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On the Dimension Formula for the Spaces of Siegel Cusp Forms

of Half Integral Weight and Degree Two
Ryuji Tsushima (Meiji Univ.)

§1. Results | ‘
Let 6, = {Z € My(C) | *Z = Z, ImZ > 0} be the Siegel upper half plane of degree g,
I'y = Sp(g,Z) the Siegel modular group of degree g and

x (A B
5-{(4 2)en
A B

IfM = (C’ D
Z € G, put

diagonal elements of A ‘B, C'D are even} :

), we denote (AZ + B)(CZ + D)~ by M (Z). Let e(z) = exp(2miz) and for

02)=Y e'(%tnzn) .

n€Zs

2.1, O

If M ey, 6(M(Z))/6(Z) is holomorphic on &,. Let a = ( o’ 1
9

0(c(Z)). Let
TY(N) :={ (é g) er,

Then a™'T';aNTy contains I'§(4). Hence if M € TY(4),

) aﬁd let ©(Z) =0(22) =

C=0 (modN)}.

J(M, 2) = 6(M (Z))/©(Z)
is holomorphic on &, and satisfies the equality:
J(M, Z)* = det(CZ + D)y(det D),

where ¢ : 14-2Z — {£1} is the non-trivial Dirichlet character modulo 4. J(M, Z) is the automorphic
factor of weight 1/2.

In the following we assume that g = 2. Let Sym’ : GL(2,C) — GL(j + 1, C) be the symmetric
tensor representation of degree j. Sym’(CZ + D) is also an automorphic factor (with respect to
T3) and so is J(M, Z)?**! Sym’(CZ + D) (with respect to I'?(4)). Let I be a subgroup of T%(4)
of finite index. A holomorphic mapping f : 63 — C/*! is called a Siegel modular form of half
integral weight with respect to T, if f satisfies the following equality for any M € I' and Z € Ss:

f(M(Z)) = J(M, Z)**' Sym? (CZ + D) (2).
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We denote by M; ;11/2(I") the C-vector space of all such mappings. f € Mj i1/2(T) is called a
cusp forms if f belongs to the kernels of the ®-operators. We denote the space of cusp forms by
S; k+1/2(I). Namely, f belongs to S; x41/2(I') if and only if

lim f(M(Z)) =0,

Imzs > o0

Z1 0
0 z29
Let x be a character of I' whose kernel is a subgroup of I' of finite index. We denote by

for an'y.M € I'y, where Z = ) It is known that M; x41/2(T) is finite-dimensional.

M; j4+1/2(T, x) the C-vector space of the holomorphic mappings of G, to C3*1 which satisfy
F(M(Z)) = J(M, 2)** x(M) Sy’ (CZ + D) f(Z),

for any M € T and Z € G,. We also denote by S;r41/2(I, ) its subspace of éusp forms.
‘Let 9 be as before and let j be odd. Then since —14 € T'§(4) and Sym?(—13) = —1,41,
M; p+1/2(T3(4)) and M;gy1/2(T3(4),¢) are {0}. Therefore we assume j is even in the following.

Our main results are the following two theorems.

Theorem 1.1. If j =0 and k >3 or if j > 1 and k > 4, dim Sy; x41/2(T5(4)) is given by the

following Mathematica function:

SiegelHalf [j_,k_]:=Block[{a,1jk},
mod[x_,y_]:=Mod[x,y]+1;

a=(2*j+1)*(4*j+2*k-1)*(j+k—1)*(2*k—3)/2‘5/3‘2;
a=a+(2%j+1) *If [Mod [k, 2]==0, 19-22%k-22*j , 25-22%k-22%j1/2"6/3;
a=a+3% (2% j+1)*If [Mod [k,2]==0,-1,1]1/2"6; ‘

a=a+(4*j+2xk-1)*(2xk-3) /276; ,
a=a+If[Mod[k,2]==O,17-12*k—12*j,49—20*k-20*j]/2‘6;

a=a+7* (4% j+2+%k-1)*(2%k-3)/276/3;
a=a+ (35-»48*k-48*j )/2°5/3;
a=a-13/2"4/3;
a=g+If[Mod[k,2]==0,7,15]/2‘6;
a=a+If[Mod[k,2]==0,2,3]/2"2;

1jk={1,-1};
a=a+(j+k-1)*1jk[[mod[j,2]111/273;
a=a-If[Mod[k,2]==0,3,51*1jk[[mod[j,2]11]1/2°4;
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a=a-If[Mod[k,2]==0,3,1]1*1jk[[mod[j,2]1]1]1/2°4;

1jk={1,0,-1}; -
a=a+2*1jk([[mod[j,3]]1]*(j+k-1)/3"2;
a=a-1jk[[mod[j,3]11/2; |

1jk=(2%j+1)*{{1,0,-1},{0,-1,1},{-1,1,0}};
a=a+1ljk[[mod[j,3],mod[k,3]11]1/2/3"2;

ljk={{1)_23 1}:{-2:1:1},{191’i2}};
a=a+1jk[[mod[j,3],mod[k,3111/2/3°2;

1ljk={1,-2,1};
a=a-1jk[[mod[3,3111/2/3"2;

Return(a];

1

Theorem 1.2. If =0 and k >3 or zf j 21 and k >4, dim S k11/2(T3(4), ¢) is given by the

followmg Mathematica function:

SiegelHalfpsi[j_,k_] :=Block[{a,1ljk},
mod [x_,y_]:=Mod[x,y]+1;

a=(2%j+1) * (4*j+2%k-1)* (j+k-1)*(2%k-3)/2°5/3"2;
a=a+(2%j+1) *I£ [Mod [k, 2] ==0, 25-22%k-22%j , 19-22%k-22%j1/2°6/3;
a=a-3%(2*j+1)*If [Mod[k,2]==0,-1,1]/2"6;

a=a-(4*j+2xk-1) *(2*k-3) /276;
a=a-If [Mod[k,2]==0,49-20%k-20%*j,17-12%k-12%j]/276;

a=a-T#(4%j+2xk-1) * (2%k-3) /2°6/3;
a=a-(35-48%k-48%j)/2°5/3;
a=a+13/2°4/3;

a=a-If [Mod[k,2]==0,15,71/2"6;
a=a-If[Mod[k,2]==0,3,2]/2"2;

ljk={1,—1}; )
a=a+(j+k-1)*1jk[[mod[j,2]11]1/2"3;
a=a-If[Mod[k,2]==0,5,3]1*1jk[[mod[j,2]1]1]/274;
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a=a-If[Mod[k,2]==0,1,31*1jk[[mod[j,2]11]1/2"4;

1jk={1,0,-1};
a=a+2x1jk[[mod[j,3]]]1*(j+k-1)/3°2;
a=a-1jk[[mod[j,3]11/2;

ljk=(2*j+1)*{{1,0,_1},{0,_1,1},{f1,1,0}};
a=a+1jk[[mod[j,3],mod[k,3111/2/3"2;

1jk={{1,-2,1},{-2,1,1},{1,1,-2}};
a=a-1jk[[mod[j,3],mod[k,3]111/2/3~2;

1jk={1a_211};
a=a+1jk[[mod[j,3111/2/3°2;

Return[a];

]

§2. Methods
Let I'j(N) be the principal congruence subgroup of level N of ['y. Namely,

T,(N)={M €T, | M=1,, (modN)}.

This is a normal subgroup of I'y. If N > 3, 'y (N ) acts on &, without fixed points and the quotient
spéce Xg(N) :=T4(N)\G, is a (non-compact) manifold. X,(N) is a open subspace of a projective
variety X ,(N) which was constructed by I. Satake (Satake compactification, [Sta]). If g > 2,
X 4(N) has singularities along its cusps: X¢(N) — X4(N). Cusps of X4(V) is (as a set) a disjoint
union of copies of Xg: (N)’s (0 < ¢’ < g). A desingularization )A(:g(N ) of X4(N) was constructed
by J.-I. Igusa and Y. Namikawa (g = 2, 3, 4) ([Ig2], [N]) and more generally by D. Mumford and
others (Toroidal compactification, [AMRT)).
Let V be &, x C9 and let v € C9. T',(N ) acts on V as follows:

M(Z,v) = (M (Z),(CZ + D)v).

IfN>3,V:= ['y(N)\V'is non-singular and is a vector bundle over X,(N). V is extended to a
vector bundle V over X o(NV). Let Hy be G5 x C and let v € C. T'y(4N) acts on H, as follows:

M(Z,v) = (M(Z),J(M, Z)v).
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Hy :=T4(4N)\H, is a line bundle over X,(4N). H, is extended to a line bundle H, over )Z'g (4N)
and also to a line bundle H, over X ,(4N).

Let T' be a subgroup of I'§(4) of finite index. If g > 2, T' contains I';(4N) for some N ([BLS],
[M]). In the following we assume that g = 2. The space of Siegel modular forms M; x41/2(T'2(4N))

is canonically identified with the space
T(X2(4N), O(Sym? (V) @ HP D)),

which is the space of the global holomorphic sections of Sym’(V) ® HY (2k+1) " The divisor at
infinity D := X, (4N) — X3(4N) is a divisor with simple normal crossings. The space of cusp forms

S;k+1/2(C2(4N)) is canonically identified with the space
I(X2(4N), O(Syn? (V) @ HZ®**Y — D).

O(Sym’ (V)®H 2 (2k+1) — D) is the sheaf of germs of holomorphic sections which vanish along D and
this is isomorphic to O(Sym? (V) ® HY (2k+1) & [D]®(-1), where [D] is the line bundle associated

with D. We can prove the following

Theorem 2.1. If j=0and k>3 orif j>1 and k > 4, then
H?(X3(4N), O(Sym’ (V) @ HE®*+1 g [D]®(-1)) ~ {0},
for p > 0.

By using this theorem and the theorem of Riemann-Roch-Hirzebruch we have

Theorem 2.2. If j=0and k>3 orif j>1and k>4,

dim Sj,k+1/2(F2(4N))
=2%371(j + 1){2(2k — 3)(2j + 2k — 1)(j + 2k — 2)N'® — 30(j + 2k — 2)N® + 45N7}
x II a-p3Ha-p™.

v p|N, p: odd prime
Let T be a subgroup of I'2(4) of finite index and let x be a character of I' whose kernel is
a subgroup of T' of finite index. We may assume that the kernel of x contains I'2(4N). Let

f € Sjx11/2(T2(4N)) and M € T. We define an action of M on Sj 41/2(I'2(4N)) as follows:
Mf (M (2)) = J(M, 2)*** x(M) Sym’(CZ + D) f(Z).

Since T'y(4N) acts trivially on S 41/2(I'2(4N)), this action induces an action of I'/T'3(4N) on
S;k+172(T2(4N)) and S; k41/2(T, x) is identified with the invariant subspace of Sj x11/2(I'2(4N)).
Thus we have ' ‘

Sik+1/2(TsX) = Sj kp1/2(T2(4N))/ T2,
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Therefore dim S; x+1/2(T, X) is computed by using the holomorphic Lefschetz fixed point formula
([AS]).

To use the Lefschetz fixed point formula we have to classify the fixed points (sets). Let N > 3. °
I'; and 'y /T'2(N) act on X,(N). We classify (the irreducible components of) the fixed points of T
in the following sense. Let ®; and <152 be the fixed points (sets).‘ ®, and ®, is called equivalent if
there is an element of I's which maps &, biholomorphically to ®,. The fixed points in the qubtient |
space X(N) were classified in [G]. The fixed points in the divisor at infinity are classified éasily.
In total there are 25 kinds of fixed points (sets). Among them 10 fixed points are not fixed by the
elements of I'3(4). But since the automorphic factor J(M, Z) is defined with respect to ['2(4), we
have to classify the remaining 15 fixed points with respect to ['3(4). |

Let @ be one of 15 fixed points and let

C(®) = {M €T | M (Z) = Z for any Z € &},
CP(®) = {M € C(®) | @ is closed in Fix(M)},
N(®)={M €Tz | M maps & into ®}.

What we have to do is to classify the double cosets I'2(4)\'2/N(®). Let P1, P, ..., P, be the
representatives of I'5(4)\I's/N(®). Next we have to check P; CP(®)PTINT2(4) i=1,2,...,n)is
emp‘ty or not. Since I' is an infinite group, it is not ah easy task to classify I'§(4)\I'2/N(®). Buf
since I'2(4) contains I'y(4), we can take the quotient by I'z(4) and reduce the problem to a task in
the finite group I'y/T'2(4) ~ Sp(2,Z/4Z) and we can use the computer. We list the result in the
following proposition. As to the notations of the ﬁxed points (sets), see [T2]. Let p be exp(27i/3).

Proposition 2.3. For each ® the number of the elements of I'2(4)\I'2/N(®) and the number of
the double cosets such that P, CP(®)P ' NTZ(4) # ¢ is as follows.

(Z]_ 22) 1 1 (21 0) 3 9
Z9 23 0 2 i

gg) ‘11, 2 (17 122) 8 2

N
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[z O . z 1/2 o 2
(0 oo) 7 6 (1/2 oo) 10 7 ) Oo) 127
oo 0 5 oq3 (o 1/2) 43 4 0 00) g g
0 o0/ \1/2 o0 00 00
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Therefore there are 68 kinds of fixed points of I'(4) in total. By computing the contributions of

these fixed points to the dimension of
S2je+1/2(T3(4)) = Sy, k+1/2(F2(4N ))To(8)/Ta(aN)

we can calculate dim Sy; 41/2(T'3 (4)) and 51m11ar1y dim Sy k41/2(T3(4), ¥).

In this note I explain nothmg about the computation of the theorem of Riemenn-Roch- lezebruch
or the Lefschetz fixed point formula. As to the former, see [Y], [T4] and [T1]. As to the latter, see
T2]. |

§3. The case j =0
In case j = 0, we denote the space M, k+1/2(F (4)) and Sy k+1/2(I‘ (4)) by Mk+1/2(F0(4)) and

Sk+1/2(T3(4)), respectively. From Theorem 1.1 we have

Proposition 3.1.

o0 [o o]
Y dimSey1/2(T5(4) tF = SiegelHal£[0,k] t* + 12
k=0 k=0
| 254218 — 47 — 248 — 4% 4410
(1-t)(1—1¢2)2(1 —13)

Proof If f(Z) € Sk+1/2(T3(4)), then £(2)0(Z)? Sk+3/2(T'3(4)). Since dim S7/5(T'3(4)) is equal.
to SiegelHalf[0,3] = 0, we have S5/5(T'3(4)) =~ S3/2(T3(4)) ~ S1/2(T'3(4)) ~ {0}. But since
SiegelHalf[0,2] = —1, SiegelHalf[0,1] = 0 and SlegelHalf [0,0] = 0, we have the equality
of the first line. ‘ ‘ _ ' 0O

The cusps of the Satake compactification I'3(4)\&; of I‘ 5(4) \62 consists of 4 one- d1mens1onal

cusps and 7 zero-dimensional cusps. Each one-dimensional cusp is b1holom0rph1c to T'3(4)\6;.

Py
Cusps of T2(4)\8; :
P 2 P. 3 P4
/ P, 5 Ps P7\ 03
Cl 02 C4

Let & = {(il Zg)} I'3(4)\T'2/N(®) consists of 4 double cosets. Let M; = 1, and let
: 2 :

_({ 0 1.y ., _
MZ_(__12 O)a M3‘_'

OO
[ i R )
= O OO
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My, M3, M3 and M, are the representatives of I'3(4)\T'y/N(®). Let C; be the one-dimensional cusp

corresponding to the double coset I'}(4)M;N(®) (i = 1,2,3,4), respectively. Put Z = (%1 0 )
. . » 29

Let i = 1 or 4. Then we have

lim  J(M; g, M, M;(Z)) =1,

Im 2z —+c0

for any integer n. My g, M5 " belongs to I'3(4) if and only if 4 | n and we have

lim J(Ma g4 M5, My (Z)) =1,

Im 25 —+00

for any integer n. On the other hand we have

lim J(M; gnMg_l,M;; (Z)) =1i",

mzg—o0

where i = y/—1. Hence if f € M(['3(4)), we have

lim  f(Ms(Z)) = imf (M3 (g (Z)))

Imz;—c0
= lim f((Msg.M; ) M;(Z))

Im 2300

= lim J(Msg. M, M;(2))f(M3(Z))

Im 2500

=i lim  f(Ms(Z)).

Imzs—o0

Therefore . lim f(Ms(Z)) is identically 0. Namely, the ®-operators to the one-dimensional cusp

m zo —o00
Cjs and to the zero-dimensional cusps Ps, Ps and P; are 0-maps. From this we have

Proposition 3.2.

> dim My 41/2(T3(4)) t*

k=0
= dim Sp41/2(T5(4) ¥ + 3 dimSpi1/o(T5(4)) t* +4) % — (3 + 3t +¢2)
k=0 k=0 k=0 '
5 ) 6 __ 7.__2t8 ___t9 th t4 t5
_ 2042 ¢ +t7 3(t*+t°) 4 — (345t +1)
-1 -2)2(1-5) -2z ({11

1 1+t +13 ¢

(1-t)(1—#2)2(1—) (1 —¢2)3(1~16)

Proof. In genefal the Eisenstein series of Kliﬁgen type of degree n attached to a cusp form of
degree r and weight k converges if k > n+r + 1 ([K]). In case k is a half integer, this is also proved
similarly as in the case of integral weight. Hence ®-operators to the one-dimensional cusps C1, Co
and Cj are surjective (dim Sy41/2(05(4)) =0, if k£ < 3). ®-operators to the zero-dimensional cusps
F; (z = 1,2,3,4) are surjective if k¥ > 3. Hence the assertion was proved for £ > 3. We can prove
dim My 5(T3(4)) = i, dimMg/z(r‘%(4)) =1 énd_ dim M;/5(I'5(4)) = 3 by using the knowledge of
the cases of higher weights ([T6]). So we have the proposition. | O
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Proposition 3.3. _
Miy1/2(T3(4), %) = Skt1/2(T3(4),9).
Proof. Let Z = <201 zO ) and f € Mk+l/2(F§(4),¢). We have to prove that
2
(%) lim f(M(Z))=0
Imzy—c0

for any M € T's. Let M; (1 =1,2,3,4) be as before and let
P =

To prove the assertion, it suffices to prove (x) for My, Ma, M3 and My. From P (Z) = Z, we have
M{Z)= MP{(Z)= (MPM~Y)YM{(Z).
Since M; PM;* = P for i = 1, 2 and 3, we have

f(Mi{Z)) = J(P, M; (2))*19(=1) f(M:(2))

= —f(M;i(Z)).
Hence f(M; (Z)) = 0. Next let 7 = 4. Then we have
1 0 0 0
2 o =10 o0
MPMym=10 41 0
4 0 0 -1
and J(M4PM;*, M, (Z)) = 1. Therefore similarly as above we have f(My(Z)) = 0. O

Remark 3.4. Note that f(M; (Z)) is identically zero before Im z5 goes to co. So it may be natural
to ask that for any M € Ty, f(M (Z)) is identically zero or not. But this is not true in general.
Let ® be {(zol 0 )} and let

22

1000

0100

Ms=10110

1001/
I'2(4)\I's/N(®) consists of 3 double cosets. Their representatives are M, M, and Ms.

' 1 000
-1_{0-100
MsPMs™ =19 21 o
2 0 0 -1

does not belong to I'}(4) but belongs to a~'T3a N T and satisfies J(MsPM; ', M5 (Z)) = 1.
Therefore if f(Z) € Sky1/2(a™'T3a N Ty,9), it holds that f(M (Z)) = 0 for any M € Ty and

Z = (%1 zO ) . (¢ is extended to a character of a~'T'5a N Ty.)
2
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Proposition 3.5.

Z dim Mk+1/2(I‘0( ), ¥) tF = Z SiegelHalfpsi [0,k] t* + (3 + ¢t +1¢?)
k=0 k=0

R _ A re+ B et
A= -220-) - Q-£2)pPQ-t)

Proof. Since we have dim S;/5(I'3(4), ) = SlegelHalfps1 [0,3] =0, it follows that Ss/2(I'3(4), )
~ 5’3/2(1‘3 (4),9) ~ S1/2(T'3(4),%) ~ {0}. On the other hand since we have SiegelHalfpsi[0,2] =
—1, SiegelHalfpsi[0,1] = —1 and SiegelHalfpsi[0,0] = —3, we have the equality of the first

line. » | O
Let M(T3(4)), M(T§(4),4) and A(T'3(4),¢) be 1@0 Mi11/2(T3(4)), ng+1/2(F3(4),¢) and

é M;(T2(4), %), respectively. Then A(T3(4),%) is a graded ﬂng and since it holds J(M, Z)? =

k=0

det(CZ+D)ip(det D), M(T'3(4)) and M(T'§(4),) are A(T§(4),%)-modules. From the result of J.-I.

Igusa. ([Igl]), we have the following proposition. (We can also prove them by dimension formula.)

Proposition 3.6.

1+t4+t11+t15
51 dim M (T3(4)) ¢ = A= epa=F)"

k=0
=N ) A e i 2
kzd)dlka(Fo(‘l)ﬂ/)) tr = (1 — 2)3(1 — t6) ’
o 14t + 13 + ¢4
dim My (T2(4), %) t* = — :
kzzo im M (T'5(4),¥") (1 —t2)3(1 — t6)

From this we have
Corollary 3.7. M(T3(4)) and M(T%(4),v) are free A(T§(4), )-modules of rank 1.

The generator of M(I'2(4)) is ©(Z). Let fo /2(Z) be the generator of M(I'3 (4) ). Then
fa1/2(Z)©(Z) is an automorphic form with respect to J(M, Z)**¢(det D) = det(CZ +D)'*. Hence
this belongs to M11(T2(4)). Let f11(Z) be the base of My1(T3(4)) (dim Mi;(T3(4)) = 1). Then
fll(Z)/@(Z) is holomorphic and we can assume that f2/2(Z) = f11(Z)/©(Z). Since A(T}(4),v)
is contained in é M;(T'2(4)) and 69 M;(T'2(4)) is contained in the ring of theta constants ([Igl]),

k=0
every elements of M (T'3(4)) and M (I‘2 (4),1) are representable by theta constants.

Remark 3.8. T. Ibukiyama represented the generators of A(I'§(4),4) and fa1,2(Z) explicitly by
theta constants ([Ib]). Especially A(r‘g (4),9) is generated by algebraically independent modular
forms f1, X, g2 and f3 whose weights are 1, 2, 2 and 3, respectively. fa1/2(Z) is divisible by 9 theta
constants. Let Z € G,. Then there exists M € I'y such that M (Z) = (z1 z()2>, if and only if

0
one of 10 theta constants vanishes at Z (J.-I. Igusa, [H]). Hence fo1/2(Z) & Sa1/2(eT5aNTy, ).
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§4. The case j =2

If j > 0, the ®-operator to one-dimensional cusp maps Ma; x+1(I3(4)) to Sajyrsr /2(T§(4)) and
the ®-operators to zero-dimensional cusps are O-maps. Let C; (i = 1,2,3,4) be as before. The
following proposition for the case.of integral weight was proved in [A]. The case of half integral

weight can be similarly proved.

Proposition 4.1. If k > 4, the ®-operator to C; (t=1,2,4)
D : M +1/2(T5(4) = Sajurs1/2(T(4))

1§ surjective.

For two series 3 axt* and Y byt* we write

Zakt’“ = Zbktk (k> m),

if ax = by, for any k£ > m. From Theorem 1.1 and the above proposition we have

Proposition 4.2.

D dim Sy 41/2(T3(4)) * ) siegelHalf[1,k]1t* (k> 4)
k=0 k=0
—t2 +t3 + 3t* + 3t — 3¢7
(1-8)(1—-#)2(1-13) °

o | R B35 -3 (248
. ] 2 k —
E dlmM2,k+1/2(F0(4)) = (1 _ t)(l _ t2)2(1 _ t3) + 3(1 _ t2)2 (k 2 4)

k=0 .
2t2 + 3
(1-t)(1—-¢2)2(1 -#3)°

We study the structure of the A(I'2(4),1))-module é M k+1/2(T'3(4)) by a similar method in
[Sto] where T. Satoh studied the the space of vector vgﬁ)ed modular forms of integral weight with
respect to I's. ‘ _ :

Let V be {5 € M,(C) | %S = S}. We define the action of M € GL(2,C) on'V by § s MS M.
This action defines a representation of GL(2,C) which is equivalent to Sym®. Let F be a C°-

function on G, and let

OF 1 F

| 9z, 20z
AF = 1 9F  OF
2071, 072

If M €TI'y, it holds that

(CZ + D)A(F(M(Z)))(CZ + D) = (AF)(M (Z)).
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Hence if F satisfies F(M (Z)) = F(Z), we have
(AF)(M(Z)) = (CZ + D)A(F(2)) (CZ + D).

Let f € My(T'3(4),¢*) and g € Myy1/5(T3(4)). Then g*/f2*! is a (meromorphic) modular
form of weight 0. Therefore A(g2/f2+1) is a (meromorphlc) modular form with respect to Sym?.
f2+2/g%-1 is a (meromorphic) modular form of weight k + £ + 1/2. Hence

1

k(2£ - 1) (f2£+2/g2k I)A(g2k/f26+1)

[fs9]: =

1
RSV EgAf
becomes a holomorphic modular form and belongs to Mo kre41 /2(I‘§ (4)). In general we have

Proposition 4.3. Let f € M; (r (4),9*%%) and g € Myy1/5(T3(4),%P). Then

1
+1/2

1
belongs to Mg k+z+1/2(r (4),%*P).

From this we have

Theorem 4.4. @ My i+1/2(T3(4)) is a free A(T3(4),1)-module of rank 3 and the generators are
[X, 8], [g2,0] and [f3a®]

Proof. Let hq, ho € Mk_z(’rg(ll),’(/)k—?) and h3 E Mk_3(I‘§(4),z/)’°“3). Assume that
h1[X, ©] + h2[g2, ©] + h3][f3, O]

is idehtically zero. We may assume that hy, hy or hg is not divisible by f; = ©2. Then we have

(*) 2(h1X+h292+h3f3) (©)=06 (thA(X)'*' th(g2)+ hs (fs))

Let the quotient of h; by f1 be ¢; and the remainder r; (¢ = 1,2,3). Assume that r1 X +ryg2 +73f3

is identically 0'. Then we have

20(q1 X + q2g2 + 3 f3)A(O)

= (5r1A00) + 5rat(e) + 3rsf)) + f (nACO) + §mAen) + F0A() )

1 1
So %rlA(X) + ETQA(gz) + §r3A(f3) is identically 0 on He := {Z € &; | ©(Z) = 0}. Therefore
we have

n the talk at RIMS, I said that h1 X + hogo + ha f3 is not divisible by f1, But this was false.
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15,4 agz 8f3
0Z,1 0Zy1 0Zn 9

0X 89 Ofs || 1 _(g)

6212 8Z12 3212 2
0X 8gs Ofs s
0Zyy 0Zyy 0Zx
on Ho. But we can show that the determinant D(Z) of the matrix in the left-hand side of the

above equation is not divisible by ©(Z) as follows. Let

1101
1110
M—IOOI
0110

Then from the transformation formula of theta constants we have
le 0 _ y 2Z11 0 v
o (ar (% ) =0 (4 (*5" 222))
B 273, 0
MRS

- ﬁ(M)e(¢1111(M)) det(2CZ + D)"/*6111 (2%11 ZZOzz)

=0,

where k(M) and e(¢1111(M)) are eighth root of unity and ggoo and 61111 are theta constants of
characteristic (0,0, 0,0) and ¥(1,1,1, 1), respectively. |

Since X, g and f3 are represented by theta constants, we can prove that D(M (Z)) is not divisible
by Z5 from the transformation formula of theta constants and explicit Fourier expansions of theta
constants ([T7]). Hence r; (¢ = 1,2,3) is identically 0 on Hg. This contradicts to the assumption
that hy, ho or h3 is not divisible by f1. Therefore A1 X + hogs + hs f3 in (%) is not divisible by ©.
On the other hand, A(©) in (*) is also not divisible by ©. Otherwise all of the points in Hg are
singular points of He. These facts contradict to the assumption that h1[X, ©]+ ha[gs, ©] +hs [f3,0]
is identically zero.

From Proposition 4.2 theorem was proved for k > 4. The case k < 3 is easily proved from the

result of the case k > 4. _ o

Remark 4.5. If f € My(T5(4),¥**) and g € My11/5(T3(4), %), then [f,g] € My 4y 041/2(T2(4)).
Where is this part? é My (T3(4), %) is a free A(T3(4), ¢)-module of rank 1 and the generator
is f11. Since £ |

[f11, fa172] = —%[fzzuz,@],
this part is already contained in 15‘30 Mk 11/2(T3(4)).

Similarly as before we have
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Proposition 4.6.

Z dim My g11/2(T5(4), %) th = Z dim Sy g11/2(T3(4), %) t*

_ t° + 2t
T (A=t)(1—-2)2(1 —¢3)

From this we present

Conjecture 4.7. é My j41/2(T3(4), ) is a free A(T'3(4),%)-module of rank 3.
k=0

Remark 4.8. The form of type [f,g] in é M; k41 /2(1"%(4),'1,0) of the lowest weight is
k=0

[f11,0] = —;—;[@2,1‘21/2].

Hence M2,k+1 /2(I‘% (4), 1) is not spanned by the forms of this type. T. Satoh proved that the space
M, 2 (T'2) is spanned by the forms of the above type but the space M3 2k+1(T2) is not spanned
by the forms of the above type in [Sto] uéing the dimension formula ([T3]). This is natural since

OM; 2x(T2) C My gkt1/2(T3(4)) and ©Mp 541 (T'2) C Mo zkr3/2(T5(4), %)-
So we would like to present

Problem 4.9. Find the generators of the module é M; k41 /Q(F% (4),v).
, , k=0 .

§5. The case of general level
For example we can compute dim Sy; x41/2(I'3(4p),x) (p : odd prime). This has been already
reduced to a routine work (cf. [T5] for the case of integral weight) but will be a hard job.

APPENDIX

We list here the generating functions of SiegelHalf[j,k] and SiegelHalfpsi [,k].

Table A.1. SiegelHalf [j,k]s’t® is a rational function of s and t whose denominator is

7,k=0
(1-5%)2%(1-5%)%1 -t)(1 —3)%(1 - ).

The coefficients of sit* (0 < j <9, 0 < k <7) in the numerator are given by the following matriz.

0-3 -6 —6 -3 4 3 -3.—4
o 1 1 1 3 3 1 1 1
-1 7 17 20 8 -12 -8 8 10
1 2 7T 7T-2 -9 -4 1 2
3 -2 12 -20 -9 8 4 —8 -8
3 -5 —21 —23 -5 12 6 -7 —9
0-1 -1 2 2 1 3 4 2
3 4 14 13 0 -8 -2 7 T

I
NO NP OO
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Table A.2. SiegelHalfpsilj,k1s/tF is a rational function of s and t whose denominator
7k=

18

J 0

(1-5%)%(1-5%)2(1 - ) (1 - £2)2(1 - 83).

The coefficients of s7t* (0 < j < 9,0 <k <7) in the numerator are gwen by the following matriz.

[AMRT]

-3 0 6 6 -6 —-21 —-11 3 6 2

2 0 -4 -5 1 12 10 1 -3 -2
6 0 -12 -11 17 47 23 —6 —12 —4
0 0 0 5 10 4 -5 -6 -3 1
-5 0 13 15 —-12 —41 -25 —1 9 5
-6 1 15 9 21 —46 -24 6 14 4
3 2 -6 -12 -3 13 14 6 -2 -3
4 0 -9 -8 8 26 17 0 -6 -2

REFERENCES

T. Arakawa, Vector valued Siegel’s modular forms of degree two and the associated An-
drianov L-functions, Manuscr. Math. 44 (1983), 155-185. '

A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth Compactification of Locally Sym-
metric Varieties (Lie Groups: History, Frontiers and Applications, Vol 4.), Math. Sci.
Press, Brookline MA, 1975.

M. G. Atiyah and I. M. Singer, The index of elliptic operator III, Ann. of Math. 87

(1968), 540-608.

H. Bass, M. Lazard and J.-P. Serre, Sous-groupes d’indice fini dans SL(n,Z), Bull. Amer.

Math. Soc. 70 (1964), 385-392. : ,

E. Gottschling, Die Uniformisierbarkeit der Fizpunkte eigentlich diskontinuierlicher Grup-

pen von biholomorphen Abbildungen, Math. Ann. 169 (1967), 26-54.

W. F. Hammond, On the graded ring of Siegel modular forms of genus two, Amer. J.

Math. 87 (1965), 502-506. -

T. Ibukiyama, On Siegel modular forms of half integral weight of T'o(4) of degree two (in

preparation).

J.-1. Igusa, On Siegel modular forms of genus two IT, Amer. J. Math. 86 (1964), 392-412.

» A desingularization problem in the theory of Siegel modular functions, Math.

Ann. 168 (1967), 228-260. '

H. Klingen, Introductory Lectures on Modular Forms, Cambridge Stud. Adv. Math. 20,

Cambridge Univ. Press, Cambridge, 1990.

J. Mennicke, Zur Theorie der Siegelschen Modulgruppe, Math. Ann. 143 (1961), 115-129.

Y. Namikawa, A new compactification of the Siegel space and degeneration of abelian

varieties. I, II, Math. Ann. 221 (1976), 97-141, 201-241.

L. Satake, On the compactification of the Siegel space, J. Indian Math. Soc. 20 (1956),

259-281.

T. Satoh, On certain vector valued Siegel modular forms of degree two, Math. Ann. 274

(1986), 335-352.

R. Tsushima, A formula for the dimension of spaces of Siegel cusp forms of degree three,

Amer. J. Math. 102 (1980), 937-977. '
» On the spaces of Siegel cusp forms of degree two, Amer. J. Math. 104 (1982),

843-885. -

y An ezplicit dimension formula for the spaces of generalized automorphic forms

with respect to Sp(2,Z), Proc. Japan Acad. Ser. A 59 (1983), 139-142.




57

[T4] » On dimension formula for Siegel modular forms, Adv: Stud. Pure Math., vol. 15,
Academic Press, Boston MA, 1989, pp. 41-64. -~

[T5] , Dimension formula for the spaces of Siegel cusp forms and a certain exponential
sum, Mem. Inst. Sci. Tech. Meiji Univ. 36 (1997), 1-56.

[T6] , Dimension formula for the spaces of Siegel cusp forms of half integral weight and
degree two (in preparation). »

[T7] , Certain vector valued Siegel modular forms of half integral weight and degree
two (in preparation). : o

[Y] T. Yamazaki, On Siegel modular forms of degree two, Amer. J. Math. 98 (1973), 39-53.

e-mail address: tsushima@math.meiji.ac.jp



