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1. Introduction

Extensive calculations are performed routinely by financial institutions to price options

and to hedge portfolios. Invariably, these computations involve the solution of the Black

Scholes partial differential equation subject to the various boundary data which describe

the multitude of options which currently are traded. As is well known, the Black-Scholes

equation is essentially the heat equation under a natural change of variables (see, e.g., [9]),

and many popular numerical techniques such as the binomial method specifically exploit

this structure of the problem. In fact, for European options the solution of the problem is

given in closed form in terms of error functions, the famous Black-Scholes pricing formulas

[9].

There is, however, a growing interest in solving models for pricing options which leave

the narrow framework of the Black-Scholes equation. If differential equations are used to

model the value of the option then the resulting problem no longer is formulated for a

constant coefficient scalar (heat) equation but for a one- or multidimensional nonlinear

parabolic equation subject to data on fixed and free boundaries. In developing numerical

methods for this broader class of problems it appears to be a natural requirement to ask

for an algorithm which is tied very little to the specific structure of the problem at hand,

which can reliably solve it, but which remains competitive when applied to the standard

Black-Scholes formulation which, after all, is the workhorse of the industry.

It was suggested in [6] and [7] that the so-called method of lines (also called Rothe’s

method) based on time discrete boundary value problems is a flexible and easily applied

method for the general option valuation described by an optimal stopping problem for a
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scalar diffusion equation. But while applicable in principle to a broad class of problems

this method is not immune to the difficulties in the model brought about by degenerate

diffusion coefficients, infinite domains or dominant convection terms.

It is the purpose of this paper to examine the influence of those features of the model

which are known to complicate its numerical solution, and to illustrate its numerical per-

formance by pricing portfolios of options with transaction costs.

2. The Method of Lines

The method of lines describes the approximation of a partial differential equation by

a system or sequence of ordinary differential equations to which the techniques common in

the theory of ordinary differential equations are applied. Here we shall treat the following

(free) boundary value problem for a general diffusion equation from this point of view:

$A(x, t)u_{xx}+B(x, t)ux-^{c(t}x,)u-D(X, t)u_{t}=F(x, t)$ (2.1a)

$u(X, t)=\alpha(t)u_{x}(x, t)+\beta(t)$

$G_{i}(u(S(t), t),$ $ux(S(t), t),$ $s(t),$ $t)=0$ , $\dot{i}=1,2$ (2.1b)

$u(x, 0)=u0(X)$

$S(0)=S_{0}$ ,

where $X>S(t)$ or $X<S(t)$ depending on the application, and where $x$ lies between $X$

and $S(t)$ .

As we shall see, the equation and the boundary data allow the treatment of European,

American, and some path dependent options with deterministic but not necessarily con-

stant volatility, interest and dividend rates. Specifically, all coefficients and the source term

in (2.1) are allowed to be functions of the independent variables $x$ and $t$ . However, they do

not depend on the solution $u$ and its derivatives. There are models where the coefficients

do depend on $u$ and its derivatives. For example, when transaction costs are included in

the pricing model then the diffusion equation (2.1a) may well depend nonlinearly on $u_{xx}$
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(see, e.g., [9] and the comments below). However, a solution algorithm for such a problem

in general is iterative so that it solves a problem for (2.1) at each step. Hence an algorithm

for (2.1) subject to appropriate initial and boundary data will be sufficiently general for

many financial applications.

When we apply the method of lines (in the Rothe sense) then the equation (2.1) is

approximated by a time implicit ordinary differential equation of the form

$Lu\equiv A(x, tn)u_{n}’’+B(x, t_{n})u’-nc(X, tn)u_{n}$

(2.2)
$-D(x, t_{n}) \frac{u_{n}}{\triangle t}=-D(x, t_{n})\frac{u_{n-1}}{\Delta t}+F(x, t_{n})$

or

$Lu\equiv A(x, t_{n})u^{J\prime}n+B(x, t_{n})u_{n}^{\prime c}-(x, tn)u_{n}$

$-D(x, t_{n}) \frac{3u_{n}}{2\triangle t}=-D(x, t_{n})[\frac{3u_{n-1}}{\triangle t}-\frac{u_{n-1^{-u_{n-}}2}}{2\Delta t}]+F(x, t_{n})$,
(2.3)

where $\{u_{n}, s_{n}\}$ is the approximate solution at time level $t_{n}=n\triangle t$ , and where for conve-

nience $\triangle t$ is held constant. The boundary data at time $t_{n}$ are (usually) the natural time

discretization of (2.1b)
$u_{n}$

.
$(X)=\alpha(t_{n})u’(nX)+\beta(.t_{n})$

(2.4)
$G_{i}(u_{n}(Sn), u_{n}^{J}(Sn),$ $Sn’ t_{n})=0$

Hence the original parabolic problem is solved as a sequence of elliptic problems at discrete

time levels.

The Rothe semi discrete approximation leads to boundary value problems and differs

from the usual method of lines approximation for (2.1) where space is discretized. Then

the resulting system of ordinary differential equations is continuous in time and reflects

the evolutionary character of the process. For a finite element based application of this

discretization to a Stefan problem see [8]. Since optimal stopping problems usually involve

free boundaries which strongly determine the solution we consider Rothe’s method an

appropriate approximation of the option pricing model.

126



We shall make the assumption that $A(x, t)$ is continuous and positive on the open

interval bounded by $X$ and $S(t)$ so that we can rewrite equation (2.2) or (2.3) and the

boundary data in the form

$Lu\equiv u’’(x)-d(x)u’-C(X)u=f(x)$ (2.5)

$u(X)=\alpha u’(X)+\beta$

$G_{i}(u, uS’,)=0$ , $i=1$ or 2

(for example, $\dot{i}=1$ for European options where $S$ is given, or $\dot{i}=1,2$ for American options

where $S$ is to be determined). The functions $d,$ $c,$ $f$ are found by comparing with (2.2) or

(2.3). For simplicity we have dropped the subscript $\mathrm{n}$ denoting the time level in (2.5), but

it should be understood that the boundary value problem (2.5) changes with $n$ since $f(x)$

always depends on the the solution at the preceding time level(s).

The solution of (2.5) is handled with an implicit shooting method which employs the

Riccati transformation. If $p$ is the shooting parameter and $\{u(x,p), u^{;}(x,p)\}$ denotes the

solution of

$Lu=f(x)$ (2.6)

subject to
$u’(X,p)=p$

$u(X,p)=\alpha u(\prime X,p)+\beta=\alpha p+\beta$

then we would need to find a $p$ such that $\{u(x,p), u(\prime X,p)\}$ satisfy the boundary conditions

at $S$ . It follows from the implicit function theorem that it is possible to find the inverse

$p=p(x, u’)$ of $u’=u’(X,p)$ , at least when $|x-X|$ sufficiently small. If we substitute this

inverse function into $u=u(x,p)$ then we see that

$u=u(x,p(X, u)’)=u(x, u’)$ . (2.7)
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Since $L$ is a linear operator it is straightforward to verify that the expression (2.7) is

actually an affine transformation, the so-called Riccati transformation,

$u=R(X)u^{;}+w(x)$ (2.8)

where

$R’=1-d(x)R-c(X)R2$ , $R(X)=\alpha$ (2.9)

$w’=-c(x)R(x)w-R(x)g(x)$ , $w(X)=\beta$ (2.10)

If (2.9) and (2.10) are integrated (forward if $S>X$ , backward if $S<X$ ) then at the

boundary $x=S$ we need to satisfy

$G_{i}(R(s)u’(S)+w(S), u(\prime s),$ $S)=0$ (2.11)

where $\dot{i}=1$ if $S$ is given or $\dot{i}=1,2$ if $u’(S)$ and $S$ are both unknown. If $S$ is given then

it is assumed that (2.11) can be solved for $u’(S)$ . If $S$ is unknown then it is assumed that

either $G_{1}$ or $G_{2}$ can be solved explicitly for $u’(S)$ . For definiteness, let us assume that

$G_{1}(R(s)u’(s). +w(S), u’(S), S)=0$

can be rewritten as

$u’(S)=h(R(S), w(S),$ $S)$ (2.12)

then the second boundary condition becomes

$\phi(S)\equiv G_{2}(R(s)h(R(S), w(S),$ $S)+w(S),$ $h(R(S), w(S),$ $s),$ $S)=0$ .

Hence the free boundary $S$ must be a root of

$\phi(x)=0$ . (2.13)

Conversely, it can be shown that every root of $\phi(x)=0$ defines a solution of (2.5).
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Once $S$ has been found then $u’(S)$ is determined by (2.12). Rom

$Lu=f(x)$

and the Riccati transformation follows that we can find $u’(x)$ from the initial value problem

$(u’)’-d(X)(u’)-C(X)(R(x)(u^{;})+w(x))=f(x)$ (2.14)

$u’(S)=h(R(S), w(S),$ $S)$ .

Integrating (2.14) from $S$ to $X$ and substituting $u’$ into (2.8) then yields the solution of

the boundary value problem (2.5) at time $t_{n}$ . Note that the initial value problems for $R,$ $w$

and for $u’$ are always integrated in opposite directions.

In discretized parabolic problems in general and in financial applications in particular

we observe that $c(x)>0$ . If $S>X$ so that we first integrate forward in $x$ then $R(X)\geq 0$

and $c(x)>0$ insure that $R(x)$ exists for all $x>X$ and remains positive. Similarly,

$c(x)>0,$ $S<X$ and $R(X)\leq 0$ insure that $R$ exists for $x<X$ and remains negative. In

essence, $R(x)$ behaves linearly or like a hyperbolic tangent. A look at the linear equations

for $w$ and $u’$ then shows that the homogeneous parts of these equations have fundamental

solutions which are exponentially decreasing in the direction of integration. In principle,

if ordinary differential equations have smooth bounded solutions then numerical methods

are able to approximate them to a high degree of accuracy. Hence for analytic discussions

it is held permissible to assume that the ordinary differential equations for $R,$ $w$ and $u’$

are solved exactly.

While the theory of ordinary differential equations governs the existence and unique-

ness of solutions of initial value problems, their numerical resolution will determine the

practical value of the method of lines approach for financial problems. Here the algo-

rithm is implemented with the trapezoidal rule for the numerical integration of all initial

value problems. If a fixed, but not necessarily equidistant grid is used at all times then

this method allows rapid communication of data between iterations at a given time level
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and from one time level to the next. Moreover, since the parabolic problem already is

discretized with respect to time with a method which is at most of order $\triangle t^{2}$ it seems

defensible to use a space discretization which is of order $\triangle x^{2}$ . The trapezoidal rule dis-

cretization then is of the same order as the finite difference discretization proposed in [9]

when the convection term is approximated by a central difference quotient. We note that

as $R$ and $w$ are computed with the trapezoidal rule the function $\phi(x)$ can be evaluated. If

$\phi(x)$ changes sign between adjacent mesh points then $S$ will be found as the root of the

cubic interpolant to $\phi$ through the nearest four points. $S$ is added to the fixed mesh and

is the only point which changes from time level to time level.

It is known [1] that the continuous Riccati method is in fact the closure of Gaussian

elimination applied to the fully discrete approximation of the spacial problem (2.5). Hence

algebraically our method is equivalent to applying Gaussian elimination to a matrix ap-

proximation of (2.5), and searching for $S$ is equivalent to checking at every forward step

of the elimination whether the point corresponding to that line of the matrix satisfies the

criteria for the free boundary. It appears conceptually simpler to work with the closure

of the method given by the above ordinary differential equations than with the algebraic

equations which actually have to be solved to obtain practical answers.

However, the structure of the algebraic problem obtained from a finite difference

approximation of (2.5) also influences the integration of the ordinary differential equations

with the trapezoidal rule. Let $\{x_{j}\}$ denote mesh points such that $X=x_{0}$ and $X_{N}>S$ . Let

$\{R_{j}, w_{j}, u_{j}’\}$ denote the approximate solution at $x_{j}$ of the ordinary differential equations.

Then it follows from the trapezoidal rule that $\{R_{j}, w_{j}, u_{j}’\}$ are given by the formulas

$\frac{\triangle x}{2}c_{j1}+Rj+12+(1+\frac{\triangle x}{2}d_{j+1})R_{j+1}-(1-\frac{\triangle x}{2}d_{j})R_{j}+\frac{\Delta x}{2}c_{j}R_{j}^{2}-\triangle x=0$

$(1+ \frac{\triangle x}{2}c_{j+1}R_{j}+1)wj+1=(1-\frac{\triangle x}{2}C_{jj}R)w_{j}-\frac{\Delta x}{2}(R_{j}f_{jj+1}+Rf_{j}+1)$
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$(1- \frac{\triangle x}{2}(C_{j1}+Rj+1+dj+1)\mathrm{I}u’=j+1(1+\frac{\triangle x}{2}(c_{j}R_{j}+dj))u_{j}$’

$+ \frac{\triangle x}{2}(_{C_{j}w_{j}++f_{j}f}Cj+1wj+1+j+1)$

where $d_{j}=d(x_{j}),$ $c_{j}=c(x_{j})$ and $\Delta x=x_{j+1}-xj$ .

These algebraic formulas impose constraints on $\triangle x$ . For example, suppose that $S>X$

so that $w$ is integrated forward and $u’$ is integrated backward in $x$ . In order to have

decreasing exponential fundamental solutions in the direction of integration it is necessary

that

$0< \frac{\Delta x}{2}c_{j}R_{j}<1$ (2.15)

and

$0< \frac{\triangle x}{2}(_{C_{j}R_{j}+}d_{j})<1$ $(2.16\grave{)}$

in order to avoid spurious oscillations. In addition, it follows from the quadratic formula

that we can solve for $R_{j+1}$ only if

$(1+ \frac{\Delta x}{2}d_{j+1})^{2}+2\triangle xcj+1(\triangle x+(1-\frac{\triangle x}{2}d_{j})R_{j}-\frac{\triangle x}{2}cjR^{2}j)\geq 0$ .

However, $R_{j},$ $c_{j}>0$ and (2.16) insure that this condition holds so that no.additional
constraints are introduced by the numerical integration of the Riccati equation.

If $S<X$ then $R_{j}\leq 0$ and it is readily verified that the analogous constraints are

$-1< \frac{\triangle x}{2}c_{j}R_{j}<0$

$-1< \frac{\triangle x}{2}(_{C_{j}R_{j}+}d_{j})<0$ .

In a typical application given below we illustrate the effect of violating these constraints.

3. Applications

Let us first consider how our considerations apply to the method of lines for the

Black-Scholes equation with constant market parameters. The diffusion equation in this

case is
1 2 2

$Lu\equiv\overline{2}\sigma xu_{xx}+(r-\rho)xux-ru-ut=0$ (3.1)
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where $u=V/K$ and $x=S/K$ are the value $V$ of the option and of the underlying asset

$S$ scaled by the strike price $K$ . The volatility $\sigma$ , the risk-free interest $r$ and the dividend

rate $\rho$ in (3.1) are assumed constant. Real time $\tau$ is related to the independent variable $t$

in (3.1) through $\tau=T-t$ where $T$ is the time of expiry of the option.

If a backward Euler discretization of (3.1) is employed then it is straightforward to

verify that

$c(x)=(r+ \frac{1}{\triangle t})\frac{2}{\sigma^{2}x^{2}}$

and

$d(x)=-(r- \rho)\frac{2}{\sigma^{2}x}$

If an American call is to be considered for (3.1) then for $\rho>0$

$u(0, \iota)=0$

$u(s(t), t)=s(t)-1$ (3.2)

$u_{x}(s(t), t)=1$ .

where $s(t)$ is the early exercise (free) boundary. If a European call is to be treated then

for $\rho\geq 0$ the corresponding boundary conditions are

$u(0, t)=0$

(3.3)
$\lim_{xarrow\infty}u(x, t)=\lim_{xarrow\infty}[Xe^{-}|\rho t-e-rt]$

It can be shown (see [3] or [7]) that in either case the time discrete solution $u$ at $t=\cdot t_{n}$

has the representation

$u(x)=x^{\gamma} \sum_{i=0}\delta_{i}n(\ln nx)^{i}$ , $0\leq x\leq 1$ (3.4)

where $\gamma$ is the positive root of

$\frac{1}{2}\sigma^{2}\gamma(\gamma-1)+(r-\rho)\gamma-(r+\frac{1}{\triangle t})=0$ (3.5)
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and where the coefficients $\{\delta_{i}^{n}\}$ are determined by a recurrence relation

$\delta_{i}^{n}=\frac{-\gamma[\delta_{i^{-}1}^{n}-1+i(\dot{i}+1)\frac{\sigma^{2}}{2}\delta n\triangle t]i+1}{\dot{i}[r\triangle t+1+\gamma^{2}\frac{\sigma^{2}}{2}\triangle t]}$ , $\delta_{n}^{n}=0$ .

The recurrence relation does not define the constant of integration $\delta_{0}^{n}$ . However, differen-

tiation shows that

$u(x)= \frac{x}{\gamma}u’(x)-\frac{x^{\gamma}}{\gamma}\sum_{=i1}^{n}\delta^{n}(i^{\dot{i}}\ln X)i-1$ (3.6)

It follows that on $[0,1]$

$R(x)= \frac{x}{\gamma}$

which can also be verified by direct substitution into (2.9). Moreover, this linear func-

tion also satisfies the difference equation obtained from the trapezoidal rule. Hence the

conditions (2.15) and (2.16) for a call take on the concrete form

$\frac{\triangle x}{\sigma^{2}x\gamma}(r+\frac{1}{\triangle t})<1$

and

$0< \frac{\triangle x}{\sigma^{2}x\gamma}(r+\frac{1}{\triangle t})-\frac{(r-\rho)}{\sigma^{2}x}\triangle x<1$ .

It is clear that these conditions cannot be satisfied as $xarrow \mathrm{O}$ . Hence a straightforward

application of the trapezoidal rule on $(0, s(t))$ for a call will not succeed. On the other hand,

the representation (3.4) suggest the replacement of $u(\mathrm{O}, t)=0$ by the reflection condition

(3.6) at some $X>0$ . In this case $c(x),$ $R(x)$ and $d(x)$ are bounded above so that it now

is possible to choose $\triangle x$ small enough to satisfy the above sign constraints. Alternatively,

the representation (3.4) suggests approximating the boundary condition $u(\mathrm{O}, t)=0$ by the

barrier conditions $u(X, t)=0$ for $X\ll 1$ since $u=O(x^{\gamma})$ as $xarrow \mathrm{O}$ .

If, instead of a call, a put is to be considered then the Black-Scholes equation is subject

to the boundary conditions

$u(s(t), t)=1-s(t)$

$u_{x}(s(t), t)=-1$
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$\lim_{xarrow\infty}u(X, t)=0$

for an American put and

$u(0, t)=e^{-r}t$

$\lim_{xarrow\infty}u(X, t)=0$

for a European put. As shown in [7] the condition at infinity can be replaced by the

reflection condition (3.6) for some $X\geq 1$ where now $\gamma$ is the negative root of (3.5). Hence

the above positivity constraints remain basically unchanged. An implementation of the

method of lines for the time discretized parabolic problem with the trapezoidal rule must

observe them in order to yield acceptable results. To illustrate this point we show in Fig. 1

a plot of the scaled “gamma”

$u”(X)=c(x)(R(X)u’(X)+w(x))+d(X)u’(X)+f$

for an American put for two choices of a constant $\triangle x$ . For the chosen parameters we find

at $x=1$ :

$\triangle x=.01$ , $c(_{X})^{*}R(X)^{*}\triangle x/2=-1.4905$

$\triangle x=.005$ , $c(x)^{*}R(x)*\triangle x/2=-0.7378$

The computed gamma remains unchanged as $\triangle x$ is refined further. While the option value

may still look acceptable the gamma is destroyed when the mesh constraints are violated.

In general, a “nonphysical” oscillatory behavior of the method of lines solution invariably

is an indication that the mesh parameters are not balanced.

To conclude this discussion of the choice of $\triangle x$ we note that for an American put

$s(t)>s_{\infty}>0$ so that the degeneracy of the diffusion coefficient at $x=0$ does not come

into play. Consequently, the American put is a benign (and popular) test problem for

numerical methods for the Black-Scholes equation.

Above we have considered only American options because they define a nonlinear

obstacle problem for which no closed-form solution is known. The method of lines should
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Gamma

$\mathrm{x}$

Fig. 1. Gamma for an American put near the free boundary.

$\sigma=.15$ , $r=.08$ , $\rho=0$ , $T=.002$ , $\triangle t=.001$

solid line: $\Delta x=.\mathrm{O}1$ , $X=2$

points: $\Delta x=.005$ , $X=2$

not be applied to the corresponding European option because they have analytic solutions.

However, European options do require a numerical solution if portfolios with transaction

costs are considered. There is considerable discussion in the mathematical and financial

literature on how to incorporate such costs (see. e.g., [2], [4] and [9]). Here we simply

note that all the modifications proposed introduce a nonlinearity into the Black-Scholes

model which can be incorporated easily into an iterative solution of the problem with the

method of lines. To be specific let us include transactions costs as discussed in [9]. The

Black-Scholes equation (3.1) is now replaced by the nonlinear equation

12 2
$Lu\equiv-\sigma 2xu_{xx}+(r-\rho)xu_{x}-ru-ut=\alpha X^{2}|u_{xx}|$ (3.7)

where $u$ and $x$ are the unscaled values of a portfolio and of the underlying asset. The

initial and boundary conditions for (3.7) are dictated by the composition of the portfolio.
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Similar to the problem with jump diffusion considered in [6] we shall solve this non-

linear problem iteratively. If at time level $t_{n}$ the index $k$ is an iteration count then the

value $u_{n}$ is found from

$u_{n}(x)= \lim_{karrow\infty}u^{k}n(x)$

where $u_{n}^{k}$ is a solution of

$Lu_{n}^{k}=\alpha x^{2}|u_{x}-1|kx$ (3.8)

subject to

$u_{0}(x)=u(_{X}, \mathrm{o})$ , $u_{n}^{0}(x)=u_{n}-1(x)$ , $u_{n}^{k}(X)=0$

and the appropriate boundary conditions. For each $k$ we have precisely the problem

discussed above. To illustrate the behavior of the method for this model we shall consider

the two portfolios of European options solved with an explicit finite difference method in

[9].

The first portfolio consists of a long call with strike price $K_{1}=45$ and a short call

with strike price $K_{2}=55$ . This imposes the following initial and boundary conditions on

(3.7):
$u(x, 0)= \max\{x-K_{1}, \mathrm{O}\}-\max\{x-K_{2},0\}$

$u(0, t)=0$

$\lim_{xarrow\infty}u(x, t)=(K_{2}-K1)e^{-r}t$

The application of the method of lines to this problem is straightforward. We do point

out, however, that exponentials in time dependent boundary conditions, particularly for a

European put, should not simply be evaluated but should be approximated by the product

formula, for example,

$e^{-rt_{n}}=(1-r\triangle t)^{n}$ , $t_{n}=n\triangle t$

in order not to introduce unbounded derivatives at $x=0$ into the ordinary differential

equation (3.8). In fact, it is straightforward to verify that the time discrete European call
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and put for (2.2) satisfy the relationship

$P_{n}(x)=C_{n}(x)+K(1-r\triangle\theta)^{n}-x(1-\rho\triangle t)^{n}$

From $n\triangle t=t$ and $\triangle tarrow \mathrm{O}$ we recover the well-known call put parity relation for the

Black-Scholes solution.

For the numerical simulation the boundary condition at $x=0$ is replaced by the

barrier condition

$u(1, t)=0$

while the second boundary condition is enforced at $X$ which is chosen sufficiently large so

that the value of the portfolio near the strike prices is no longer affected by changes in $X$ .

In Fig. 2 we show the value $u(50)$ of the portfolio as a function of the cost parameter

$\alpha$ in (3.7) for the data used in [9]. Our graph shows consistency between our result and

the plotted value for $u(50)$ in [9] which corresponds to a cost parameter of $\alpha=0.032$ .

$\mathrm{u}(50)$

Fig. 2. Value of the unscaled portfolio at $x=50$ as a function of the cost parameter $\alpha$ .

line graph-European call (cf. [9, p. 258])

point graph-European put

$\sigma=.4$ , $r=.1$ , $p=0$ , $t=.5$ , $\Delta x=.05$ , $\triangle t=.5/200$ , $X=200$
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The second portfolio consists of two long calls with strike prices $K_{1}=45$ and $K_{2}=$

$65$ and two short calls with strike price $K_{3}=55$ . The initial condition and boundary

conditions are now

$u(x, 0)= \max\{x-K_{1}, \mathrm{O}\}+\max\{x-K2,0\}-2\max\{x-K_{3},0)$

$u(0, t)=0$

$\lim_{xarrow\infty}u(x, t)=0$

Fig. 3 shows the “gamma” of the second portfolio for $\alpha=.5$ . The curve again is obtained

by linear interpolation of the nodal values without additional smoothing.

Fig. 3. “Gamma” for the “long butterfly spread” of [9, p. 259] for high transaction costs

$\alpha=.5(K=2.934)$ .

$T=1$ month, $\sigma=.4$ , $r=.1$ , $\rho=0$ , $\triangle x=.05$ , $\triangle t=1/2400$ , $X=200$

From a computational view the nonlinearity adds little complexity when the option

problem is solved iteratively at each time step provided this simple iteration converges. The

numerical experiments indicate that convergence slows down as $\alpha$ increases. For $\alpha>.95$

the iteration failed to converge in both cases. Finally, we note that for $\alpha>\frac{1}{2}\sigma^{2}$ (as in the

second example) the equation (3.7) becomes the backward heat equation over each interval

where $u_{xx}>0$ ; but as long as the iteration converged no influence on the stability of the

numerical solution with respect to the mesh parameters was observed.

138



Comments on the fixed point iteration

The Black-Scholes model with transaction cost is fully nonlinear (in contrast to mildly

or quasi nonlinear) and thus uncommon in the numerical literature. Hence it may be of

interest to establish under what conditions the above fixed point iteration at a given time

level can be guaranteed to converge. We use arguments similar in spirit to those employed

in the model with jump diffusion considered in [6].

Let $H$ be the completion of the inner product space of twice continuously differentiable

functions on $[0, X]$ with inner product

$\langle f, g\rangle=\int_{0}\{x^{2}f^{J\prime}g^{\prime;}+\beta[f’g^{;}+fg]\}XdX$

where $\beta$ is a positive constant. Since $X$ is finite it follows that $H^{2}[0, X]$ is a subspace of

the space $H$ . Let $\mathcal{M}$ be the set of functions in $H$ which have continuous second derivatives

on $(0, X)$ and which assume the boundary condition

$u(\mathrm{O})=A$ , $u(X)=B$ .

For $f\in \mathcal{M}$ define the operator $T$ by

$u=Tf$

where $u$ is the solution of

$Lu=\alpha x^{2}|f;’(X)|$

$u(\mathrm{O})=A$ , $u(X)=B$ .

Because $L$ is equivalent to a constant coefficient equation on $[0, \infty)$ with real exponential

solutions it follows from [5] that $T$ well defined on A4 and maps $\mathcal{M}$ into $\mathcal{M}$ . We shall show

that $T$ is a contraction. If $u=Tf$ and $v=Tg$ for $f$ and $g\in \mathcal{M}$ then the equation

$\int_{0}^{X}(Lu-Lv)(u-v)’’d_{X}=\alpha\int_{0}^{x_{X^{2}(}}|f^{\prime J}|-|g’’|)(u-v)’’dx$
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and integration by parts yield the estimate

$\int_{0}^{X}\frac{1}{2}\sigma x^{2}(2u-v)’\prime 2d_{X}+(\frac{r+\rho}{2}+\frac{1}{\triangle t})\int_{0}^{X}(u-v)’2d_{X\leq\alpha}\int_{0}^{X}x|f\prime\prime-g^{;}2’||(u-v)\prime\prime|dX$

provided only that $r\geq\rho$ . Since

$\int_{0}^{X}(u-v)^{2}dx\leq(\frac{X}{\pi})^{2}\int_{0}^{X}(u-v)^{\prime 2}d_{X}$

it follows that one can find constants $\beta$ and $\gamma$ such that

$||Tf-\tau_{g}||\leq\gamma||f-g||$

where $\gamma=\frac{\alpha}{\frac{1}{2}\sigma^{2}}$ . Hence $T$ is a contraction whenever $\alpha<\frac{1}{2}\sigma^{2}$ .

In terms of the constant $K$ defined in [9] for the above model we find that a contraction

is guaranteed for
$K \leq\frac{1}{2}\sqrt{\frac{\pi}{2}}\cong.62$

We remark that this estimate is quite weak in view of the numerical simulations which

converged for

$K\leq 7.05$ .

Finally, we observe that the specific form of the source term in (3.7) is not important.

Only the Lipschitz continuity with respect to $u_{xx}$ is used. Hence this approach will apply,

in principle, to the model developed in [2].
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