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要旨

We discuss the problem of data mining for binary decision diagram rules
(BDDRs). We show that the problem is, in general, $\mathrm{N}\mathrm{P}$-complete, and report
some results of a preliminary experiment on biological databases with devising
a heuristic algorithm of mining BDDRs.

1 Introduction

The term “data mining” has been applied to a broad range of activities that attempt
to discover new knowledge from existing data, where usually the original data is a
collection of $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{o}\dot{\mathrm{r}}$mation gathered in a way. The problem of data mining was first
formulated by agrawal et $al,$ $[2,3]$ . In the problem, we consider a set $X$ of objects,
of which a set of attributes are defined, and are given the values of the attributes for
each object in $X$ . The task is to find relationships between various attributes.

The most well-studied problems in data mining is the search for association rules on
items [2, 3, 4, 14, 15, 13, 11, 22, 23, 16, 24, 7, 8], which are intended to identify rules of
the type “A customer purchasing item $X$ also purchases item $\mathrm{Y}$

” which is supported
by a number of transactions gathered in retail stores. Formally, an association rule
is an implication of the form $Xarrow \mathrm{Y}$ , where $X$ and $Y$ are sets of some items (i.e.,
objects).

The interestingness of a rule is a key concept in data mining. The interestingness
of an association rule is measured via support and confidence. The support for a
rule is defined as the fraction of transactions that satisfy the union of items in the
consequent and antecedent of the rule. The confidence for a rule is defined to be
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the fraction of transactions satisfying $X$ that also satisfy Y. For the association rule
$Xarrow Y$ to hold, both of the support and confidence of the rule must exceed given

support and confidence thresholds.
There would be numerous applications of data mining which fit into this framework.

One of the more challenging applications of data mining is the knowledge discovery in

Molecular Biology and Genome Informatics. One of the reason is that, in the areas,

there are various huge databases, which are still growing up by gathering outputs

produced in biological experiments. Another reason is that even a method of tools

working on such a database to help biologist’s knowledge discovery is not established
yet. In $[20, 19]$ , the scheme of data mining for association rules is applied to the

problem of finding some rules existing in protein databases which include the sequence

features, the structural features and the functional features of proteins. They reported

identifying some previously unknown correlations between such features.

The goal in our research on data mining is to produce, by applying a data min-

ing method we develop to biological databases, biological knowledge which helps

biologists analyze the world of genome. However, association rules as a model of

knowledge representation might be crucial to capture various and complex rules, cor-
relations and structures existing in databases, especially genome databases. We then

consider, instead of association rules, binary decision diagram rules (BDDRs), which

is based on BDDs and a generalization of association rules [1]. A BDD is well-known

as a model of Boolean functions and has been studied extensively [12, 6, 21]. A

reason of that would be that a BDD is visible representation, that is also true in

BDDRs. A BDDR is a kind of BDDs which consists of two BDDs, $B_{a}$ and $B_{c}$ , where

each of $B_{a}$ and $B_{\mathrm{c}}$ has exactly one specified node, called the goal node, and the goal

node of $B_{a}$ is identified with the root node of $B_{c}$ . The BDDs $B_{a}$ and $B_{\mathrm{c}}$ play roles

of the antecedent and consequent of the rule, respectively. We denote the BDDR by

$(B_{a}, B_{c})$ .
We in this paper consider two kinds of the interestingness of a BDDR. One of them

is defined as follows; For a set $X$ of objects, $X’\subseteq X$ the set of objects reaching the

goal node of $B_{a}$ , and $P\subseteq X$ the set of objects reaching the goal node of $B_{c}$ . We call

$|x’|/|x|$ and $|X’\cap P|/|X;|$ the $I/O$ ratios of $B_{a}$ and $B_{c}$ , respectively. They are the

ratio of the number of the objects reaching the goal node to the number of the input

objects in each BDD. The $\mathrm{I}/\mathrm{O}$ ratio of $B_{c}$ exactly corresponds to the confidence of an

association rule. The value of the product of the $\mathrm{I}/\mathrm{O}$ ratios of $B_{a}$ and $B_{c}$ corresponds

to the support of a association rule. We say that a BDDR $r=(B_{a}, B_{c})$ holds with

respect to the $\mathrm{I}/\mathrm{O}$ ratios $0\leq\epsilon_{a},$ $\epsilon_{c}\leq 1$ if the $\mathrm{I}/\mathrm{O}$ ratios of $B_{a}$ and $B_{c}$ are greater

than or equal to $\vee a$
’ and $\epsilon_{c}$ , respectively. Another interestingness of a BDDR $r$ is

$\frac{|X’-P|+|P-x’|}{|X|},$ , which captures the symmetric difference between $X’$ and $P$ . We call it

the symmetric difference ratio of $r$ .

24



The problem we address here, which would be one of the basic problems in this
framework of data mining for BDDRs, is to find a BDD $B_{a}$ such that, for a given
BDD $B_{c}$ , the BDDR $(B_{a}, B_{c})$ holds with respect to given thresholds of the $\mathrm{I}/\mathrm{O}$ ratios.
We denote this problem by ABDD, an abbreviation of “antecedent of a BDD rule.”
The method of solving ABDD would be useful when, in mining BDDRs, a user
fixes the consequences part of BDDRs, when the consequent parts of BDDRs are
enumerated (the efficient enumeration of BDDs is another problem in this framework
of data mining for BDDRs), and so on. Another problem in data mining for BDDRs,
which is to identify the consequent part of a BDDR, is discussed in [1].

We first show that ABDD is $\mathrm{N}\mathrm{P}$-complete when the antecedent BDD of a BDDR is
restricted to a BDD equivalent to a disjunctive normal form consisting only of positive
literals even if the number of literals in each clause fixed to a constant $k\geq 1$ . The case
where “disjunctive normal form” is replaced with “conjunctive normal form” in the
above problem is shown to be also $\mathrm{N}\mathrm{P}$-complete, which is equivalent to the problem
of finding the antecedent of an association rule. The case for conjunctive normal
form is $\mathrm{N}\mathrm{P}$-complete even if either thresholds is a fixed constant. Although such
BDDs have relatively simple forms, the task to mine them seems to be intractable.
For the problem where the interestingness of a BDDR is measured by the symmetric
difference ratio, we also have the same result concerning with disjunctive normal
form.

Finally, we describe a preliminary experiment on data mining for BDDRs in bio-
logical databases with a heuristic algorithm.

2 Preliminaries

For two finite sets $X$ and $\mathrm{Y}$ , let $f$ : $X\cross Yarrow\{0,1\}$ . We call an element of $X$ an
object, and an element of $Y$ an attribute of $X$ . We define data as $D=(X, \mathrm{Y}, f)$ .

Let $D=(X, Y, f)$ be data. A binary decision diagram ($BDD$ for short) on $Y$ is a
rooted, directed and acyclic graph, each node of which is either a terminal node or
a non-terminal node. A terminal node is of out-degree zero. A non-terminal node,
which has two outgoing edges labeled with $0$ and 1 respectively, is labeled with an
attribute of $Y$ . The root node is the node of in-degree zero. Exactly one terminal
node is specified as the goal node of $G$ . We denote the label of a node $v$ by $l(v)$ .
We say that an object $x\in X$ satisfies $G$ if $x$ reaches the goal node of $G$ in the
following way; At the root node $v$ , one first test whether $f(x, l(v))$ is equal to zero or
not; if $f(x, l(v))=0$ then one traverses the edge labeled with $0$ , otherwise the edge
labeled with 1 is traversed. The procedure is repeated at the node one reach until
one reaches a terminal node. We denote $S(G)=$ {$x\in X|x$ satisfies $G$}. Let $B_{a}$ and
$B_{c}$ be BDDs on Y. A binary decision diagram rule (BDDR for short), denoted by
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$(B_{a}, B_{c})$ , is a BDD consisting of $B_{a}$ and $B_{c}$ , where the goal node of $B_{a}$ is identified
with the root node of $B_{c}$ . For a BDDR $r=(B_{a}, B_{c})$ , we call $B_{a}$ and $B_{c}$ the antecedent
and consequent of $r$ , respectively. We define the $\mathrm{I}/\mathrm{O}$ ratios of the antecedent $B_{a}$ and
consequent $B_{\mathrm{c}}$ as $\frac{|S(B_{a})|}{|X|}$ and $\frac{|S(B_{a})\mathrm{n}s(B_{c})|}{|S(B_{a})|}$ , respectively. We also define the symmetric

difference ratio of $r$ as $\frac{|X’-P|+|P-\mathrm{x}\prime|}{|X|},$ .
Let $r=(B_{a}, B_{c})$ be a BDDR. For $0\leq\epsilon_{a},$ $\epsilon_{c}\leq 1$ , we say that a BDDR holds with

respect to the $\mathrm{I}/\mathrm{O}$ ratios, $\epsilon_{a}$ and $\epsilon_{c}$ if the $\mathrm{I}/\mathrm{O}$ ratios of $B_{a}$ and $B_{c}$ are greater than
or equal to $\epsilon_{a}$ and $\epsilon_{c}$ , respectively. For $\epsilon\geq 0$ , a BDDR is said to hold with respect

to the symmetric difference ratio $\epsilon$ if the symmetric difference ratio of $r$ is less than

or equal to $\epsilon$ .

3 Finding the antecedent of a BDDR

When one mines a kind of if-then rules, e.g., association rules and BDDRs, one
might hope to specify the consequent part of the rules. We now consider the problem
corresponding to such a situation. The problem ABDD (antecedent of a BDD rule)

is defined as $\mathrm{f}\mathrm{o}\mathrm{l}1_{0}\mathrm{W}\mathrm{S}_{)}^{\cdot}$ given a BDD $B_{c}$ and $0\leq\epsilon_{a},$ $\epsilon_{c}\leq 1$ , to find a BDD $B_{a}$ such that

the BDDR $(B_{a}, B_{c})$ holds with respect to the $\mathrm{I}/\mathrm{O}$ ratios $\epsilon_{a}$ and $\epsilon_{c}$ .
We first consider the case where the BDD to be the antecedent of a BDDR is

restricted to a disjunctive normal form consisting only of positive literals.

Theorem 1 The problem ABDD $i\mathit{8}NP$-complete when the antecedent $BDD$ of a
BDDR is restricted to a $BDD$ equivalent to a disjunctive normal form consisting only

of positive literals even if the number of literals in each clause fixed to a constant
$k\geq 1$ .

It is easy to prove Theorem 1 (We gave a reduction from the minimum set cover
problem [10] $)$ . The case where “disjunctive normal form” is replaced with “conjunc-

tive normal form” in the above problem is also intractable as follows.

Theorem 2 The problem ABDD is $NP$-complete when the antecedent $BDD$ of a
BDDR is restricted to a $BDD$ equivalent to a conjunctive normal form consisting

only of positive literals even if the number of literals in each clause fixed to a constant
$k\geq 1$ .

The case for conjunctive normal form is $\mathrm{N}\mathrm{P}$-complete even if either threshold of
the $\mathrm{I}/\mathrm{O}$ ratio of the antecedent or the consequent is a fixed constant.

Next we consider the symmetric difference ratio of a BDDR $r=(B_{a}, B_{c})$ . Recall
that the symmetric difference ratio of $r$ is $\frac{|S(B_{a})-s(B\mathrm{C})|+|S(B_{\mathrm{C}})-s(B_{a})|}{S(B_{a})}$ . The problem

ABDD-SD is defined as follows; given a BDD $B_{c}$ and $\epsilon\geq 0$ , to find a BDD $B_{a}$ such
that the BDDR $(B_{a}, B_{c})$ holds with respect to the symmetric difference ratio $\epsilon$ .
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Theorem 3 The problem ABDD-SD is $NP$-complete when the antecedent $BDD$ of
a BDDR is restricted to a $BDD$ equivalent to a disjunctive normal form consisting
only of positive literals even if the number of literals in each clause fixed to a constant
$k\geq 1$ .

4 Preliminary experiment

Although ABDD is intractable, we have devised an ad hoc scheme for solving the
problem and executed a preliminary experiment on genome databases in order to
probe the feasibility of usefulness of the method of data mining for BDDRs.

In the schene, first one makes a decision tree $T$ by the ID3 algorithm [17]. Next
$T$ is given to Bryant’s algorithm [9], which reforms $T$ into an equivalent BDD. Fig.
1 is an antecedent produced by the scheme. The objects in the data mining problem
are the coding regions (CDS) of the complete genome sequence of E. coli [5] (See
http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ . genetics. wisc. $\mathrm{e}\mathrm{d}\mathrm{u}$ ). The total number of CDSs is 4,285. For a CDS
$s$ , we define the upstream of $s$ as the substring starting three hundred bases upstream
and ending just before $s$ . The downstream of $s$ is defined as the substring next to
$s$ two hundred bases downstream. The attributes for the antecedent BDD are as
follows; all of the substrings with length ten of the upstream and downstream of
$s$ , and all of the substrings with length four of the translation (that is the primary
sequence of the protein) of $s$ . The label of each node is listed in Fig. 2. For a
CDS $x$ , the value of an attribute $y$ is defined as follows; if $y$ is originally a substring
of the upstream (downstream) of a CDS and approximately matches a substring of
the upstream (downstream, respectively) of $x$ then returns one, zero otherwise; if $y$

is originally a substring of the translation of a CDS and approximately matches a
substring of the translation of $x$ then returns one, zero otherwise [25].

The consequent BDD in this execution is satisfied with the CDS whose gene name
is included in some class classified in $\mathrm{G}\mathrm{e}\mathrm{n}\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{E}\mathrm{C}$ -E. coli Gene and Gene Product
Database [18]. That class is Cell Division of Cell Division of Cell processes in Physi-
ological Categories (See http: $//\mathrm{W}\mathrm{W}\mathrm{w}.\mathrm{m}\mathrm{b}\mathrm{l}.\mathrm{e}\mathrm{d}\mathrm{u}/\mathrm{h}\mathrm{t}\mathrm{m}\mathrm{l}/\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{l}\mathrm{i}$ . html).

The meaning of the BDDRs produced in this time is now examined.
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$1$ : The BDD is an antecedent produced in the scheme. The terminal nodes except
the goal node is omitted. The label of each node is listed in Fig. 2.
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