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Geometric Consideration
- of Extension Problem

ik o E£#E  (Miki TSUJD *

Abstract
. In the present paper, we investigate the problem of extending bounded
holomorphic functions from one-codimensional subvarieties to ambient spaces.
The problem concerns deeply the d-analysis of the theory of functions of
several complex variables and we investigate it numerically too.

1 Introduction.

In the Summer Seminar at Tateyama on Several Complex Variables, 18th July
1994, Professor T. Ohsawa posed the following problem, which was the starting
point of the present work:

Let © be a bounded pseudoconvex domain in C™ and H be a one codimensional
complex linear subspace of C". For any bounded holomorphic function f on NH,
does there exist a bounded holomorphic function F' on 2 such that the restriction
FIQNH of F to QN H coincides with f on QN H?

H. Alexander[4] considered the problem in case that H is a Rudin variety in
the unit polydisk AN of CV.

M. Henkin-P. L. Polyakov[14] and P. L. Polyakov[27] gave the theories on the
extension problem in case that H is an analytic curve in general position in a
polydisc in C™. ‘

G. M. Henkin[12] investigated the problem in case that  is a strictly pseu-
doconvex domain and H is an analytic closed submanifold in general position in
Q.

K. Adachi|2] proved that Henkin’s results are still valid when 2 is a pseudocon-
vex domain with smooth boundary and H is a subvariety where 0H N ) consists
of strictly pseudoconvex boundary points of €.

The present paper consists of 2 parts.

In section 2, we give counter examples for the Ohsawa’s problem.

Section 3 concerns Numerical Analysis on @-problem and we aim to solve
the inhomogeneous O-equation numerically firstly, using the integral formula by
Hoérmander and the finite element method. Secondly we apply it to the extension
problem. ‘

*Research was supported by Grant-in-Aid for JSPS Research Fellow no.07 2309
from the Ministry of Education, Science and Culture of Japan, 1997.
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2 Counterexamples.

At first, we give a counterexarriple for the Ohsawa’s proBlem in case that {2 is an
unbounded weakly pseudoconvex domain, the boundary of which is not smooth.

Theorem 2.1 (M. Tsuji[29]) We consider a domain
Q= {(z,w) € C% "] < [w|}

in C2, and let F(z,w) be a bounded holomorphic function in the domain .
Then there ezists a holomorphic function h(€) in the unit disk in C such that
2 .
we have F(z,w) = h(%) in (2.

w

Corollary 2.1 (M. Tsuji[29]) Consider a hyperplane in C*
H = {(z,w) € C*%w =1}

and let f(z) be the holomorphic function on QN H defined by
f(z) =z ((2,1) € QN H).

Then there is no bounded holomorphic function F(z,w) on ) such that the restric-
tion FIQNH of F to QN H coincides with f on QN H.

Next, we give a counterexample in case that 2 is bounded but has not smooth
boundary, using Sibony’s domain.

Let A(z,r) be the disk with center z and semiradius r in the complex plane.
The unit disk A(0,1) is denoted by A.

Lemma 2.1 (Sibony[28]) Let {a,}32, be a sequence of points without cluster
point in A such that each point of the unit circle OA is the nontangential limit of
o subsequence of {a,}2,. We define a function A : A — RU{—oo} by

Mz) = Ze,,log|z —2a,,

v=2

where €, \, 0 rapidly so that A\ # —oo and is subharmonic on A. Further let
¥ : A —[0,1) be the subharmonic function ¥(z) = exp(A(2)).
Define a pseudoconver domain U C A? by

U ={(z,w) € &% |w| < e *®}.

Then the domain U is a proper subdomain of A? and all bounded holomorphic
functions on U is extended holomorphically to A?,

Moreover, he noted that there exist 0 < 7,{ < 1 so that if (z,w) satisfies
|z| <, then |w| < (.

Lemma 2.2 (H. Hamada and M. Tsuji[10]) Letwyg be a real number with ¢ <
we < 1. Then a bounded holomorphic function 1/(w — wp) on {(z,w) € C?z =
0} NU can not be extended bounded holomorphically to the domain U.



Finally, we give a counterexample for Ohsawa’s Problem of a connected subva-
riety, all holomorphic functions on which cannot be extended to the whole domain
2 with smooth boundary. The boundary of the subvariety H consists of strictly
pseudoconvex boundary points of §2, but H is not in general position in a pseudo-
convex domain 2. :

Lemma 2.3 Let {yi; k > 1} be a sequence of C* strictly subharmonic functions
Y on C with Yi(2z) > Yry1(2) for each point z € C converging to a function .
Let '

Un = {(z,w) € C% 2| < 1,log |w| + ¢, < 0}.

If the function 1/(w — wy) on {(z,w) € C*z = 0} NU can be extended to
a bounded holomorphic function F, on U,, there exists a sequence Cp;n > 1 of
positive numbers Cy, / 0o such that |Fp(z,w)| > C, for any (z,w) € U,.

Lemma 2.4 (Fornaess and Sibony[8]) There erists a Reinhardt domain R in
C? with smooth boundary satisfying the following conditions:

1. R = {(z,w) € C%log|w| + ¢(z) < 0} for a smooth subharmonic function
@(2) = ¢(|z]) on the open unit disc A such that p(z) — 400 as |z| — 1.

2. The Laplacian of ¢ vanishes precisely on a sequence {Ap;n > 1} of disjoint
annuli Ap = {z € C;xn — 2d, < |2| < Zp + 2dn}, where zn + 3d, = 1(n > 1) and
Tn /1 asn — oo.

3. There exist positive integers pn, qn, and real constants a,, such that we have
¢(2) = (Pn/qn) log |2| + an for any z € An.

Fornaess and Sibony|8] constructed the following domain : Let p be a smooth
nonnegative subharmonic function which vanishes precisely on A(0,2) and which
is strictly subharmonic when |z| > 2. For each n > 1, let V,, be an open set in C,
K, be a compact set in C' such that A, C V,, C K,, and that K, N K,, = ¢ for
1 <n <m. Let on(2) be a C* function on C such that ¢,(z) = 1 on V, and the
support of a,(z) is contained in K.

Let en;m > 1 be a sequence of positive numbers €, \, 0. We define a Hartogs
domain

B = {(z,w) € C*log |w| + ¢1(2) < 0},
where
zZ—Tp

oi(2) = 0(2) + 3 enrn(@o( )

For each n > 1, let M,, be a multiples of ¢, and x, > 0 be a C* function on
C with compact support such that xn(z) > 0 for any z € C and that x,, =1 in a
neighborhood of A(z,,2d,). Let

B’ = {(z,w) € C%|2| < 1,log |w| + ©a(2) < 0},

where
Z— T

dn

We can choose the M,’s so large that B’ has smooth boundary and is strictly
pseudoconvex except in the set {(z,w) € C?% |z| =1, |w| = 0}.

©2(2) = @1(2) + D Xntn( )/ Mn.
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Define

Z‘—Ill'n
1—zz,

m@:ﬁ

Then, there exist positive constants ¢ and C' such that, for z € A(zn, 2d,),

—_— < < () ————-r=
E <Gl < CE

and, for z € Up>1A(2n,2d,), |G(2)] > ¢. Also we have |G] <1on A.
Define a variety V by

V = {(2,w) € AXC;wG(z) = 0} :VUSL';I{(z,w) € C%z = 2, }U{(2,w) € C%w = 0},
which is a connected subvariety, and a monomial P, in (z,w) € C? by
P, = enin zPnqin,
Since for z € A(Zn,2d,), ©1(2) = (Pn/qn) log|2| + an, it holds that

z_xn

dn

_xn

dn

)) on{z=zx,} NB.

| Pal M/ < exp(—thn(2—2)) < exp(—1(Z

Thus |P,|M~/%" < { < wp on {z = z,} N B’. As a result, a function on V N B’
given by :

| 1/(PMn/an —wyy) on  {(z,w) € C}z=2x,} N B
f(z’w)_{—l/wo i on {(z,w) € C*w=0}NH

is a bounded holomorphic function on V N B’.

Theorem 2.2 f(z,w) can not be extended to bounded holomorphic function F(z,w)
on B’.

Proof. Let B™ = {(z2,w) € B';|z — x,|/d, < 1}. We have a proper
holomorphic map @,, : B™ — U,

Z_xn

P, : (z,w) — ( , PMn/tn),

n

The function 1/(w—wy), which is regarded as defined on the set {(0,w) € U,},
can not be extended to a holomorphic function on U, the modulus of which at a
point is less than C,, by Lemma 2.3. If there is holomorphic function on B, with
norm less than C,, then by averaging the solutions over fibers of ®,,, we obtain a
holomorphic function on U,, with norm less than C,,.

So if f(z,w) were extended to a bounded holomorphic function F(z,w) on
B’, we would have ||F(z,w)|| > C,. Since C, — 400 as n — oo and since the
extended function F(z,w) were bounded on B’, this is a contradiction. |

It remains only to modify B’ near the unit circle T x {0} so that the result-
ing Hartogs domain is strictly pseudoconvex everywhere except at (1,0). The
following process is the same in [8]. Choose a smooth defining function r(z, w)
for B’ so that some root —(—r)/V is strictly plurisubharmonic on B’. We write



—(=r)VN = —|8(z, |w])|Ns(z,w), where § is the signed distance function and
s > 0 is smooth on a neighborhood of the boundary of B’. Then we get a new
strictly plurisubharmonic function p by averaging:

-1 v _ o . ) _
pla, ) = 5= [ 18z, lwl) ¥s(z, we)df = ~|6(z, )| V5 (z, w),

where § is smooth in a neighborhood of the boundary of B’ and is > 0.

Next, let v > 0 be a smooth function on C, strictly subharmonic away from 1
and vanishing only at 1. We can make  vanish sufficiently fast to infinite order at
1 so that the perturbation 2 to B’ will still be a counterexample to the Ohsawa’s
problem in case of variety by using the same example as for B’. Let Q be defined
by the inequality {(z,w) € C%p(z,|w|) + v(z) < 0}. The domain Q) satisfies all
conditions. ‘

3 Numerical approach to holomorphic
extension

At first, J. Kajiwara, C. L. Parihar, V. M. Raffee and M. Tsuji[19] investigated
the appropriate algorithm of d—equation, comparing algorithms. We used the
Software Fortran77 and Hardware Super Computer, FACOM VP-2600.

We use the following numerical example.

Example 1 For positive numbers ¢ and d with ¢ < d, we put

P(@) = p(-=5) @>0), palzie,d) = g1l ~ Igrld —a?),

and, for x > 0, we put |

o S eelticd)
#ol(ierd) = [ pa(t;c, d)dt (®> o)

Then the function ps(x;c,d) of class C™ satisfies s(z;¢,d) = 0 on z < \/C,
0 < ps(x;c,d) <1 on/c<z<+Vdand ps3(x;c,d) =1 onz>+d.
For ze€ C, let

Y(z) :== 1 — p3(|z|; 16, 25)

and o (1),
h(z) =1 F1 Z -(—i—
k=0 \3
We obtain a (0,1)-form by putting
= h(z)0

In our experiments, we have compared following algorithms in double precision
computation. '

Our first method is based on the integral formula by Holmander.
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Theorem 3.1 (Hérmander[15]) Let g be a C*(C) (0,1) form with a compact
support.
Then we have

u(z) := —1—/ g—(T—)—deF

2m T—2

as a solution of the 0-equation

Ou =

We apply double integration to 74 and 7, where 7 = 7 + i1, using the DE
formula which is effective when the function is analytic.

It takes about 46 hours to calculate u(z) at 50 points of z, where z = —5 —
5t + k(0.1 +0.12), k = 1,---,50. The reason why it takes long time is that when
4 < |z| < 5, the value z becomes a singular point of calculation for single integral
I ‘T’f:j:;“_’z) dr, with 7, = Imz, and hence many sampling points of T near singular
points of z are necessarily taken to compute u(z).

However, for a small number e and the maximum M of the values |g| on !T z| <

€, it holds that

|—1—/I ()ddT|<M // (1/r)rdrdd = Me — 0 (¢ — 0)

2m1 Jir— zlKe T — 2

and thus the sampling poihts near z are not necessary to get the value u(z) with
high precision to some degree. Therefore, in the next method, we avoid taking
sampling points near z.

For the second double integration, taking the above fact into account, in order
to avoid calculating the values near the singular points for 4 < |z| < 5 and because
the DE formula is very efficient and is rather insensitive to singularities that may
occur at the end points, the integral intervals for 7 are set on [—5, Rez — €| and
[Rez +¢, 5] where 7 € [Imz — ¢,Imz + €] and € = 1078. By the second integration,
we get the similar results by the first integration and it takes about 20 minutes for
the same points of z.

As the third integration, after transformation of 7 = 2+t exp(if), we adapt the
Newton-Cotes formula of 8 degree to § and t by the adaptive automatic integration.

For the adaptive automatic integration, it is better to use the formula such
that sampling points are taken on the same length mesh and hence we choose the
Newton-Cotes formula not the DE formula. (See [23])

By the third method, in 18 minutes, we obtain similar results for the same
points as those in the first and second integration.

The results indicates that for singular points of z, the Newton-Cotes formula
is best algorithm, on the other hand, for no singular points of z, the DE formula
is best one.

Finally, by the fourth method, we apply the finite element method to the
equation Au = 1aau = 10g and the boundary condition u = 0 on the boundary.
We pomt out in [20] that it is impossible to apply the finite element method directly
to Ou =
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Figure 1: Figure of division of the finite element method.
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Figure 2: The graph of |u| by the finite element method with m =100 division as
Figure 1 and by the Newton-Cotes formula. :
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In Figure 3, we show the graph of |u| by the finite element method with m =
100 division as Figure 1, compared with the graph by the Newton-Cotes formula.

In Figure 2, we show the graph of |u| by the finite element method with m = 100
division as Figure 1, compared with the graph by the Newton-Cotes formula.

A reasonably close agreement is observed in the graph of the finite element
metod with m = 100 division, where it takes only 6 seconds to calculate » and in
the graph of the Newton-Cotes formula, where it takes about 1 hour 30 minutes.

However, the maximum error in the values computed by the finite element
method are as much as about 0.38.

If the division m should be increased to get more precise values, we would need
large memory capacity in hardware. It is a limit in the finite element method.

Hence if it is not necessary to get precise values, for example, if you only draw
a graph, and your computer has sufficient memory, it is better to use the finite
element method and you may obtain a quick result.

Next we consider extension problem, numerically.

Let H be a hypersurface given by H := {(21, ) € C? 21 + 2 ++/2 = 0}. Then
A?N H is expressed by {(21,22) € C%;|z1| < 1,z + 2| < 1}.

Let 7 : C? — C? be the Euclidean projection 7(z1,2) = (21, —21 — v/2) and
let B={z€ A% n(z) ¢ A°NH}.

Now, let f(21,2) be a holomorphic function on A2N H and 1 be a function of
class C*® on A? so that ¥ = 1 in a relative neighborhood of A2 N H and 9 = 0
on B.

Then the function £ +(le% is well defined and C* function, since it holds ¢ = 0
on B={z¢€ A2,7r(z) ¢ A?N H} on which f(n(z)) is not defined and 9y = 0

on a neighborhood of A2 N H = {(21,2) € A%z + z + V2 = 0}. Moreover the

function satisfies _
5 f(n(z))0y
a(zl + 25 + \/_ ) 0

Theoretically, we have a solution % in A? such that

Su — f('”(z))&ﬁ
21+ 2+ \/i

Let
F(z1,2) := f(m(2))% — (21 + 22 + V2)u(z1, 2).

Since we have OF = 0, F' is holomorphic on the ambient bidisk A? with
F|a2ng = f, that is, F' is the desired holomorphic extension of f. Numerically we
can get the approximate value of w by calculating the function u;, expressed in
the exact form by the following theorem.

Theorem 3.2 (J. Kajiwara, C. L. Parihar, V. M. Raffee and M. Tsuji[19])
Let g = g1d7i + g2 be a (0,1)-form of class C™ on {z € C? : |21] < R, |2 < R)
such that Og = 0.

Then for 0 <r < R,



u(z) = L-/qqgl(C, 22)

2m Jj
1 1 d¢ Y d¢' AdC
+%/I.C']<T{§E/KI—T (C g)c } C/_zz

Ou=gon{zeC%: |n| <r|zl <r}

dC/\dC

satisfies

" Next we construct an example function .
The set A2NH = {(z1,22) € C%|z| < 1, ]z1 + v/2] < 1} is mapped by
v(z1, 22) = V221 + 1 to the circle-arced dl-angular

lv—1] < V2, lv+1] < V2

which is mapped to the unit disk |w| < 1 by the mapping w = V (v) :=
 Let G(z) = V(v(n(2))) for z € A®
For positive numbers ¢ and d with ¢ < d, we put
1

$1(z) =exp(=—)  (@>0), ¢a(zic,d) =il —)du(d —2),

and, for z > 0, we put

T a(t;c,d

J(ase,d) = S 2bo D
[ da(t;c, d)dt

Let t = |21 + 22 +v/2|? and w = G(2).
We define one example for v by, for § > ¢ > 0,

t
p= ¢3(e - a.rctaln(1 — |w|2)’—§ +e,0),

where 0 < arctanz < 27.

The function p satisfies the condition that p= 1 in a relative neighborhood of
A% N H and that p = 0 on B.

Example 2 We define f by

2v
e

(x> c).

11 2 (3 2
1F1(213a )_kzo() k'.

By calculating the approzimate value of u on Dy = {(z1,22) € C? : || <
0.98, |2| < 0.98} we draw the graphs of |u(z1 + z2 +2)|, |fp| and |fp — u(z1 +
22 +vV2)| on{z €C:|z| <097} at z = 0.

Example 3 We define [ by
_ Z w*,
k=0

which is unbounded at each boundary point of A2 N H.
As the same as Example 2, we draw the graphs of |u(z, + z2 +v/2)|, | fp| and
Ifp —u(z1 + 20 +V2)| on {z1 € C: |z| <097} at z, = 0.

Acknowledgment

The author would like to express her hearty grafmtude to Professor Adachi,
Professor Kajiwara, Professor Kazama, Professor Ohsawa and Professor Sibony
for his warm advises, stimulating criticism and fruitful discussions.

137



138

References

[1] K. Adachi, Extending bounded holomorphic functions from certain subvari-
eties of a weakly pseudoconvez domain, Pacific J. Math. 110(1984), 9-19.

[2] K. Adachi, Continuation of bounded holomorphic functions from certain sub-
varieties to weakly pseudoconver domains, Pacific J. Math. 130 (1987), 1-8.

[3] K. Adachi and M. Suzuki, Eztension of holomorphic mapping, Mem. Fac. Sci.
Kyushu Univ. 24-2(1970), 238-241.

[4] H. Alexander, Eztending bounded holomorphic functions from certain subva-
rieties of a polydisc, Pacific J. Math. 29(1969), 485-490.

[6] S. Bochner and W. T. Martin, Several complex variables, Princeton Univ.
Press (1948), 216pp.

[6] K. Diederich and T. Ohsawa, An estimate for the Bergman distance on pseu-
doconvezr domains, Ann. of Mathematics 141(1995), 181-190.

[7] J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains,
Amer. J. Math. 98(1976), 529-569.

[8] J. E. Fornaess and N. Sibony, Smooth Pseudoconvezr Domains in C? for which
the Corona Theorem and LP Estimates for 0 Fail, Complex Analysis and
Geometry, New York, 29(1993), 209-222.

[9] J. E. Fornaess and B. Stensgnes, Lectures on counterezample in several com-
plex variables, Mathematical Notes 33(1987).

[10] H. Hamada and M. Tsuji, Counterezample of a bounded domain for Ohsawa’s
problem, Complex Variables, 28(1996), 285-287.

[11] G. M. Henkin, Integral representations of functions holomorphic in strictly
pseudoconver domains and applications, Math. USSR-Sb 7(1969), 597-616.

[12] G. M. Henkin, Continuation of bounded holomorphic functions from subman-
ifolds in general position to strictly pseudoconvexr domains, 1zv. Akad. Nauk
SSSR Ser. Mat. 36(1972), 540-567.

[13] G. M. Henkin and J. Leiterer, Theory of functions on complex manifolds,
Birkhauser Verlag(1984), 226pp.

[14] G. M. Henkin and P. L. Poljakov, Prolongement des fonctions holomorphes
bornées d’une sous-variété du polydisque, C. R. Acad. Sci. Paris Sér. I Math.
208-10(1984), 221-224.

[15] L. Hérmander, An introduction to Complex Analysis, Northholand(1966),
208pp. ’

[16] J. Kajiwara, Oka’s principle for extension of holomorphic mappings, Kodai
Math. Sem. Rep. 18(1966), 343 — 346.



[17] J. Kajiwara, Oka’s principle for extension of holomorphic mappings-I11, Mem.
Fac. Sci. Kyushu Univ. 21(1967), 122 — 131. ' ’

[18] J. Kajiwara and H. Kazama, Oka’s principle for relative cohomology sets,
Mem. Fac. Sci. Kyushu Univ. 23(1969), 33 - 70.

[19] J. Kajiwara, C. L. Parihar, V. M. Raffee and M. Tsuji, Numerical Analysis
on 0—Problem and Extension of Holomorphic Functions from Lower Dimen-
sional Subvarieties, Proceedings of the Seventh International Colloquium on
Differential Equations, VSP (Netherlands, Utrecht) (1997) pp. 181-188.

[20] J. Kajiwara, V. M. Raffee and M. Tsuji, Numerical Methods for d-problem,
Proceedings of the Beijing Workshop on Finite or Infinite Dimensional Com-
plex Analysis, Beijing, China, 3-5, August (1996) pp. 23-33.

[21] Y. Komatsu and J. Kajiwara, Shoukai-Kansuron enshu, Kyoritsu(1983),
299pp.

[22] \ H.R. Kutt, The Numerical evaluation of principal value integrals by finite-part
integration, Numer. Math. 24(1975), 205-210.

[23] M. Mori, Fortran 77 Numerical calculation programming, The ITwanami com-
puter science series, (1986), 398pp.

[24] K. Noshiro, Shotou Kansuron (in Japanese), Baifukan(1966), 255pp.

[25] T. Ohsawa, Some applications of L? estimates to complex geometry, Abstract
of the Summer Seminar of Several Complex Variables held at Tateyama,
Toyama Prefecture, Japan, 18th July 1994, 10.

[26] P. L. Poljakov, The Cauchy-Weil formula for differential forms, (Russian)
Mat. Sb. 85(1971), 388-402; Engl. transl. in Math. USSR-Sb. 14-3(1971),
383-398.

[27] P. L. Poljakov, Ertension of bounded holomorphic functions from an ana-
lytic curve in general position in a polydisc, Functional. Anali Prilozen. 17-
14(1983), 237-239. 14-3(1971), 383-398.

[28] N. Sibony, Prolongement des Fonctions Holomorphes Bornéss et Métrique de
carathéodory, Inv. Math. 29(1975), 205-230. '

[29] M. Tsuji, Counterezample of an unbounded domain for Ohsawa’s problem,
Complex Variables, 27(1995), 335-338.

139



$

1-AXIS
ST e W

Mo o ;e ;e

| AT TSRS TR AT |

4 TSSOSO

’S TS G ST SO CRTTRST S s,
. O S oSS

S S 0 S I A OO  IT IS SIS o8 o
© S RTINS,
S e A

<S5 SIS
S Mog‘,‘:ﬁ::*“ S

’34 O O S e e

=
S

e SO SS
= -‘Q&E,
e S s S
fo s OIS

-
e o S
SRR
SRS
S

e das o ekl -
S -
SESEEET .
’ <>. S
5 o
2 e
> *.

|fp —u(z1 + 2 + V2)|

Figure 3: The graphs in Example 2.
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|fp —ulz1 + 22 + V2)|

Figure 4: The graphs in Example 3.



