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1 Introduction
ヤ

This is an extended version of some part of my talk “p–radical chains, Dade conjecture
and cohomology” given at RIMS on March 16, 1998 in the workshop on cohomology of
finite groups. There I discussed two topics: the sufficient conditions for the alternating
decomposition formula of the $p$-adic group cohomology recently found by Dwyer and Benson,
and the collapsing technique (most elementary $G$-equivariant homotopy equivalence) which
could be used to reduce the number of radical p–chains for verifining the Dade conjecture.

I choose other title for the report by the following reasons: the detail of the first part
can be seen in the last section of my joint paper with S. D. Snith [SY], so I omit: it turns
out that if a group satisfies $(DB_{p})$ -property (see 2.6) then one can easily find which chains
are cancelled out without collapsing them in verifying the Dade conjecture (see the last
paragraph of the thrid section), so I will not discuss much about the Dade conjecture.

Instead, a foundation for the second topic, whcih I forgot to state in the talk, is explained
in detail: the relation between the simplicial complex $\triangle(B_{p}(G))$ of radical subgroups and the
set $\tilde{\Phi}_{p}(G)$ of (reduced) radical chains is discussed, including the notion of $(DB_{p})$-property.
It will be shown that a group of Lie type in characteristic $p$ and the Mathieu group $M_{24}$

satisfy this property ($p=2$ for the latter), and hence $\triangle(B_{p}(G))=\tilde{\Phi}_{p}(G)$ for these groups
and primes. Explicit collapsing process is also illustrated with the latter group.

I conclude the introduction with a correction of information about radical 2-subgroups
of $M_{24}$ given in [Yo]: 1

two conjugacy classes of radical 2-subgroups of $M_{24}$ are overlooked,
and hence there are exactly 13 conjugacy classes of $B_{2}(M_{24})$ .

The arguments in [Yo, 4.2, line 17-16 from the bottom] for 2-radical subgroups containing
the sextet kernel $U_{\Sigma}$ are not enough: in fact, two radical groups arize in $3S_{6}\cong G\Sigma/U_{\Sigma}$ which
do not correspond to radical subgroups of $S_{6}$ . This yileds one new possible 2-radical subgroup
$U_{\{T,\Sigma,\square \}}$ , which gives another radical subgroup $U_{\{T,\square \}}$ containing the trio kernel $U_{T}$ .

Consequently, in [Yo, Figure 1], we need two more boxes for $U_{\{T,\Sigma,\square \}}$ (with symbols
$21a$ and $\frac{s_{3}}{[2^{9}]}$ ) $U_{\{T,\square \}}$ (with symbols $7a$ and $\frac{s_{3\cross}s_{3}}{[2^{8}]}$ ), and five new lines joining the boxes

1The error was found when I checked some arguments in [AC]. I also noticed that in $[\mathrm{A}\mathrm{C}, (5.6),\mathrm{p}.2816]$ ,
$E_{4}.E_{64}$ and $Q$ should be $(E_{4}.E_{64})^{*}$ and $Q^{*}$ respectively.
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$U_{T,\Sigma,\square }$ and $U_{X}$ for $X=\{O, T, \Sigma, \square \},$ $\{T, \Sigma\},$ $\{T, \square \}$ ; and joining boxes $\{T, \square \}$ and $U_{Y}$ for
$Y=\{O, \tau, \square \},$ $\tau$ .

In the calculation of the Euler characteristic in [Yo, 4.3], the terms involving the classes of
the overlooked radicals turns out to vanish, so that the conclusion of [Yo, 4.3] is valid. This
should be the case, because we have a $M_{24}$-homotopy equivalence of the simplicial complex
$\triangle(B_{2}(M_{24}))$ of the poset $B_{2}(M_{24})$ with the 2-local geometry of $M_{24}$ , which was verified by
the other method in [SY]. :

2 Radical $p$-chains and chains of radical p-subgroups
Definition 2.1 Let $p$ be a prime divisor of the order of a finite group $G$ . A nontrivial p-
subgroup $U$ of $G$ is called a radical $p$ -subgroup whenever $U$ coincides with the largest normal
rsubgroup $O_{p}(N_{G}(U))$ of its normalizer $N_{G}(U)$ . (Note that $U\leq O_{p}(N_{G}(U))$ for every
p–subgroup $U$ of $G.$ ) The set of radical $p$-subgroups is denoted $B_{p}(G)$ :

$B_{p}(G)=\{U|1\neq U=O_{p}(N_{G}(U))\}$ .

For a chain of $p$-subgroup $C=$ $(U_{0}, U_{1}, \ldots , U_{n})$ (that is, each $U_{i}$ is a $p$-subgroup and $U_{0}<$

$U_{1}<\cdots<U_{n})$ , the initial i-th subchain $C_{i}$ is defined to be $(U_{0}, U_{1}, \ldots, U_{i})(i=0, \ldots, n)$ and
its normalizer $N_{G}(C_{i})$ is defined to be $\bigcap_{j=0G}^{i}N(Uj)$ . The chain $C$ is called a radical p-chain
if $U_{0}=O_{p}(G)$ and $U_{i}=O_{p}(N_{G}(C_{i}))$ for each $i=1,$ $\ldots$ , $n$ . The chain obtained from a radical
p–chain by deleting the first term $U_{0}=O_{p}(G)$ is called a reduced radical $p$ -chain. The set of
(resp. reduced) radical p–chains will be denoted $\Phi_{p}(G)$ (resp. $\tilde{\Phi}_{p}(G)$ ).

We first collect some elementary observations on radical p–chains 2.

Lemma 2.2 (0) A Sylow $p$ -subgroup of $G$ is a radical p-subgroup.

(i) $N_{G}(C_{i})=N_{G}(C_{i1}-)\cap N_{G}(U_{i})(i=1, \ldots , n)$ .

(ii) If $C$ is a radical p-chain) then also is the initial subchain $C_{i}(i=0, \ldots , n)$ .

(iii) If $C$ is a radical $p$ -chain, then its second term $U_{1}$ is a radical p-subgroup.

(vi) A chain $C$ of a $p$ -subgroups is a radical $p$ -chain if and only if $U_{0}=O_{p}(G),$ $U_{i}\underline{\triangleleft}U_{j}$

for $1\leq i<j\leq n$ and $U_{i}/U_{i1}-$ is a $p$ -radical subgroup of $N_{G}(.C_{i-1})/U_{i-}1$ for every
$i=1,$ $\ldots,$

$n$ .

(v) If $N_{G}(U_{1})\geq N_{G}(U_{2})\geq\cdots\geq N_{G}(U_{n})_{f}$ then $C$ is a radical $p$ -chain if and only if $U_{0}=$

$O_{p}(G)$ and $U_{i}/U_{i-1}$ is a $p$ -radical subgroup of $N_{G}(U_{i-1})/U_{i-1}$ for every $i=1,$ $\ldots,$
$n$ .

2In this report, sometimes proofs are given to the statements which seems trivial for experts in finite
group theory, because of convenience for representation theorists and algebraic to,pologists, who were major
attendance of the workshop.
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Proof. The claims $(\mathrm{O}),(\mathrm{i})$ and (ii) are immediate from the definitions. As $U_{i-1}\underline{\triangleleft}N_{G(}C_{i}$ )
$(i=1, \ldots , n)$ , it follows from Claim (i) that the condition $U_{i}=O_{p}(N_{G}(c_{i}))$ is equivalent
to say that $U_{i}$ is a radical $p$-subgroup of $N_{G}(C_{i}-1)$ . In particular, the claim. (iii) follows.
Furthermore, taking factor groups by $U_{i-1}$ , it is equivalent to say $\mathrm{t}\dot{\mathrm{h}}\mathrm{a}\mathrm{t}U_{i}/U_{i-1}$ is a p-radical
subgroup of $Nc(C_{i}-1)/U_{i-1}$ . This establishes Claim (iv). Claim (v) is its corollary. $\square$

With each radical $p$-subgroup $U$ of $G$ , we associate its normalizer $N_{G}(U)$ . The following
fundamental observation was made in [ $\mathrm{S}\mathrm{Y}$ , Lemma 1.9].

Lemma 2.3 For $U\neq V\in B_{p}(G)$ with $N_{G}(V)\leq N_{G}(U)_{f}$ we have $U\underline{\triangleleft}V$ and $V/U\in$

$B_{p}(N_{G}(U)/U)$ .

Proof. As $V\leq N_{G}(V)\leq N_{G}(U)$ , the product $VU$ is a subgroup containing $V$ . Assume
that $VU$ properly contains $V$ . Then it follows from a fundamental property of nilpotent
groups that $N_{VU}(V)$ properly contains $V$ . But $N_{VU}(V)$ is a $p$-subgroup which is normal
in $N_{G}(V)$ , as a subgroup $N_{G}(V)$ of $N_{G}(U)$ normalizes both $V$ and $U$ . This implies that
$O_{p}(N_{G}(V))\geq VU$ $>V$ , contradicting $V=O_{p}(N_{G}(V))$ . Thus $VU=V$ or equivalently
$U\leq V$ . As $V\leq N_{G}(U),$ $U\underline{\triangleleft}V$ .

The latter claim now immediately follows, as $(N_{G}(U)\cap N_{G}(V))/U=N_{G}(V)/U$ and
$O_{p}(N_{G}(V)/U)=O_{p}(N_{G}(V))/U=V/U$. $\square$

Thus, to find the candidates for radical $p$-subgroups, we first investigate those with maxi-
mal normalizers and choose the preimages in their normalizers of $p$-radicals of the correspond-
ing factor groups. This suggests that in principle we can determine $B_{p}(G)$ reccursively. Note
that a candidate $V$ obtained from $N_{G}(U)/U$ may not be a radical group, as $N_{G}(V)$ may not be
contained in $N_{G}\{U$). However, if $N_{G}(V)\leq N_{G}(U)$ , the candidate is in fact a radical group:
for, the condition $V/U\in \mathcal{B}_{p}(N_{G}(U)/U)$ is equivalent to $V/U=O_{p}(N_{G}(U)\cap N_{G}(V)/U)$ ,
which is under our assumption $V/U=O_{p}(N_{G}(V)/U)$ and hence $V=O_{p}(N_{G}(V))$ . These
observations are summarized in the following way.

Lemma 2.4 For a radical $p$ -subgroup $U$ of $G_{f}$ define a subset of $B_{p}(G)$ by

Red$(\beta_{p})_{U}:=\{V\in B_{p}(G)|N_{G}(V)\leq N_{G}(U)\}\backslash \{U\}$ .

Then the following statements hold.

(1) The group $U$ is a proper normal subgroup of $V$ for every $V\in Red(B_{p})_{U}$ .

(2) The quotient map $\rho$ : $V\vdash+V/U$ is an injection from Red$(B_{p})_{U}$ into $B_{p}(N_{G(U)}/U)$ .

(3) The quotient map $p$ is bijective if and only if $N_{G}(V)\leq N_{G}(U)$ for every $V/U\in$

$B_{p}(N_{G}(U)/U)$ .

The following fact is also well known:

Lemma 2.5 Let $G$ be a finite group and $p$ be a prime divisor $of|G|$ . For every nontrivial
$p$ -subgroup $U$ there is a radical $p$ -subgroup $W$ with $U\leq W$ and $N_{G}(U)\leq N_{G}(W)$ .
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Proof. Starting from $U$ , consider a chain of subgroups inductively defined as follows:

$W_{0}:=U,$ $N_{0:}=N_{G(W_{0})}$ ,
$W_{j}$ $:=O_{p}(N_{j}-1),$ $N_{j}:=N_{G}(W_{j})(j=1,2, \ldots)$

Clearly $W_{j-1}\leq W_{j}$ and $N_{j-1}\leq N_{j}$ for every $j=1,2,$ $\ldots$ . As $G$ is a finite group, the
increasing chain of subgroups $W_{0}\leq W_{1}\leq\cdots$ stops at some $W:=W_{m}$ , say. Then $W=$

$O_{p}(N_{G}(W)$ , and hence $W\in B_{p}(G)$ . By construction, $U\leq W$ and $N_{G}(U)\leq N_{G}(W)$ . $\square$

Relation between chains of radicals and radical chains. The set $B_{p}(G)$ forms a par-
tially ordered set with respect to inclusion. It is often convenient to consider the associated
simplicial complex $\triangle(B_{p}(G))$ (order complex) with the chains as its simplices, because it
allows us to apply some topological method. On the other hand, though the set $\tilde{\Phi}_{p}(G)$ is
contained in the order complex $\triangle(S_{p}(G))$ of the poset of all nontrivial $p$-subgroups, it does
not have the structure of a simplicial complex in general, because a subchain of a reduced
radical $p^{\frac{-}{}\mathrm{C}\mathrm{h}}\mathrm{a}\mathrm{i}\mathrm{n}$ is not a radical p–chain in general unless it is an initial subchain. This seems
the most defect of the notion of radical p-chains.

If $\tilde{\Phi}_{p}(G)$ has the structure of a simplicial complex, then each term of a radical chain can
be thought of as a radical $p$-chain with just one term. It is a radical psubgroup by $2.2(\mathrm{i}\mathrm{i}\mathrm{i})$ .
Thus $\tilde{\Phi}_{p}(G)$ is contained in the order complex $\triangle(B_{p}(G))$ .

However, in general, a simplex of $\triangle(B_{p}(G))$ is not a radical $p$-chain, nor a reduced radical
p–chain is not a simplex of $\triangle(B_{p}(G))$ : Take a chain $C=(U, V)$ of radical rsubgroups of
length 2 for simplicity. We know $U=O_{p}(N_{G}(U))$ and $V=O_{p}(N_{G}(V))$ but this does
not imply the condition $V=O_{p}(N_{G}(U)\cap N_{G}(V))$ required for $C$ to be a radical p-chain.
Clearly $V\cap N_{G}(U)$ is contained in $O_{p}(Nc(U)\cap N_{G}(V))$ . Conversely, let $C=(U, V)$ be
a reduced radical $p$-chain of length 2. By Lemma $2.2(\mathrm{i}\mathrm{i}\mathrm{i}),$ $U\in B_{p}(G)$ . But the condition
$V=O_{p}(N_{G}(U)\cap N_{G}(V))$ does not imply $V=O_{p}(V)$ in general. Thus $C$ is not a chain
of radical p–subgroups. But if we have $N_{G}(U)\geq N_{G}(V)$ , then $V=O_{p}(N_{G}(V))$ and $C$ is a
chain of radical p-subgroups.

These observations give us a feeling that the reduced radical $p$-chains $\tilde{\Phi}_{p}(G)$ rarely have
the structure of a simplicial complex. However, we will see that even stronger result $\tilde{\Phi}_{p}(G)=$

$\triangle(\mathcal{B}_{p}(G))$ holds for finite groups of Lie type in characteristic $p$ and the Mathieu group $M_{24}$

of degree 24 for $p=2$ .
We give a sufficient condition for $\triangle(B_{p}(G))=\tilde{\Phi}_{p}(G)$ (Lemma 2.7).

Definition 2.6 For a finite group $G$ and a prime $p$ dividing the order of $G,$ $(DB_{p})$ is the
following property:

$(DB_{p})$ : We have $N_{G}(U)\geq N_{G}(V)$ whenever radical $I\succ$-subgroups $U$ and $V$ of $G$

satisfy $U\leq V$ .

Lemma 2.7 If a group $G$ satisfies the $(D\beta_{p})$ property, then $\triangle(B_{\mathrm{P}}(G))=\tilde{\Phi}_{p}(G)$ .
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Proof. Choose any chain $C=(U_{1}, U_{2}, \ldots, U_{n})$ of radical p–subgroups. By assump-
tion we have $N_{G}(U_{1})\geq N_{G}(U_{2})\geq$ . . . $\geq N_{G}(U_{n})$ . Then $N_{G}(C_{i})=N_{G}(U_{i})$ and $U_{i}=$

$O_{p}(N_{G}(Ui))=N_{G}(ci)$ for every $i=1,$ $\ldots,$
$n$ . Thus $C$ is a reduced radical p-chain.

Conversely, let $C=(U_{1}, U_{2}, \ldots, U_{n})$ be any reduced radical $p$-chain. We will show that
$U_{i}\in B_{p}(G)$ for every $i=1,$ $\ldots,$

$n$ by induction on the length $n$ of $C$ . If $n=1$ , the claim
follows from Lemma $2.2(\mathrm{i}\mathrm{i}\mathrm{i})$ . Let $n>1$ . Since $C_{n-1}\in\tilde{\Phi}_{p}(G)$ , the hypothesis of induction
implies that $U_{i}\in B_{p}(G)$ for all $i=1,$ $\ldots,$ $n-1$ . By assumption, then we have $N_{G}(U_{1})\geq$

$..\geq N_{G}(U_{n-1})$ and so $N_{G}(c_{n-1})=N_{G}(U_{n-1})$ . By Lemma 2.5, there is $W\in B_{p}(G)$ with
$U_{n}\leq W$ and $N_{G}(U_{n})\leq N_{G}(W)$ . Then the radical group $U_{n-1}$ is a subgroup of a radical
group $W$ , and hence $N_{G}(U_{n-1})\geq N_{G}(W)\geq N_{G}(U_{n})$ by the assumption. Thus $N_{G}(C)=$

$N_{G}(c_{n-1})\cap NG(Un)=N_{G}(U_{n-}1)\cap N_{G}(U_{n})=N_{G}(U_{n})$ and
$U_{n}=O_{p}(N_{G}(c))=O_{p}(Nc(U_{n}))\coprod$

.
Hence $U_{n}\in B_{p}(G)$ as we desired.

Lemma 2.8 Let $B_{p}^{*}(G)$ be the set of radical $p$ -subgroups $U$ of $G$ for which $N_{G}(U)$ is maximal
among the normalizers of $p$ -radical subgroups. Assume that

$(a)$ For every $U\in B_{p}(G))$ there is $U_{*}\in B_{p}^{*}(G)$ such that $N_{G}(V)\leq N_{G}(U_{*})$ for every
$V\in B_{p}(G)$ containing $U$ .

$(b)N_{G}(U_{*})/U_{*}$ satisfies the $DB_{p}$ -property for every $U_{*}\in B_{p}^{*}(G)$ .

Then $G$ satisfies the $(DB_{p})$ -property.

Proof. Let $U$ and $V$ be p–radical subgroups with $U\leq V$ . Choose $U_{*}$ satisfying the
condition $(a)$ for $U$ . Then both $U$ and $V$ contain $U_{*}$ as a normal subgroup, and $U/U_{*}$ and
$V/U_{*}$ are radical $p$-subgroup by Lemma 2.3. As $U/U_{*}\leq V/U_{*}$ , the condition (b) implies
that the normalizer of $U/U_{*}$ in $NG(U_{*})/U_{*}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{s}$ that of $V/U_{*}$ . Since

$N_{N_{G}(U*)}/U_{*}(X/U_{*})=\square$

$(N_{G}(U_{*})\cap N_{G}(X))/U_{*}=N_{G}(X)/U_{*}(X=U, V)$ , we have $N_{G}(U)\geq N_{G}(V)$ .

Lemma 2.9 If finite groups $A$ and $B$ satisfy the $(DB_{p})$ -property, then the direct product
$A\cross B$ satisfies the $(DB_{p})$ -property.

Proof. Let $U,$ $V\in B_{p}(A\cross B)$ with $U\leq V$ . By Lemma [Sa, Lemma 3.2] 3, we have
$U=U_{A}\cross U_{B}$ and $V=V_{A}\cross V_{B}$ , where $U_{A}=U\cap(A\mathrm{x}1)$ , etc. In particular, $U_{A},$ $V_{A}\in$

$B_{p}(A)\cup\{1\}$ and $U_{B},$ $V_{B}\in B_{p}(B)\cup\{1\}$ , identifying $A$ with a subgroup $A$ $\mathrm{x}1$ of $A\cross B$ , etc.
As $U\leq V$ , we have $U_{A}=U\cap(A\cross 1)\leq V\cap(A\cross 1)=V_{A}$ , and similarly $U_{B}\leq V_{B}$ . As $A$

and $B$ satisfy $DB_{p}$-property, $N_{A}(U_{A})\geq N_{A}(V_{A})$ and $N_{B}(U_{B})\geq N_{B}(V_{B})$ . It is easy to see
that $N_{A\cross B}(X)=N_{A}(X_{A})\mathrm{x}N_{B}(X_{B})(X=U, V)$ . Thus

$N_{A\cross B}(V)=N_{A}(V_{A})\cross N_{B}(V_{B})\leq\square$

$N_{A}(U_{A})\cross N_{B}(U_{B})=N_{A\cross B}(U)$ .

The lemmas 2.8 and 2.9 can be slightly generalized as follows, by arguing similarly to
the proofs of these lemmas. So the proofs are omitted.

3The result may be known before, though I $\mathrm{d}\mathrm{o}\mathrm{n}\mathrm{t}$

) know the proof except one given by Sawabe.
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Lemma 2.10 (1) Assume that the condition $(a)$ in Lemma 2.8 and the following condition
$(b’)$ holds: $(b’)$ For every $U_{*}\in B_{p}^{*}(G),\tilde{\Phi}_{p}(N_{G}(U*)/U_{*}))=\triangle(B_{p}(NG(U*)/U_{*}))$ .
Then $\tilde{\Phi}_{p}(G)=\triangle(e_{p}(G))$ .

(2) If $\tilde{\Phi}_{p}(X)=\triangle(B_{p}(X))$ for $X=A,$ $B_{f}$ then $\tilde{\Phi}_{p}(A\cross B)=\Lambda(B_{p}(A\cross B))$ .

Groups of Lie type in characteristic $p$ . Let $G$ be a finite group of Lie type defined over
a field in characteristic $p$ and of Lie rank $r$ . (For general reference, I recommend the reader
to consult a book of Curtis and Reiner [CR], \S 64,65 and 69.) By parabolic theory $[\mathrm{C}\mathrm{R}$ ,

\S 65], there is a complete system $\{P_{F}|F\subset I\}$ of representatives for $G$-conjugacy classes of
parabolic subgroups which is parametrized by the power set of $I=\{1, \ldots, r\}$ and satisfies
the following properties:

(i) Every proper subgroup of $G$ containing a Borel subgroup $B:=P_{\emptyset}$ is of the form $P_{F}$

for some $F\subset I.$ (This also implies that two distinct proper subgroups containing $B$

are not conjugate under $G.$ )

(ii) If $F,$ $K\subset I$ then $P_{F\cap K}=P_{F}\cap P_{h’}$ and $P_{F\cup K}=\langle P_{F}, P_{\mathrm{A}’}\rangle$ . In particular, $P_{F}\leq P_{F’}$ if
and only if $F\subseteq F’\subset I$ .

(iii) Setting $O_{p}(P_{F})=:U_{F}$ (the unipotent radical of $P_{F}$ ), $N_{G}(U_{F})=P_{F}$ . Thus $U_{F}\in B_{p}(G)$ .

Proposition 2.11 In a finite group $G$ of Lie type defined over a filed in characteristic $p$ ,

every radical $p$ -subgroup of $G$ is conjugate to a unipotent radial $U_{F}$ for some $F\subset I$ .

Proof. (Sketch) For a radical $p$-subgroup $U$ , let $P$ be a parabolic subgroup minimal
subject to $N_{G}(U)\leq P$ . Such a parabolic subgroup always exists by a theorem of Borel
and Tits [BT], saying that a subgroup of $G$ with non-trivial $O_{p}$ is contained in a parabolic
subgroup of $G$ . Then it is not so difficult to see $U=O_{p}(P)$ , by arguing similarly to the
proof of 2.3. I left the proof as an exercise for the reader. $\square$

Lemma 2.12 Let $G$ be a finite group of Lie type in characteristic $p$ . For $U,$ $V\in B_{p}(G)$ , the
following statements are equivalent.

(i) $U\leq V$ . (ii) $U\underline{\triangleleft}$ V. (iii) $N_{G}(U)\leq N_{G}(V)$ .

Proof. By Lemma 2.3, (iii) implies (ii). Obviously (ii) implies (i).
To prove the converse implications, we use $[\mathrm{C}\mathrm{R}$ , (69.16) $]$ . The readers are assumed some

familiarity with notations in $[\mathrm{C}\mathrm{R}, \S 69]$ , though I follows the notation above.
(i) implies (ii): It suffices to show the claim (ii) when $V$ is a Sylow p–subgroup of $G$ .

(For, if $U\leq V,$ $U,$ $V\in B_{p}(G)$ , take a Sylow p–subgroup $S$ of $G$ containing $V$ . As $U\underline{\triangleleft}S$ ,
$U\underline{\triangleleft}V.)$ Note that a Sylow $p$-subgroup is a radical rsubgroup by definition. By Proposition
2.11, we may assume that $U=U_{F}$ for some $F\subset I$ . Let $S$ be a Sylow $p$-subgroup containing
$U$ . As $U_{\emptyset}=O_{p}(B)$ is a Sylow p–subgroup of $G,$ $S=gU0g=v_{0}$ for some $g\in G$ . By
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the Bruhat decomposition $G=BWB([\mathrm{C}\mathrm{R}, (65.4)]),$ $g=bwb’$ for some $b,$ $b’\in B$ and
$w\in W$ . As $B(\leq P_{F}=N_{G}(U_{F}))$ normalizes $U_{F}$ and $U_{\emptyset}$ , we have $U_{F}\leq wU_{\emptyset}$ . Furtheromore,
$U_{F}$ is normalized by $W_{F}$ , the subgroup of $W$ generated by the distinguished involutions
corresponding to $F$ , since $N_{G}(U_{F})=P_{F}=BW_{F}B([\mathrm{C}\mathrm{R}$ , (64.39)] $)$ . Writing $w=w’x$ for
$w’\in W_{F}$ and $x$ a distinguished double coset representative for $W_{F}\backslash W/W_{\emptyset--}W_{F}\backslash W$ (an
element of the coset $W_{F}w$ of minimal length $[\mathrm{C}\mathrm{R}$ , (64.39) $]$ ), we then have $U_{F}\leq xU_{\emptyset}$ .

Now we may apply $[\mathrm{C}\mathrm{R}, (69.16)(\mathrm{i}\mathrm{v})]$ to $” I”=F$ and “ $J”=\emptyset$ . Since “ $K”=F\cap a\emptyset=$

$F\cap\emptyset=\emptyset$ , we have
$U_{\emptyset}=(PF\cap xU_{\emptyset})UF$ .

The right hand side is contatined in $xU_{\emptyset}$ ) as $U_{F}\leq xU_{\emptyset}$ . We have $U_{\emptyset}=xU_{\emptyset}$ , comparing the
orders. Thus $x\in W\cap N_{G}(U_{\emptyset})=W\cap B=1$ , and therfore $g=b(w’X)b’=bw’b’\in BW_{F}B=$

$P_{F}=N_{G}(U_{F})$ . Since $U_{F}\underline{\triangleleft}U_{\emptyset}$ (as $U_{F}\leq U_{\emptyset}$ and $P_{F}\geq N_{G}(U_{\emptyset})=B$), taking the conjugate of
the both side of this equation under $g\in P_{F}$ , we have $U=U_{F}=gU_{F}\underline{\triangleleft}^{g}U_{\emptyset}=S$.

(ii) implies (iii): As the arguments in the claim $”(i)\Rightarrow(ii)$
” above, we may assume

$U=gU_{I\iota’}$ and $V=U_{F}$ for some $F,$ $K\in I$ and $g\in G$ . Furthermore $g$ may be chosen as
a distinguished double coset representative for $W_{F}\backslash W/W_{K}$ , by the Bruhat decomposition
$G=BWB$ and its generalizations $N_{G}(U_{F})=P_{F}=BW_{F}B,$ $N_{G}(U_{K})=P_{K}=BW_{K}B$ . By
$[\mathrm{C}\mathrm{R}, (69.16)(\mathrm{i}\mathrm{i})]$ we have

$U_{X}=(P_{F}\cap^{g}U_{h}’)U_{F}$ ,
$X=F\cap gIC$ , identifying $I$ with a set of distinguished generators of the Weyl group $W$ .
Note that $X\subset I$ while $gK$ may not be contained in $I$ . Since $U=gU_{K}\leq V=U_{F}$ , we
have $U_{X}\leq U_{F}$ and hence $F\subseteq X=F\cap \mathit{9}I\mathrm{f}$ . Thus $X=F$ and $F\subseteq gK$ (but this does not
imply $P_{F}\leq gP_{K}$ , as $gK$ may not be a subset $0\dot{\mathrm{f}}I$ ). By the definition of Levi complement, we
however have $L_{X}’=L_{F}\leq gL_{I\backslash ^{r}}$ . In particula.r, $L_{F}$ normalizes $gU_{K}=O_{p}(^{g}P_{\mathrm{A}^{r}})$ .

By our assumption $U=gU_{R^{\prime\underline{\triangleleft}}}U_{F}=V,$ $U_{F}$ also normalizes $gU_{\mathrm{A}’}.$ Thus
$N_{G}(U_{F})=P_{F}=\square$

$L_{F}U_{F}\leq N_{G}(^{g}U_{K})=N_{G}(V)$ .

By Lemma 2.7 and Lemma 2.12, the following (already known) result follows.

Proposition 2.13 For a finite group $G$ of Lie type in characteristic $p$ , the $(DB_{p})$ -property
holds and hence we have $\triangle(B_{p}(G))=\tilde{\Phi}_{p}(G)$ .

3 Collapsing
Definition 3.1 Let $\triangle$ be an abstract simplicial complex. Assume that there is a unique
maximal simplex $\sigma$ of $\triangle$ containing a simplex $\tau\in\triangle$ . Then the process which deletes both
$\sigma$ and $\tau$ is called a collapsing at a pair $(\tau, \sigma)$ . The geometric realization of the resulting
complex $\triangle-\{\sigma, \tau\}$ is homotopically equivalent to that of $\triangle$ .

Collapsing for chains of subgroups. Consider a set $\Phi$ of chains of subgroups of $G$ admit-
ting the conjugacy action of $G$ : for $g\in G$ and $C=(V_{1}, \ldots, V_{n})\in\Phi,$ $gC:=(^{g}V_{1}, \ldots, \mathit{9}V_{n})\in\Phi$ .
Typical examples are the order complex $\triangle(B_{p}(G))$ of a poset $B_{p}(G)$ and the set $\tilde{\Phi}_{p}(G)$ of
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reduced radical pchains. Let $\mathcal{R}$ be a complete system of representatives of G-conjugacy
classes of subgroups which appear as terms of chains of $\Phi$ .

The map $f$ can be extended to a map on $\Phi$ by sending $C=(V_{1,)}\ldots V_{n})$ to a sequence
$f(C):=(f(U_{1}), \ldots, f(Un))$ of subsets of $I$ , where $U_{i}\in \mathcal{R}$ is conjugate to $V_{i}(i=1, \ldots, n)$ .
The group $G$ acts on $\Phi$ by conjugation, which is compatible with the map $f$ on $\Phi$ . We call
$f(C)$ the type of $C$ .

Under these terminologies, when $\Phi$ has the structure of a simplicial complex, a typical ex-
ample of collapsing occurs if $C$ is a unique maximal chain of $\Phi$ containing $C^{(1)}:=(V_{2}, \ldots, V_{n})$

of type $f(C)$ . The latter condition is equivalent to say that

$(*)$ if $(^{g}V_{1}, V_{2}, \ldots , V_{n})$ is a chain then $V_{1}=gV_{1}$ .

If this condition is satisfied, then we can remove $C$ and $C^{(1)}$ from the complex $\Phi$ without
changing its homotopy type. Furthermore, since $G$ acts on $\Phi$ , we can simultaneously remove
all chains of type $f(C)$ and $f(C^{(1)})$ . Thus the simplicial complex $\Phi$ is G-homotopically
equivalent to $\Phi-\{D\in\Phi|f(D)=f(C), f(D)=f(c(1))\}$ .

This is frequently used to show that for example the order complex $\triangle(B_{p}(G))$ of a sporadic
simple group $G$ of characteristic-p type (here we do not need the definition, see [SY]) is G-
homotopically equivalent to some (much smaller) simplicial complex $\mathcal{P}(G)$ , called the p-local
geometry of $G$ (see [SY]).

Even when $\Phi$ does not have the structure of a simplicial complex, we \v{c}an still consider
$\Phi-\{D\in\Phi|f(D)=f(C), f(D)=f(C^{(1)})\}$ , if $C^{(1)}\in\Phi$ . (Though the latter condition is
very strong.) Take as $\Phi$ the set $\tilde{\Phi}_{p}(G)$ of reduced radical p-chains. Let $C=(V_{1}, \ldots, V_{n})$ be
a chain with the property $(*)$ . For $x\in N_{G}(V_{2})\cap\cdots\cap N_{G}(V_{n})$ , we have $xC=(^{x}V_{1}, V_{2}, .. ., V_{n})$

and hence $xV_{1}=V_{1}$ by $(*)$ . Thus $x\in N_{G}(V_{1})$ and $N_{G}(C)=N_{G}(C^{(1)})$ .
Now recall several forms of Dade conjecture (see $\mathrm{e}.\mathrm{g}.[\mathrm{K}\mathrm{o}]$ ). Each of them claims that

an alternating sum of the numbers of certain characters of $N(C)$ vanishes, when $C$ ranges
over radical pchains. Note that as $N(C)=N(C^{(1)})$ , the terms for $N(C)$ and $N(C^{(1)})$ are
cancelled out a priori (without computing the number of certain characters!). 4 In particular,
if a group $G$ satisfies the $(DB_{p})$ -property, then the problem is just reduced to count the
number of chains of specified length which ends at a specified type. This observation is very
simple, but sometimes it helps us to reduce the number of radical chains for which we should
examine the Dade conjecture.

Lemma 3.2 Assume that a finite group $G$ satisfies the $(DB_{p})$ -property. Then

(1) For each pair of radical $p$ -subgroups $U,$ $V$ of $G$ with $U\leq V$ , the group $U$ is the unique
conjugate of $U$ contained in $V$ .

(2) Assume aslo that a type function is defined on the chains. Let $C=(U_{1}, \ldots , U_{n})$ be a
chain of radical $p$ -subgroups of $G$ and let $C^{(i)}$ be the subchain of $C$ obtained from $C$ by
deleting $U_{i}(1\leq i\leq n)$ . If $i\leq n-1$ , then $C$ is the unique chain which contains $C^{(i)}$

and has the same type as $C$ .

4In [Ko] $p=2$ , this can be observed between radical 2-chains $C_{2,2}$ and $C_{1,4}$ .
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Proof. (1) We may assume that $V$ is a Sylow $p$-subgroup of $G$ . If $U$ and $gU$ are
contained in $V$ , then they are normal in $V$ by the $(DB_{p})$-property. Then $V$ and $g^{-1}V$ are
Sylow $p$-subgroups of $N_{G}(U)$ , and hence there is $h\in N_{G}(U)$ with $hg^{-1}\in N_{G}(V)$ . As
$N_{G}(V)\leq N_{G}(U)$ by the $(DB_{p})$-property, we have $g\in N_{G}(U)$ and $U=gU$ .

Claim (2) is immediate from Claim (1). $\square$

4 The radical 2-chains of the largest Mathieu group
In this section, the readers are assumed to have some familiarity with the following termi-
nologies: Steiner system $S(5,8,24)$ , octads, tiros, sextets, the Mathieu group $M_{24}$ of degree
24 as the automorphism group of $S(5,8,24)$ , the structure of the stabilizers in $M_{24}$ of an
octad (trio, sextet): For a standard reference, see [ $\mathrm{C}\mathrm{S}$ , Chap.ll]. We fix an MOG arrange-
ment, and let $O,$ $T$ and $\Sigma$ be the standard octad (the first brick), the standard trio (the
triple of theree bricks) and the standard sextet (consisting of the six columns), respectively.

We will describe some 2-subgroups of $G:=M_{24}$ which correspond to 2-radical subgroups
of quotient groups $G_{X}/O_{2}(G_{X})$ of stabilizers $G_{X}$ of $X$ in $G$ for $X=O,$ $T$ and $\Sigma$ .

Setting $U_{X}:=O_{2}(G_{X})$ , we have $G_{X}=N_{G}(U_{X})$ . The extension $G_{X}/U_{X}$ splits for $X=$
$O,$ $T,$ $\Sigma$ . We have $G_{O}/U_{O}\cong SL_{4}(2),$ $G_{T}/U_{T}\cong SL_{2}(2)\cross SL_{3}(2)$ and $G_{\Sigma}/U_{\Sigma}\cong 3\cdot S_{6}$ , a
nonsplit extension of $S_{6}$ , in which 3 is the center of 3. $A_{6}$ . Furthermore,

$U_{O}=\langle t(0, a, a), t(\mathrm{O}, b, b), t(\mathrm{o}, c, C), \sigma\rangle\cong 2^{4}$ ,
$U_{T}=\langle t(0, a, a), t(0, b, b), t(0, c, c), t(a, a, 0), t(b, b, 0), t(C, c, 0)\rangle\cong 2^{6}$ and
$U_{\sigma}=\langle t(0, a, a), t(\mathrm{O}, b, b), t(a, a, 0), t(b, b, 0), X, y\rangle\cong 2^{6}$ ,

where $a,$ $b,$ $c$ mean the following involutive permutations on a brick, and for example, $t(a, a, 0)$

means the permutation inducing $a,$ $a$ and the identity on the first, the second and the third
bricks, respectively, $x$ (resp. $y$ ) means the permutation inducing the following involution $x’$

(resp. $y’$ ) on each brick, and a is the involution below. ( $x$ and $y$ correspond to the vector
$\mathrm{x}=(\omega,\overline{\omega},\omega,\overline{\omega}, \omega,\overline{\omega})$ and $\omega \mathrm{x}$ in the Hexacode: see [ $\mathrm{C}\mathrm{S}$ , Fig. $118(\mathrm{a})$ , p. 309].)

$a=$ $\iota\int$ $\iota\iota$ , $b=(j(\mathrm{j},$ $c=$ $—-$ , $x’=\mathrm{r}_{)}(|,$ $y’=$

$\sigma=.\cdot$ , $\alpha’=$

$\overline{\cross}$

.

We now take a dummy symbol $\square$ , and set $I:=\{O, T, \Sigma, \square \}$ . For $F\subseteq I\backslash \{\square \}$ , we set
$U_{F}:=\langle U_{X}|X\in F\rangle$ and $U_{F,\square }:=\langle U_{F}, t(a, a, 0), X, \alpha\rangle$ , where $\alpha$ is the permutation inducing
the involution $\alpha’$ above on each brick. With this notation, we can verify that the following:
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Residue at octad $O$ The octad stabilizer $G_{O}$ acts on the set of 15 trios which contain
$O$ as a member. They together with the empty symbol form a 4-dimensional vector space
$V(0)$ over $\mathrm{F}_{2}$ under the symmetric difference. The subgroup $U_{O}$ is the kernel of the action
of $G_{O}$ on $V(O)$ , and $G_{O}$ induces all linear transformations. This explains $G_{O}/U_{O}\cong SL_{4}(2)$ .
The following trios $T=\tau_{1},$ $T_{2},$ $T_{34},$$\tau$ form a basis of $V(O)$ , where we put the index $i$ at the
position belonging to the i-th octad of the trio:

$T_{2}=$ , $T_{3}=$ , $T_{4}=$ .

With respect to the basis $(\tau_{1}, \tau_{2}, T_{3}, T_{4})$ we verify that $t(a, a, \mathrm{o}),$ $t(b, b, \mathrm{o}),$ $t(C, C, \mathrm{o}),$ $x,$ $y$

and $\alpha$ are represented by the matrices $I+E_{41},$ $I+E_{31},$ $I+E_{21},$ $I+E_{42},$ $I+E_{32}$ , and
$I+E_{43}$ , respectively, where $E_{ij}$ is the matrix of degree 4 with a single non-zero entry
1 at the $(i,j)$-position. Thus the group $U_{\{O,T\}}=U_{O}\langle t(a, a, \mathrm{o}), t(b, b, 0), t(c, C, 0)\rangle$ (resp.
$U_{\{O,\Sigma\}}=U_{O}\langle t(a, a, 0), t(b, b, 0), x, y\rangle$ and $U_{\{O,\square \}}=U_{O}\langle t(a, a, 0),t(b, b, 0), X, \alpha\rangle)$ corresponds
to the unipotent radical for the stabilizer of a projective point (resp. a line and a plane), as
you see below. Similarly, $U_{F}$ with $F\ni O$ corresponds to the standard unipotent radicals for
$SL_{4}(2)$ . (Though the suffix here is complementary to that in the preceeding section.)

$U_{O,T}=,$ $U_{O,\Sigma}=,$ $U_{O,\square }=$ ,

$U_{O,T,\Sigma},=UUo,T,\Sigma\square =’.O,\Sigma,\square =.$

’

$U_{O,T,\square },\cdot$
.
$=.$

.

’

Residue at trio $T$ There are 3 octads contained in $T$ and 7 sextets refining $T$ . The latter
form a 3-dimensional space $V(T)$ over $GF(2)$ with the empty symbol under symmetric
difference. The trio stabilizer $G_{T}$ induces $SL_{2}(2)\cong S_{3}$ on the former and $SL_{3}(2)$ on the
latter, with kernel $U_{T}$ on the whole objects. This explains $G_{T}/U_{T}\cong SL_{2}(2)\cross SL_{3}(2)$ . We
may choose the following sextets $A,$ $B$ and $\Sigma$ as the basis of $V(T)$ , and with $\mathrm{r}\mathrm{e}.\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{c}\mathrm{t}}}$ to them
$x,$ $y$ and $\alpha$ are represented as $I_{3}+E_{31},$ $I_{3}+E_{21}$ and $I+E_{32}$ respectively.

$A=$ , $B=$ .
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Thus $U_{\{T,\Sigma\}}=U_{T}\langle x, y\rangle$ (resp. $U_{\{\tau,\text{ロ}\}}$ and $U_{\{\}}\tau,\Sigma,\square$ ) is the unipotent radical corresponding
to the projective point $p=(1,0,0)$ (resp. line $l=\langle(1,0,0),$ $(0,1,0)\rangle$ and the flag $(p,$ $l)$ ).
The subgroup $U_{\{T,O\}}$ corresponds to a subgroup of order 2 in the factor $S_{3}\cong SL_{2}(2)$ of
$G_{T}/U_{T}\cong SL2(2)\cross SL_{3}(2)$ .

Residue at sextet $\Sigma$ and $B_{2}(3S_{6})$ . Though the residue at $\Sigma$ is a generalized quadran-
gle of order $(2, 2)$ on which the group $S_{6}\cong s_{p_{4}}(2)$ of Lie type of rank 2 acts faithfully,
we have $G_{\Sigma}/U_{\Sigma}\cong 3.S_{6}$ , not $S_{6}$ itself. This makes the situation a bit complicated, be-
cause $U_{\{\Sigma,X\}}$ does not correspond to a unipotent radical of $S_{6}\cong s_{p_{4}}(2)$ , where $X=O$ ,
$T$ or $\{0, T\}$ : For example, for $X=O$ , the elements $t(\mathrm{O}, c, c),$ $\sigma,$ $t(C, C, \mathrm{o})$ and $\alpha$ induce
the permutations (34)(56) $,$

(35) $(46),$ (12) $(34)$ and (12)(34) $(56)$ on the six columns of $\Sigma$ , re-
spectively. Thus $U_{\{\Sigma,O\}}$ and $U_{\{\Sigma,O,\square \}}$ correspond to subgroups $E_{1}:=\langle(34)(56),$(35) $(46)\rangle$

and $F_{1}:=\langle(34)(56),$(35) $(46),$(12) $\rangle$ of $S_{6}$ respectively. The former is not a radical 2-
subgroup of $S_{6}$ , as $N_{S_{6}}(E_{1})=F_{1}\langle(345),$(12) $(34)\rangle$ and its $O_{2}$ is $F_{1}$ , not $E_{1}$ . However, the
inverse image of (12) in 3 $S_{6}$ (written by the same symbol) inverts the center $Z$ of 3 $S_{6}$ , and
$N_{3S_{6}}(E_{1})=(Z\langle(12)\rangle\cross E_{1})\langle(345),$(12) $(34)\rangle$ , and hence its $O_{2}$ is in fact $E_{1}$ . Thus $E_{1}$ is a
radical 2-subgroup of 3 $S_{6}$ . We may also see that $F_{1}$ is a radical 2-subgroup of 3 $S_{6}$ .

Moreover, $U_{\{\Sigma,T\}},$ $U_{\{\Sigma,T,\square }$ }, $U_{\{\Sigma,O,\tau\}}$ and $U_{\{\Sigma,\mathit{0},\tau,\}}\square$ induce the subgroups $\langle(34),$(56)$\rangle$ ,
$\langle(12),$(34) $,$(56)$\rangle,$ $\langle(34)(56),$(35) $(46),$(12) $(34)\rangle$ and $\langle(34)(56),$(35) $(46),$(12) $(34),$(12) $\rangle$ of $S_{6}$

respectively. Similar argument as above shows that their inverse images in 3 $S_{6}$ are radical
2-subgroups. It is also straightforward to verify that every radical 2-subgroup of 3 $S_{6}$ is
conjugate to exactly one of the six subgroups $U_{\{\Sigma,F\}},$ $\emptyset\neq F\subseteq\{O, T, \Pi\}$ with $F\neq\square$ .

Let $U$ be a radical 2-subgroup of $G$ . By [Yo, Lemma 4.5], $N_{G}(U)$ is conjugate to a
subgroup of the, stabilizer $G_{X}$ of $X=O,$ $T$ or $\Sigma$ . Thus by Lemma 2.3 and the above
description of the 2-radical subgroups of $N_{G}(U_{X})/U_{X}$ , the subgroups $U_{F}$ for a nonempty
subset $F$ of $I=\{O, T, \Sigma, \square \}$ except $F=\{\square \}$ and $\{\Sigma, \square \}$ exhaust all candidates for the
radical 2-subgroups of $M_{24}$ up to conjugacy.

In fact, we can verify the following by observing the normalizer of each $U_{F}$ .

Lemma 4.1 A radical 2-subgroup of $M_{24}$ is conjugate to one of the 13 subgroups $U_{F}$ , where
$F$ ranges over all non-empty subsets of I execpt $\{\square \}$ and $\{\Sigma, \square \}$ .

At the same time, we can also check the following: (Note that the minimal radicals are
those conjugate to $U_{O},$ $U_{T}$ or $U_{\Sigma}.$ )

Lemma 4.2 If $F\subseteq K\subseteq I$ , then we have $U_{F}\leq U_{K}$ . Furthermore, for $|F|=1,$ $U_{F}\leq U_{h’}$

and $gU_{F}.\leq U_{\mathrm{A}’}$ implies that $g\in N_{G}(U_{F})$ . In particular, the $assumption.(a)$ in Lemma 2.10
is satisfied.

As $N_{G}(U_{O})/U_{O}\cong SL_{4}(2)$ is a group of Lie type in characteristic 2, it satisfies the $(DB_{2})-$

property. Information on $B_{2}(3S_{6})$ given in the above paragraph is enough to see that the
same conclusion holds for $N_{G}(U\Sigma)/U_{\Sigma}$ . Finally $N_{G}(U_{T})/U_{T}$ is a direct product of two groups
$SL_{2}(2)$ and $SL_{3}(2)$ of Lie type in characteristic 2. Thus it also satisfies the $(DB_{2})$ -property
by Lemma 2.9. Hence Lemma 2.8 yields:
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Proposition 4.3 The Mathieu group $M_{24}$ of degree 24 satisfies the $(DB_{2})$ -property. That
$is$, for $U,$ $V\in B_{2}(M_{24})$ , the following conditions are equivalent.

(i) $U\leq V$ (ii) $U\underline{\triangleleft}V$ (iii) $N_{G}(U)\geq N_{G}(V)$

In $particular_{f}\tilde{\Phi}_{2}(M_{24})=\triangle(\beta_{2}(M_{2}4))$ .

Finally we will show that $\Phi_{2}(M_{24})=\triangle(B_{2}(M_{2}4))$ is $M_{24}$-homotopically equivalent to the
subcomplex $P_{2}(M_{24})$ consisting of chains of subgroups conjugate to $U_{F}$ for $\square \not\in F.$ (The
simplicial complex $P_{2}(M_{24})$ is referred to as the 2-local geometry for $M_{24}.$ )

Extending the type map $U_{F}rightarrow F$ , we may naturally associate the type with each chain
of radical 2-subgroups. Types are increasing chains of subsets of $I=\{O, T, \Sigma, \coprod\}$ . In
particular, each maximal chain is of length 4 (i.e., has four terms).

If $C$ is a chain of length 3 with the initial term of type $X\square$ for $X=O$ or $T$ (we write for
example $\{O, T, \square \}$ by $OT\square$ etc. for short), there is a unique chain $\tilde{C}$ including $C$ with the
initial term of type $X$ , because there is no radical groups of type $\square$ and by Lemma 3.2(2).
As $\tilde{C}$ is maximal, we may remove both $C$ and $\tilde{C}$ . In the complex of the remaining chains,
each chain of type (X, $X\square ,$ $OT\coprod$ ) is maximal, and it is a unique chain containing its last
two terms. Thus they can be removed. In the remaining simplices, (X, $X\square$ ) and (X $\square$ ) are
the only possible types containing $X\square$ for $X=O,$ $T$ . They can be removed as there is a
unique chain of type (X, $X\square$ ) (which is maximal now) containing its last $\mathrm{t}’\mathrm{e}\mathrm{r}\mathrm{m}$ .

In the complex $\triangle’$ of the remaining chains, each simplex does not contain any term of
type $X\square$ for $X=O$ or $T$ . Thus if the type of a term of a chain $C\in\triangle’$ contains $\square$ , then it
is $OT\square ,$ $T\Sigma\square$ or $O\Sigma\square$ . (Note that there is no radical group of type $\Sigma\square .$ ) Chains of length
4 in $\triangle^{J}$ can be removed as follows, where for example the symbol

$(T, T\Sigma, OT\Sigma\square )-(T, T\Sigma, T\Sigma\square , \mathit{0}\tau\Sigma\coprod)$

means that by Lemma 3.2(2) a chain of type $(T, T\Sigma, \mathit{0}\tau\Sigma\square )$ is contained in a unique chain
of type $(T, T\Sigma, \tau\Sigma\square , oT\Sigma\coprod)$ , which is maximal in $\triangle’$ , and therefore we can collapse chains
of types $(T, T\Sigma, \mathit{0}\tau\Sigma\coprod)$ and $(T, T\Sigma, \tau\Sigma\square , OT\Sigma\coprod)$ . Note that ther are no overlaps among
the types appearing in the list, so we can remove these chains simultaneously.

$(T, T\Sigma, oT\Sigma\coprod)-(T, T\Sigma, \tau\Sigma\square , O\tau\Sigma\coprod)$, $(\Sigma, T\Sigma, oT\Sigma\square )-(\Sigma, T\Sigma, T\Sigma\coprod, OT\Sigma\square )$ ,
$(O, O\Sigma, oT\Sigma\coprod)-(O, O\Sigma, O\Sigma\coprod, \mathit{0}\tau\Sigma\coprod)$ , $(\Sigma, O\Sigma, oT\Sigma\square )-(\Sigma, O\Sigma, \mathit{0}\Sigma\coprod, \mathit{0}\tau\Sigma\coprod)$ ,
$(O, OT, OT\Sigma\coprod)-(O, OT, OT\square , oT\Sigma\square )$ , $(O, O\tau, OT\Sigma\square )-(\tau, \mathit{0}\tau, \mathit{0}\tau\square , \mathit{0}\tau\Sigma\coprod)$ ,

$(T, OT\Sigma, O\tau\Sigma\square )-(T, T\Sigma, oT\Sigma, \mathit{0}\tau\Sigma\coprod)$ , $(T\Sigma, O\tau\Sigma, oT\Sigma\coprod)-(\Sigma, T\Sigma, O\tau\Sigma, O\tau\Sigma\square )$ ,
$(\Sigma, OT\Sigma, oT\Sigma\square )-(\Sigma, O\Sigma, O\tau\Sigma, O\tau\Sigma\square )$ , $(O\Sigma, \mathit{0}\tau\Sigma, oT\Sigma\square )-(\Sigma, O\Sigma, O\tau\Sigma, O\tau\Sigma\square )$ ,
$(O, OT\Sigma, oT\Sigma\square )-(O, OT, OT\Sigma, O\tau\Sigma\square )$ , $(OT, O\tau\Sigma, oT\Sigma\square )-(T, OT, oT\Sigma, \mathit{0}\tau\Sigma\square )$ .

The complex $\triangle^{\prime/}$ of remaining chains does not contain chains of length 4. In $\triangle^{\prime/}$ , we then
collapse as follows:
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$(T\Sigma, oT\Sigma\coprod)-(T\Sigma, T\Sigma\square , O\tau\Sigma\square )$ , $(O\Sigma,oT\Sigma\coprod)-(O\Sigma,O\Sigma\coprod, OT\Sigma\square )$ ,
$(o\tau, \mathit{0}\tau\Sigma\square )-(o\tau, \mathit{0}\tau\square , \mathit{0}\tau\Sigma\square )$ , $(T, OT\Sigma\square )-(T, T\Sigma\square , \mathit{0}\tau\Sigma, \square )$ ,
(X, $OT\Sigma\coprod$ ) $-(T,O\Sigma\coprod, \mathit{0}\tau\Sigma, \coprod)$ , $(O, OT\Sigma\square )-(T, O\tau\square , \mathit{0}\tau\Sigma, \square )$ ,

$(OT\Sigma, \mathit{0}\tau\Sigma\square )-(\tau, \mathit{0}\tau\Sigma, OT\Sigma, \square )$ , $(O\Sigma\square , O\tau\Sigma\square )-(O, O\Sigma\coprod, oT\Sigma, \square )$ ,
$(T\Sigma\square , O\tau\Sigma\square )-(\Sigma, T\Sigma\square , O\tau\Sigma, \square )$ , $(O, O\tau\coprod)-(O, OT, oT\coprod)$ ,

$(OT, O\tau\square )-(T, OT, \mathit{0}\tau\square )$ , $(O, O\Sigma\square )-(O, O\Sigma, O\Sigma\coprod)$ ,
$(T\Sigma, T\Sigma\square )-(T, T\Sigma, T\Sigma\coprod)$ , $(T\Sigma, T\Sigma\square )-(\Sigma, T\Sigma, T\Sigma\square )$ .

In the remaining complex, we finally remove the chains of the following types:
$(OT\Sigma\square )-(OT\Sigma, \mathit{0}\tau\Sigma\square ),$ $(OT\square )-(T, O\tau\square )$ ,
$(O\Sigma\square )-(\Sigma, O\Sigma\square ),$ $(T\Sigma\coprod)-(\Sigma, T\Sigma\square )$ .

We removed all the chains with terms of type containing $\square$ . Hence

Proposition 4.4 The $\mathit{8}implicial$ complex $\triangle(B_{2}(M_{2}4))$ is $M_{24}$ -homotopically equivalent to
the subcomplex $P_{2}(M_{24})$ (the 2-local geometry for $M_{24}$) consisting of chains of subgroups
conjugate to $U_{F}$ for $\square \not\in F$ .
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