our main result, for a non-zero integer m such that m =1 mod 4 or
= 0 mod 4, let v, denote the character of the quadratic field K whose discriminant
is m. Here we understand that ¢; = 1. Put

F.={dy € Z,;d, is the fundamental discriminant of a quadratic field or 1}.
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For a positive integer D = Dym? with Dy € F, and m > 0, put

(S) (—1)7/2D9) 2 (D) 1ynrapy (d)d™* D %,

dlm . clmd—1

where L(s,zb(_l)n/zDo) 1s Dirichlet L-function attached to gb(_.l)n/zD(J», and p is the
Mobius function. Write Lp(s) as

oo
m=1

and for a modular form f(z) = a(m)exp(2mimz) of weight k with respéct to

Iy put ’ A

L(f,,D) = 3 a(m)ep(m)m,
: m=1

and

f,)\ s) ZL (f, A, s)D—S

where D runs over all posmve integers such that ( )"/2D = 1,0 mod 4. This type
of Dirichlet series was originally introduced by Kohnen and Zagier [K-Z]. Further
let (*(f,s) denote the standard zeta function of f. Note that we have

L(FA8) = CHFi 25+ 22 = 1)) X D*Clfiborpipni )

DocFp

< T+ 77 g, ()1 4 57 472)

—a(p) - 1nfzpb(p)p;zs‘A(l+pk‘2*)}

where C(f V(1) /2Dy; S) denotes the twisted zeta function of f by Yy 1)71/200

Theorem 1 Let n be even. Then we have

g (U= n/2) E
L([f]{,s) =2 [C+(fk—1 HC ~2i41) Hc s 2k+2z+2)
L(f k-1, s—'k+3/2)
) n/2—1 v n/2—1
+(_1)nn 2)/8.&%%%_%_:_1)7@2 —n+1) H ((2s — 21) H C23—2k+27+1)

XL(f,k—n/2,s —k+ (n+1)/2)],
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where 4,1 15 a constant depending only on n and k.

By the above theorem combined with a general theory of L([f]?, s) by Maaf [M],

we obtain

Corollary. Put
. L(f7 n’ S)
=122+ 2k —2n)[(s + k — (n + 1)/2)T(s + k — (n + 2)/2)L(f; k — n/2,s).

Then L(f,n,s) can be continued analytically to a meromorphic function of s in the

whole complex plane, and has the following functional equation:

L(f,n,n+1—s—k)=L(fn,s).

Remark 1. If n = 2, the two terms inside the brackets in Theorem 1 coincide
with each other, and unify in one term. This is nothing but Bocherer’s result in
B2, | o
Remark 2. A similar formula holds for any 1 <r < n. In particular we obtain
an explicit formula for r = 1 and n odd.

Theorem 1 cannot be derived directly from the commutativity of Siegel operator
and Hecke operators. The main idea of the proof is to relate the Koecher-Maaf
Dirichlet series for a modular form F to the standard zeta function for F. To be
more precise, in Section 2 on the set of half-integral matrices we introduce a certain
arithmetic function, which we call the squared Mobius function, and give a certain
induction formula for the number of represent.aio‘ns of half-integral matrices (cf.
Theorem 2). In Section 3, we express the Koecher-Maaf Dirichlet series L(F,s) in
terms of the squared Mébius function, the standard zeta, function, and the ”primitive
coefficients” of F. (cf. Theorem 3.1). The primitive coeffcients of Eisenstein series
of Klingen type is well-known (cf. Proposition 4.1). Thus, in Section 4, applying
‘Theorem 3.1 to F = [f]? with: f a cusp form belonging to I';, we express L([f]7,s)
as a sum of Euler products (cf. Theorem 4.2), and complete the proof in the final
section. For the detail, see [[-K2] and[I-K3]. '
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2 Squared Mébius function for half-integral ma-

trices

For an integral domain R of characteristic 0 let H,(R) denote the set of half-
integral matrices over R. Further let H,,(Z)5o (resp. H,(Z)>o) denote the set of posi-
tive definite (resp. semi-positive definite) half-integral matrices over Z. Throughout
this note, for two half-integral matrices A and B over Z, of degree n we write
A ~ B if there is a unimodular matrix X of degree n with entries in Z, such that

‘X AX = B. Further for two square matrices U and V we write ULV = ( (0] 8. )

A half-integral matrix A over Z,, is called non—degenel ate modulo p if the quadratu:
form A[x] over Z,/pZ, associated with A is non-degénerate. We should remark that
A is non-degenerate modulo p if and only if A is unimodular in the case of p# 2,
where as it is non-degenerate modulo 2 if and only if A = sUor A~ LU Lcwith U
an even-integral unimodular matrix and ¢ € Z3 in the case of p = 2 To define the
ar1thmet1c functlon in the introduction, first we define

- K(Z,) ={A € H.(Z,); A~ VoLpV; with Vp, Vi non — degenerate modulo p}.

Next let p = 2. We then define a subset Kin(Zy) of Hn(Z3) by
IC"(Zz) {A € Ha(Z,); A~ E%J-V—Lvl with %, Vi even — integral matrices

and V a diagonal unimodular matrix of degree 2 such that detV =1 mod 4},
and

Kn(Zp) = K(Z2) U K(Z2) or K\,(Z,)

according as p = 2 or not. For a p-adic number ¢ put
xp(c) =1,—1 or 0

accordiné as Qp(f) = Qp, Qp(1/¢)/Q, is quadratic unramified, or Q,(,/c)/Q, is

quadratic ramified. Further for a symmetric matrix A of even degree n with entries
in Q, we put

§p(A) = Xp((_l)n/z det A).

For a non-degenerate half-integral matrix A we define o,(A) as follows; first assume
that A belongs to K},(Z,). Then we have A ~ 2V, L2V; with Vj, Vi non-degnerate
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matrices modulo p of dgree ny and ny, respectively. Then we put

op(A) = (=1)™/2¢,(V;)pmi=2m)/4 if ny is even
PV (=)t g1y if ny is odd.

Next let p = 2 and assume that A belongs to K/1(Z;). Then we have A ~ 3V, LV 1V}
with Vi, V; even-integral unimodular matrices of dgree ngy and ny, respectively, and
V a unimodular diagonal matrix of degree 2 such that det V = 1 mod 4. Then we

put :
o A) = (-1 2y

Finally if A does not belong to K, (Z,) we putv op(A) = 0. For a non-degenerate

half-integral matrix A over Z put
o) = T op(A).
p

By definition ¢(A4) depends only on the genus of A. Put K,.(Z) = Ha(Z)NI1, Kn(Zy).
Then by definition we have o(A) = 0 for A ¢ lCn(Z>. We remark that H,(Z) N
GL:(Q) can be identified with the set of all non-zero integers. Further by definition
we have o(a) = 1 or 0 according as a is square free or not, and therefore, o is
nothing but the square of the usual M6bius function in case n = 1. Thus we call o
the squared Mobius function over ‘H,(Z). Now for a non-degenerate positive definite
half-integral matrices A and B of degree n over Z put '
a(A',B)
G(A, B) AIEZQ(A) A A

where G(A) denotes the set of equivalence classes belonging to the genus of A,
and a(A, B) the representation number of B by A. As is well-known G(A4, B) is
determined by G(A) and G(B). Then we have

Theorem 1. Let A be a positive definite half-integral matriz of degree n over Z.
Then we have :

Z O'(Ao)G(Ao, A) = 1,

Ao

where Ay Tuns over all genera of positive definite half-integral matrices of degree n.

For a proof, see [I-K2].
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3 Koecher-Maaf3 Dirichlet sveries and the stan-

dard zeta fuhctibn

From now on for a p—adic number ¢ let v(¢) = v,(c) denote the normalized
additive valuation on Q,,. Now for a Siegel modular form f of ‘weight k belonging to
I, we define the Koecher-Maaf Dirichlet series- L(f,s) for f as in Introduction. For
a non-degenerate half-integral matrix A over Z, let r = r,(A) denote the rank of
a maximal totally singular subspace of the quadratic space over Z,/pZ, associated
with A. If n—ris even, we have 4 ~ on_L” U, with Uy an even integral unimodular
matrix of degree n —r and U; an even integral matrlx We then put mp(A) = &(300).
Now we define a polynomial B ,(v; A) by

B,(v, A)

(1 —i—‘v)(l — np(A)p~(n=1)/24) Hgi;f)/z_l(l —‘p‘z"v2) if n—ris even
(1+4v) H(n O pE?) if n—ris odd.

Here we make the convention that B,(v,A) = 1if r = n. For a non-degenerate
half-integral matrix A over Z put ‘

B(s; 4) =[] B,(r™"; A).

For a positiife definite half-integral matrix A of degree n bx}er Z, put
M(A) = Z
wEga) (A’ A
Now let A and B be non-degenerate half—m’cegral matrices of degree n.over Z. We
say A dominates B over Z if there is a square matrix D with entries in R such that

B ='DAD, and define a ﬁnite Euler product T'(s; A, B) by

T(s:4,B) = TITE(1 = o)

P =1

where m, = 1/2(v,(det B) — v,(det A)) We also put T'(s; A, B) = 1 if A does not
dominate B over Z.

Now following [B-R], we define a ”primitive” Fourier coeﬁiaent a}(A) by means
of the relation:

as(A) = %: a}(tD"lAD”l);
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where D runs over a complete set of representatives of left ~GLn(Z)—equ'iifalence
classes of non-degenerate square matrices of degree n, and put
@(C) o
G} Co)= Y L.
f( 0) Z ) a(C,C)

Ceg(Cy

Put -
. K(f,s) = ; U(AO)B((jzt';()l): k, Ao)
G 0, 10 *ECO

xM(4) Y (© A?(ggf( )

. CO

T(2s + 2 — 2k; Cy, A),

where Ag and Cy run over all genera of pbsitive definite matrices of degree n.
Now let Ly, = L(GSp,(Qy), Spn(Z,)) be the Hecke algebra associated with the

pair (GSpn(Qp), Spn(Z,)) for each prime p. Assume that f is an eigen function for

all the Hecke operators, and for each prime p let agp, @, ..., o, , denote the Satake

parameters of L,, determined by f. We then define the standard zeta function

CH(f,s) of f by |

¢ (f5) = THIT( = aapp=)(1 - aZlp=)} ",

P =1

We note that the analytic and arithmetic properties of (*(f, s) are fairly well known
(cf. [An2],[B1],[Sh]). Then by [Anl, Theorem 1},[An2, Theorem 4.3.19] and Theorem
1 we obtain ' B

Theoerem. 3.1 Let A € K,(Z). We have
L(f,5) = CH(f,25 + 1 = K)K(f, )

An explicit form of M(A) is well known (cf. '[KiZ, Theorem 5.6.3]). To give an
explicit formula of G(A4, B) for A, B € Kn(Z) N Hn(Z) >0, let ap(A, B) be the local
'density'repres'enting B by A over Z,, and put

(A, B) Ly (det B) v (de
G,(A,B) = ai((;lT))p( »(det B)+up(det 4)) /2

Then by Siegel’s main theorem on quadratic forms we have

' G(A,B) =T[G.(4, B)
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(cf. [Ki2., Theorem 6.8.1]).

Now for a non-degenerate matrix U modulo p of degree n put
J(i,U, )
_ (p /2 &(U))(p n/2- l+§p( ) ; 11(Pn_2j —1) if niseven
H;— (pn~ ¥+t —1) if nis odd.

Further put ¢;(z) = IT= 1( ~1). Then the following proposition gives us an explicit
formula of G,(A, B), and therefore that of G(A, B) :

Proposition 3.2 Let A, B € K(Z,), and i = (v,(det B) —Vé(det A))/2. Assume
that A dominates B over Z,.
(1) Let B ~ %UOJ_IZ—’UI with Uy, Uy non-degenerate modulo p. Then we have

J (153U p) -

¢i(p)

( ) Letp=2and B ~ 1UQJ_V_LUI with Uy, Uy even unimodular and V a diagonal
unimodular matriz of degree 2 such that det V =1 mod 4. Then we have
J (4 301 L1 p)

¢i(p)

GP(A7B) =

Gp(A,B) =

Thus, if we get an explicit form of G3(Cy), we will know a lot of information on
L(f,s). In fact, in the case where f is Klingen-Eisenstein series, by [B-R] or [Ki1],
we know an explicit form of G* +(Cy), and therefore give an explicit form of L(f,s) by
the above theorem. We also remark that we have given an explicit form of L(f,s)
for Siegel-Eisenstein series f by a different method from this note (cf. [I-K1]).

4 Koecher-Maaf3 Dirichlet series for Elsenstem

‘series of Klingen type

Let f be a Siegel cusp form of weight k belonging to T, and [f]? the Klingen’s
Eisenstein series of degree n attached to f. Then f and | f]” have the following
Fourier expansions:

flzy= Y b(C’)eycp(27rz'tr(C'z))7
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frZ2)= 3 ans(T)exp(2mi tr(TZ)).
TG'Hﬂ(Z)>o
For two positive definite half-integral matrices B and C of degree m and n, respec-

tively, over Z put
: a(B',C)*
G(B,C) = Y, —="—,
B'€G(B) a(B', B')
where a(B’,C)* denotes the number of primitive 1‘eprésentions of C' by B. Then

rewriting [B-R, Theorem 1] we have

Prposition 4.1. We have

* ) G(B,C)b(C)"
G s(B)" = an(B) ;(det(]) ~rD26(C, Cay i (C)

where a, k(B)* and a,x(C)* denote the primitive Fourier coefficients of Stegel-Fisenstein

series of degree n and r, respectively.

Now let r = 1. For an element A of H,(Z,) and a non-zero p-adic integer, put
H,(s; As¢)

((n+1)/2—s)r(det A) A\B —(2s—k+1). A :
p 0(A4)By(p ; A) (2k—1—n)v(det Co)/2
- p 0 G (CO’ x4)
a,(A, A) %0: P

<T ( (2s—k+1), CO’ )ap(Hk,CO)*p—U(detCO")/Zap(Co, é)*,

and for a non-zero p-adic number dy, and a function w on H,;(Z,) put

>0

Hy(s;do;w, e) = Z ‘ Z ' w(A)Hp(s; Aje),

r=0 detA:pzr-z[n/Z]szdo

where for a half-integral matrix U and V, a,(U, V)* denotes the primitive local den-
sity representing V by U, and G,(Cy, A) is the one defined in Section 1. Let t,
be a constant function on H,(Z,) taking the value 1, and h, the Hasse invariant
on Hn(Z,). We note that h,(Co) for Co € H,(Z,) is the same as that of A if Cy
dominates A over Z,. Let A be a positive definite half-integral matrix of degree n
over Z. If n is even, then det A can be expressed as dgy f? with positive integers do
and f such that v,(dy) <1 for p # 2, and (—1)"/2dy = 1 or = 0 mod 4. If n is odd,
det A can be expressed as dof? with a positive integer f and a square free positive
integer dg. Thus by Theorem 3.1 and Proposition 4.1, we have
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Theorem 4.2. (1) Let n be even. Then we have

K([f] —ankZb B(k—1,¢)e n/2-k Z HH Sdo,bp, +HH (s5do; hps €)),

do€F, P

where fn s the set deﬁned in Section 1, and ag; is a constant dependmg only on n

and k. :
(2) Let n be odd. Then we have

K([fl7.5) = ﬁnkzb k—1,e) nf”zn Hy (s do; ;) + T] Hy(s; dos hyi€),

P
where do runs over all square free positive mtege'rs and B is a constant depending
only on n and k. :

5 Proof of TheOrém i1

In this section let n be even. Then by Proposition 3.2, Theorem 4.2, and [Ki2,
Theorem 5.6.3] combined with some combinatorial technique, we obtain

Theorem 5.1 Let n be even, and DO € Z; with p odd, or Dy € Z such that
(=1)*2Dy = 1 mod 4. Put Q(e, Do) = 1 — p~™*2 or I according as e = 0 mod p?
or not, and R(e, Do) = 1+ 6p~™**1 or 1 according as e = 0 mod p or not, where

R n/2—1 e i
§ = xp((=1)"2Dy). Further put &,y = L2 k)(g;il(p(iz)p kel Then we have
(1) | | |

Hy(s; Do;va, e) = 20zpnsp(n-2vie)/2gp

n/2—2

X[Q(e, DO)p—25+2k—3(1 _ pn—2k)(1 + p—k+2) H (1 _ pZi—n—1+2k—2s)(l - p2i+2—2s)‘
V n/2\—1 - b .
+R(e, Do)(1+ (Sp"/z‘ké) H (1-— pQ'“"l‘H?k—%)(l _ pZz—‘Zs)]'
=0 ) - )

(2) |
Hp(5§ Do; hp,e) = (—l, —1)z("+2)/82‘52;10"5]3(”-2)1’(8)/2(1 + 5pn/‘2—k)q)nk
| . = nf2-2 -
X[Q(e, Do)ép—2s—+—2k—n/2-—2(1 __pn/2~k5)(1 +pn——k) H (1 . sz—n+2k—25)(1 _ p21+1—2s)
1=0" .
n/2-1

(¢, Do) { H ' 21 n+2k- 25)(1 -_pzifl—zs)
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nf2-2 ‘ ‘ _ ‘
+(1 +p—k+1)p—2s+2k—2(1 _pn/Z—k5)(1 _ 5p-n/2) H (1 __pZz—n+2k—25)(1 -—])2&1"25)}].

=0

Theorem 5.2 Let n be even, and D, € pZ, with p odd, or Dy € 4Z7 such that
(-=1)"24"'Dy = 3 mod 4 or Do € 8Z3. Put ly = v(Dy) and dy = 27%2¢7p=l Dy,

ok n/? —2k+2¢
Further put ¥, = ~2 q)sl—/[; 11(11 p) —.

1) Put Q(e,Dy) = 1 —p~"*? or 1 according as e = 0 mod p? or not. Then we have
p ( ‘ od p

HP(SSDo;Lp7 )__ 262pns ( s+k— 3/2)10(1 _+_ —2s+k 1)\Iln,k

n/2—1
XQ(e, Do) H (1 _p2z—n—1+2k—2s)(1 —p 1—23).
i=0
(2 1) Let p # 2, and R(e D,) = ((* Ln/ze)’ (—p';eDo) or 0 according as € € Z;, € pZ;

or not, where ( ) denotes Legendre symbol. Then we have

Hy(s; Do; by, €) = p‘”k"("“)/zR(e, Do)(1 = p" )1+ ") Tk

nf2-2

X(l +p—2s+k—l) H (1 . p2i—n+2k—23)(1 . p2i+1—-2-s)'

1=0
(2.2) Letp =2 and e = 2"ey with (2,e) = 1. Put

2" (—1)"/? )(2."”0(_1)”/2(_1)(efl)/2
€o ) do

R(e, Do) = (=1)"(n=278( )or 0

according as mo < 1 or not, where (%) denotes the Jacobi symbol. Then we have

H,(s; Doj hyy €) = 20+ Co+k=(t 0/ (e DY(1 — pn=2%)(1 4 p"*) T,

. nf2-2 ‘
(14 p ) T (1 gt (1 e,

=0

Proof of Theorem 1. By Theorems 5.1 and 5.2 combined with Theorem 4.2,

we have’

- (=1)rn=28¢(fik —n/2)
CHf b — )T ¢(2s — 2+ 2) [TH27 ¢(25 — 2k +n — 20 + 1)

I{([f]?7 3) = 2n%7nk[
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XZD—S“ 2(F; Yirizpgik = 1)
X H{(1+P“23+"‘2¢<—1)wzpe(p) )(L+p~ ) —a(p)yhaynrep, (P)p T2 (14p77)}

o+ ) C(fa - )
¢t (fk—l)l'I"/2 (25— 20-1)]1 n/2 “2¢(2s —2k—22+n)

XZD —s+k— (n+1 /ZC(f ¢ n/2DO, —n/2)

x H{’(1+p‘25+"“2¢<—1)n/2po (P)) (14272 ) —a(p)ypCiyrap, (P)p ™27 (147 7M.

P
We note that

n—1

CHfIRs2s =k +1) = (T (f,25 —k +1) J[ ¢(25 —6)¢(2s — 2k + i+ 2).

i=1

Thus we complete the assertion by Theorem 3.1 keeping the remark before Theorem
1 in mind.
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