2－radical subgroups of the Conway simple group C_{0}

澤辺 正人
Masato Sawabe
Department of Mathematics，Kumamoto University， Kumamoto 860－8555，Japan

1 Introduction

Let G be a finite group and p be an element of $\pi(G)=\{p$ ：prime $\mid p$ divides $|G|\}$ ． Put $\widetilde{\mathcal{B}}_{p}(G)=\left\{U: p\right.$－subgroup $\left.\subseteq G \mid O_{p}\left(N_{G}(U)\right)=U\right\}$ and $\mathcal{B}_{p}(G)=\widetilde{\mathcal{B}}_{p}(G)-\{1\}$ ．An element of $\mathcal{B}_{p}(G)$ is called a p－radical subgroup of G ． $\mathcal{B}_{p}(G)$ plays an important role in the various fields．For example，$\Delta\left(\mathcal{B}_{p}(G)\right)$ gives us a valuable information when we verify the Dade＇s conjecture for G ．Here $\Delta\left(\mathcal{B}_{p}(G)\right)$ is a simplicial complex whose vertex set is $\mathcal{B}_{p}(G)$ ，and its simplex is each chain of elements of $\mathcal{B}_{p}(G)$ with respect to natural inclusion in $\mathcal{B}_{p}(G) . \Delta\left(\mathcal{B}_{p}(G)\right)$ is called the p－radical complex of G ．Furthermore it is known that the alternating－sum decomposition of $\bmod p$ cohomology of G is

$$
\tilde{H}^{n}\left(G, \mathbf{Z}_{p}\right)=\sum_{\sigma \in \Delta\left(\mathcal{B}_{p}(G)\right) / G}(-1)^{\operatorname{dim}(\sigma)} \tilde{H}^{n}\left(G_{\sigma}, \mathbf{Z}_{p}\right),
$$

where n is any non－negative integer，G_{σ} is the stabilizer of a simplex σ ，and $\Delta\left(\mathcal{B}_{p}(G)\right) / G$ is a set of the representatives of G－orbits of $\Delta\left(\mathcal{B}_{p}(G)\right)$（See［5］）．Hence the calculation of a group cohomology reduces to the calculation of smaller groups．On the other hand， $\Delta\left(\mathcal{B}_{p}(G)\right)$ can be regarded as a geometry for G ．Recently，for a sporadic simple groups G ， $\Delta\left(\mathcal{B}_{p}(G)\right)$ is investigated in this direction very much，and it is closely connected with the essential p－local geometry for G ．$\Delta\left(\mathcal{B}_{p}(G)\right)$ is determined by S．D．Smith，S．Yoshiara and et al．for some sporadic simple groups G and $p \in \pi(G)$ ．The purpose of this note is to announce［3］，namely determination of $\mathcal{B}_{2}\left(C o_{1}\right)$ up to conjugacy，where $C o_{1}$ is the Conway simple group．

2 Known and new results about p－radical subgroups

The following lemma is one of the most basic results on p－radical subgroups．
Lemma 1 （［4；Lemma1．10］）Let G be a finite group and $p \in \pi(G)$ ．If $U \in \mathcal{B}_{p}(G)$ with $N_{G}(U) \subseteq M$ ，where M is a subgroup of G ，then $O_{p}(M) \subseteq U$ ．In particular，If $O_{p}(M) \neq U$ then $U / O_{p}(M) \in \mathcal{B}_{p}\left(M / O_{p}(M)\right)$ ．

Lemma 1 implies that we can find p－radical subgroups inductively．

Corollary 1 Let G be a finite simple group, M be a maximal subgroup of G and $p \in \pi(M)$. If $O_{p}(M) \neq 1$ then $\mathcal{B}_{p}(M)=\left\{O_{p}(M), U \mid U / O_{p}(M) \in \mathcal{B}_{p}\left(M / O_{p}(M)\right)\right\}$.

Theorem 1 ([1]) Let G be a group of Lie type over a field of characteristic p. Then $\mathcal{B}_{p}(G)=\left\{O_{p}(U) \mid G \supseteq U=\right.$ parabolic subgroup $\}$.

Proposition 1 For H and K are finite groups and $p \in \pi(H \times K), \widetilde{\mathcal{B}}_{p}(H \times K)=\{V \times$ $\left.K \mid V \in \widetilde{\mathcal{B}}_{p}(H), W \in \tilde{\mathcal{B}}_{p}(K)\right\}$ holds.

Proposition 2 Let A be a finite group with a normal subgroup G of a prime index p. Then for any $U \in \mathcal{B}_{p}(A), U \cap G=\{1\}$ or $U \cap G \in \mathcal{B}_{p}(G)$.

In this case we have $\left\{U \in \mathcal{B}_{p}(A) \mid U \subseteq G\right\} \subseteq \mathcal{B}_{p}(G)$. On the other hand, for $U \in \mathcal{B}_{p}(A)$ with $U \nsubseteq G$, there exists an element $x \in G$ such that $U=(U \cap G)\langle x\rangle$. We can easily see that $U_{1}=U \cap G \in \widetilde{\mathcal{B}}_{p}(G)$ and $\left|U: U_{1}\right|=p$. Hence it suffices to determine $\mathcal{B}_{p}(G)$ essentially.
Proposition 3 Let G be a finite group of Lie type over a field of characteristic p, and σ be a field automorphism of G of order p. Then $\left\{U \in \mathcal{B}_{p}(G\langle\sigma\rangle) \mid U \subseteq G\right\}=\mathcal{B}_{p}(G)$.

3 Application

We consider the case $G=C o_{1}$ and $p=2$. Let (Λ, q) be the Leech lattice, that is, (Λ, q) is the 24 -dimensional even unimodular lattice which has no vector \mathbf{v} with $q(\mathbf{v})=2$. Let $\operatorname{Aut}(\Lambda, q):=\left\{\sigma \in O\left(\mathbf{R}^{24}, q\right) \mid \Lambda^{\sigma}=\Lambda\right\}$. Aut (Λ, q) is called the Conway group, which will be denoted $\cdot 0$. Its center $Z=Z(\cdot 0)$ is of order 2 , and the factor group $C o_{1}:=$ $\cdot 0 / Z$ is a simple group, which is also called the Conway group. The following remark is straightforward from our definitions

Remark 1 Let G be a finite group and $p \in \pi(G)$. If $U \in \mathcal{B}_{p}(G)$ with $N_{G}(U) \subseteq M$, where M is a subgroup of G, then $U \in \mathcal{B}_{p}(M)$.

The local subgroups of $C o_{1}$ have been classified by Curtis [2].
Theorem 2 ([2; Theorem 2.1]) For any elementary abelian 2-subgroup E of $\cdot 0, N_{.0}(E) / Z$ is contained in a conjugate of one of the following seven groups.

$$
\begin{array}{lll}
L_{1}=2_{+}^{1+8} \cdot \Omega_{8}^{+}(2) & L_{4}=2^{11}: M_{24} & L_{7}=\left(A_{6} \times P S U_{3}(3)\right): 2 \\
L_{2}=2^{4+12} \cdot\left(S_{3} \times 3 S p_{4}(2)\right) & L_{5}=C o_{2} & \\
L_{3}=2^{2+12}:\left(S_{3} \times L_{4}(2)\right) & L_{6}=\left(A_{4} \times G_{2}(4)\right): 2 &
\end{array}
$$

Remark 1 and Theorem 2 imply $\mathcal{B}_{2}\left(C o_{1}\right) \subseteq\left\{U^{g} \mid g \in C o_{1}, U \in \mathcal{B}_{2}\left(L_{i}\right)(1 \leq i \leq 7)\right\}$. We can determine $\mathcal{B}_{2}\left(L_{i}\right)$ systematically by using the results in the previous section as follows. $\mathcal{B}_{2}\left(L_{i}\right)(1 \leq i \leq 5)$: It suffices to determine 2-radical subgroups of $\Omega_{8}^{+}(2), S_{3}$, $3 S p_{4}(2), L_{4}(2), M_{24}$ and $C o_{2}$ by Corollary 1 and Proposition 1. We can find them from [4], [6] and Theorem 1.
$\mathcal{B}_{2}\left(L_{i}\right)(i=6,7)$: Essentially it suffices to determine 2-radical subgroups of A_{4}, A_{6} $G_{2}(4)$ and $P S U_{3}(3)$ by Propositions 1,2 and 3 . The cases A_{4} and A_{6} are straightforward. We can easily determine $\mathcal{B}_{2}\left(G_{2}(4)\right)$ and $\mathcal{B}_{2}\left(\operatorname{PSU}_{3}(3)\right)$ by Theorem 1 .

Now we find the candidates for $\mathcal{B}_{2}(G)$, that is, we find $\mathcal{B}_{2}\left(L_{i}\right)(1 \leq i \leq 7)$. Next we have to examine which element of $\mathcal{B}_{2}\left(L_{i}\right)$ actually belongs to $\mathcal{B}_{2}(G)$ for each $i(1 \leq i \leq 7)$. However when we examine we need detailed arguments. Then we have the following result.
$\mathcal{B}_{2}\left(C o_{1}\right)$ consists of exactly 30 classes, and the representatives and the normalizers of them in $C o_{1}$ are as shown in Table 1 , where $\left\{P_{i}\right\}_{1 \leq i \leq 15}$ and $\left\{N_{i}\right\}_{1 \leq i \leq 7}$ are the sets of representatives of $\mathcal{B}_{2}\left(O_{8}^{+}(2)\right)$ and $\mathcal{B}_{2}\left(L_{4}(2)\right)$ respectively.

Table 1: $\mathcal{B}_{2}\left(C o_{1}\right)$	
representative T	$N_{C o_{1}}(T)$
$R=2_{+}^{1+8}$	$R \cdot O_{8}^{+}(2)$
$R . P_{i}(1 \leq i \leq 15)$	$R \cdot N_{O_{8}^{+}(2)}\left(P_{i}\right)$
$E=2^{11}$	$E: M_{24}$
$Q=2^{4+12}$	$Q \cdot\left(S_{3} \times 3 S_{6}\right)$
$Q: S=2^{4+12}: 2$	$Q \cdot\left(S \times 3 S_{6}\right)$
$Q_{1}=2^{2+12}$	$Q_{1}:\left(S_{3} \times L_{4}(2)\right)$
$Q_{1}: N_{i}(1 \leq i \leq 7)$	$Q_{1}:\left(S_{3} \times N_{L_{4}(2)}\left(N_{i}\right)\right)$
$V=2^{2}$	$\left(A_{4} \times G_{2}(4)\right): 2$
$V:\langle\sigma\rangle=2^{2}: 2$	$\left(V \times G_{2}(2)\right):\langle\sigma\rangle$
$F=2^{2}$	$\left(S_{4} \times P S U U_{3}(3)\right): 2$

Remark. Let G be a finite group and $p \in \pi(G)$. A p-subgroup chain $C: P_{0}<P_{1}<$ $\cdots<P_{n}$ is called a radical p-chain of G if it satisfies $P_{0}=O_{p}(G)$ and $P_{i}=O_{p}\left(\cap_{j=0}^{i} N_{G}\left(P_{j}\right)\right)$ for all i. We can easily determine all the radical 2 -chains of $C o_{1}$ up to conjugacy by using Theorem 1, Proposition 1, [6] and the main result of this note.

References

[1] A. Borel and J. Tits, Eléments unipotents et sousgroupes paraboliques des grous réductives, Inv. Math. 12 (1971), 97-104.
[2] R. Curtis, On subgroups of •0. II. local structure, J. Algebra 63 (1980), 413-434.
[3] M. Sawabe, 2-radical subgroups of the Conway simple group $C o_{1}$, preprint.
[4] S. Smith and S. Yoshiara, Some homotopy equivalences for sporadic geometries, J. Algebra 192 (1997), 326-379.
[5] P. Webb, A local method in group cohomology, Comment. Math. Helv. 62 (1987), 135-167.
[6] S. Yoshiara, The Borel-Tits property for finite groups, in : Groups and Geometries (L. di Martino et al. Eds.) 237-249, Trends in Mathematics, Birkhäuser, 1998.

