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ABSTRACT. Let us consider the three dimensional Navier-Stokes initial value problem
in the exterior to a rotating obstacle. It is proved that a unique solution exists locally
in time when the initial data $a$ possess some regularity in the space $L^{2}$ (similarly
to the assumption given by Fujita and Kato [4] $)$ and satisfy $(\omega\cross x)$ . Va $\in H^{-1}$ ,
where $\omega$ stands for the angular velocity of the rotating obstacle. An essential step
for the proof is to deduce a certain smoothing property together with estimates near
$t=0$ of the semigroup (it is not an analytic one) generated by the operator $\mathcal{L}u=$

$-P[\triangle u+(\omega \mathrm{x}x)\cdot\nabla u-\omega \mathrm{x}u]$ , where $P$ denotes the projection associated with the
Helmholtz decomposition.

It is one of important problems in fluid mechanics to study the Navier-Stokes flow

past a rotating obstacle. In order to understand the rotation effect mathematically,

we will limit ourselves to a problem under the following simple situation; the angular

velocity is constant and the translation is absent. In this article we discuss the locally

in time existence of a unique solution to such a problem.

Let $O\subset \mathbb{R}^{3}$ be a compact, isolated rigid obstacle which is bounded by a smooth

surface $\Gamma$ , and $\Omega=\mathbb{R}^{3}\backslash O$ the exterior domain occupied by a viscous incompressible

fluid. Assume that the obstacle $\mathcal{O}$ is rotating about the $x_{3}$-axis with angular velocity

$\omega=(0,0,1)^{\tau}$ . Here an$\mathrm{d}$ hereafter, super-T denotes the transpose and all vectors are

column ones; $x=(x_{1},x_{2}, X_{3})\tau,$ $\nabla_{x}=(\partial/\partial x_{1}, \partial/\partial x_{2}, \partial/\partial x_{3})^{T}$ and so on. Set

$\Omega(t)=\{y=^{o}(t)x;x\in\Omega\}$ , $\Gamma(\mathrm{t})=\{y=o(t)x;x\in\Gamma\}$ ,
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which actually vary as time $t$ goes on (this is the situation under consideration) unless

$\mathcal{O}$ is axisymmetric, where

$O(t)=$
We now consider the fluid motion around $\mathcal{O}$ , which is governed by the initial boundary

value problem for the Navier-Stokes equation

(NS.1)

where $w=(w_{1}(y, \mathrm{t}),$ $w2(y,t),$ $w3(y,\mathrm{t}))$ and $q=q(y,t)$ denote, respectively, unknown

velocity and pressure of the fluid. The boundary condition on $\Gamma(t)$ is the non-slip

one since $dy/dt=\dot{O}(t)o(t)^{T}y=\omega\cross y$ , where $\dot{O}(t\rangle$ $=(d/dt)O(t)$ . It is natural to

reduce (NS.1) to the problem in the fixed domain $\Omega$ by using the coordinate system

$x=O(t)^{T}y$ attached to the rotating obstacle. There are two ways to make the change

of the fluid velocity. The one is

$u(X, t)=o(\mathrm{t})^{\tau_{w()}}y,\mathrm{t}$ ,

and the other is

$v(x, t)=o(t)^{\tau}[w(y, t)-\omega\cross y]=u(X, t)-\omega\cross X$.

We also make the change of the pressure by

$p(x, t)=q(y,t)$ .
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Then we have

$\partial_{t}w=O(t)[\partial_{t}u+(\dot{O}(t)^{\tau}O(t)X)\cdot\nabla_{x}u+O(\mathrm{t})^{\tau}\dot{o}(t)u]$

$=O(t)[\partial_{t}u-(\omega\cross x)\cdot\nabla_{x}u+\omega\cross u]$

$=O(t)[\partial_{t}v-(\omega\cross x)\cdot\nabla xv+\omega\cross v]$ ,

$\triangle_{y}w=O(t)\triangle_{x}u=O(t)\triangle xv$ ,

$\nabla_{v}q=O(t)\nabla xp$ ,

$\nabla_{y}\cdot w=\mathrm{v}x.u=\nabla x.v$ ,

and

$w\cdot\nabla_{y}w=O(\mathrm{t})[u\cdot\nabla xu]$

$=O(t)[v\cdot\nabla_{x}v+(\omega\cross x)\cdot\nabla_{x}v+\omega\cross v+\omega\cross(\omega \mathrm{x}x)]$ .

The problem (NS.1) is thus reduced to the following (NS.2) and (NS.3) for $\{v,p\}$

and $\{u,p\}$ , respectively. The former is the problem with not only the Coriolis force

2 $\omega\cross v$ but also the growing boundary condition at space infinity:

(NS.2)

The latter is the problem with the convection term having the coefficient $\omega\cross x$ which

is understood as the rigid motion rotating about the $x_{3}$-axis:
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(NS.3)
$x\in\Omega,$ $t>0$ ,

$x\in\Omega,$ $t\geq 0$ ,

$x\in\Gamma,$ $t>0$ ,

$|x|arrow\infty,$ $t\succ 0$ ,

$x\in\Omega$ .

Up to now the mathematical theory for the existence and uniqueness of solu-

tions to the problem (NS.1) has been little developed. In his Habilitationsschrift [2]

Borchers first attacked this problem, including the case where the angular velocity

depends on time $t$ . He dealt with the problem (NS.2) and proved the existence of

weak solutions of class

$v+\omega\cross x(=u)\in L^{\infty}(0, T;L^{2}(\Omega))\mathrm{n}L^{2}(0, T;H^{1}(\Omega))$ , $\forall T>0$ ,

with the energy inequality provided that $a\in L^{2}(\Omega)$ satisfies

(1) $\nabla\cdot a=0$ in $\Omega$ , $\nu\cdot(a-\omega\cross x)=0$ on $\Gamma$ ,

where $\nu$ is the unit exterior normal vector to F. We donot know the uniqueness

of weak solutions and this feature is the same as the standard Navier-Stokes the-

ory. Later on, in [3] Chen and Miyakawa have treated (NS.3) for $\Omega=\mathbb{R}^{3}$ , that

is, the Cauchy problem. They have discussed the existence of weak solutions with

the so-called strong energy inequality and some decay properties of the constructed

solutions.

The purpose of the present article is to prove that there exists a unique local

solution to the problem (NS.3) whenever the initial data $a\in L^{2}(\Omega)$ satisfying (1)

possess some regularity and fulfill $(\omega\cross x)\cdot\nabla a\in H^{-1}(\Omega)$ .
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To state our results precisely, we introduce notation. We use the same symbols

for denoting the spaces of scalar and vector functions if there is no confusion. By

$C_{0}^{\infty}(\Omega)$ we denote the class of all $C^{\infty}$ functions with compact supports in $\Omega$ . Let

$H^{s}(\Omega)$ for $s\geq 0$ be the usual $L^{2}$ Sobolev spaces. If $s$ is not an integer, then the space

$H^{s}(\Omega)$ is defined via the complex interpolation (see Lions and Magenes [11, Chapter

1]), that is,

$H^{s}(\Omega)=[L^{2}(\Omega), Hm(\Omega)]_{\theta}$ , $s=\theta m$ , $m>0$ (integer), $0<\theta<1$ .

The scalar product and the norm of $L^{2}(\Omega)=H^{0}(\Omega)$ are respectively denoted by

(., $\cdot$ ) and $||\cdot||$ . The space $H_{0}^{s}(\Omega),$ $s\succ 0$ , is the completion of $C_{0}^{\infty}(\Omega)$ in $H^{s}(\Omega)$ ,

and $H^{-s}(\Omega)$ stands for the dual space of $H_{0}^{\mathit{8}}(\Omega)$ . Let $C_{0,\sigma}^{\infty}(\Omega)$ be the class of all

solenoidal (that is, divergence free) vector functions whose components are in $C_{0}^{\infty}(\Omega)$ .

By $L_{\sigma}^{2}(\Omega)$ we denote the completion of $C_{0,\sigma}^{\infty}(\Omega)$ in $L^{2}(\Omega)$ . Then the space $L^{2}(\Omega)$

of vector functions admits the following orthogonal decomposition, the Helmholtz

decomposition (Temam [13, Chapter I]):

$L^{2}(\Omega)=L_{\sigma}^{2}(\Omega)\oplus L_{\pi}^{2}(\Omega)$,

where

$L_{\pi}^{2}(\Omega)=\{\nabla p\in L^{2}(\Omega);p\in L_{1\circ \mathrm{c}}^{2}(\overline{\Omega})\}$ .

Let $P$ be the projection (the Fujita-Kato projection) from $L^{2}(\Omega)$ onto $L_{\sigma}^{2}(\Omega)$ associ-

ated with the decomposition above. Then the Stokes operator $A:L_{\sigma}^{2}(\Omega)arrow L_{\sigma}^{2}(\Omega)$

is defined by

$D(A)=H^{2}(\Omega)\cap H_{0(\Omega)(}1\mathrm{n}L^{2}\sigma\Omega)$ , $Au=-P\triangle u$ .

In view of (NS.3), the linear operator $\mathcal{L}$ : $L_{\sigma}^{2}(\Omega)arrow L_{\sigma}^{2}(\Omega)$ we should consider is as

follows:
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It is proved that the operator $\mathcal{L}$ is $m$-accretive, so that $-\mathcal{L}$ generates a $(C_{0})$

semigroup $\{e^{-tc_{;}}t\geq 0\}$ of contractions on $L_{\sigma}^{2}(\Omega)$ . Furthermore, we have

(2) $||u||H^{2}(\Omega)+||P[(\omega\cross x)\cdot\nabla u]||\leq C||(1+\mathcal{L})u||,$ .

for all $u\in D(\mathcal{L})$ (see [8]). On account of unboundedness of the coefficient of $\mathcal{L}$ , the

elliptic regularity estimate (2) is no longer trivial. It is thus not so easy to show

the closedness of $\mathcal{L}$ directly. But the accretivity implies that $\mathcal{L}$ is closable. So, we

prove that $1+\overline{\mathcal{L}}$ is surjective, where $\overline{\mathcal{L}}$ is the closure of $\mathcal{L}$ . For the proof, we solve

the corresponding stationary problem by using the solutions in $\mathbb{R}^{3}$ and in a bounded

domain near the boundary $\Gamma$ together with cut-off functions. For the recovery of the

solenoidal condition in the localization, we make use of the result of Bogovsk\"u [1] on

a continuous right-inverse of the divergence operator with zero boundary condition

in bounded domains. At the next step, we $\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{W}\overline{\mathcal{L}}=\mathcal{L}$ together with estimate (2).

The fractional powers of $\mathcal{L}$ are also well defined as closed operators in $L_{\sigma}^{2}(\Omega)$ , and we

see that $D(\mathcal{L}^{\alpha})\subset D(A^{\alpha})$ with estimate

(3) $||A^{\alpha}u||\leq C_{\alpha}||(1+\mathcal{L})^{\alpha}u||$ ,

for all $u\in D(\mathcal{L}^{\alpha})$ and $0<\alpha\leq 1$ . Indeed, (3) for the case $\alpha=1$ is equivalent to

(2), and the Heinz-Kato inequality for $m$-accretive operators (Tanabe [12, Chapter

2]) implies (3) for $0<\alpha<1$ .
Our method to solve (NS.3) is to make use of the semigroup $e^{-tL}$ together

with the fractional powers of $A$ and $\mathcal{L}$ . Although this approach itself is, in principle,

standard (see Fujita and Kato [4], Giga and Miyakawa [6]), the semigroup $e^{-t\mathcal{L}}$ is not
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a usual one. The essential difficulty is the growth at space infinity of the coefficient

$\omega\cross x$ of the operator $\mathcal{L}$ , so that the convection term $(\omega\cross x)\cdot\nabla$ is not a perturbation

of the Stokes operator $A$ . In fact, the associated semigroup for the Cauchy problem

in $\mathbb{R}^{3}$ is explicitly given by

(4) $[U(t)f](x)=O(t)^{T}[e^{t\triangle}f](O(t)_{X})$ , $x\in \mathbb{R}^{3},$ $t>0$ ,

where

$[e^{t\triangle}f](X)=(4 \pi t)-3/2\int_{\mathbb{R}^{3}}e^{-\frac{|x-y|^{2}}{4i}f(}y)dy$,

and it is proved that the semigroup $U(t)$ is never analytic on $L_{\sigma}^{2}(\mathbb{R}^{3})$ (see [9]). This

is a different feature caused by the convection term $(\omega\cross x)$ . V. Thus, we cannot

expect that $e^{-t\mathcal{L}}$ is analytic. However, it has the remarkable smoothing effect. The

following theorem asserts that $e^{-t\mathcal{L}}f$ is in $D(A)$ for all $t>0$ whenever $f$ is slightly

smooth, and that $e^{-t\mathcal{L}}f$ is in $D(\mathcal{L})$ for all $t>0$ under the additional assumption

$( \omega \mathrm{x}x)\cdot\nabla f\in H-\infty(\Omega)\equiv\bigcup_{S\geq}\mathrm{o}(H^{-s}\Omega)$ .

Theorem 1. (i) Suppose that $f\in D(A^{\delta})$ for some $0<\delta\leq 1/2$ . Then $e^{-t\mathcal{L}}f\in D(A)$

for all $t>0$ . Furthermore, there is a constant $C=C(\delta)>0$ such that

(5) $||Ae^{-tc}f||\leq C\mathrm{t}-1+\delta||f||_{D}(A^{\delta})$
’

for all $0<t\leq 1$ .

(ii) Suppose that $f\in D(A^{\delta})$ for some $0<\delta<1$ , an$d$ that $(\omega\cross x)\cdot\nabla f\in H^{-s}(\Omega)$

for some $s\geq 0$ . Then $e^{-t\mathcal{L}}f\in D(\mathcal{L})$ for all $t>0$ and

$\mathcal{L}e^{-t\mathcal{L}}f\in C(0, \infty;L_{\sigma}^{2}(\Omega))$ , $e^{-t\mathcal{L}}f\in C^{1}(0, \infty;L_{\sigma}^{2}(\Omega))$ ,

with
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$\frac{d}{dt}e^{-tc_{f}-t\mathcal{L}}+\mathcal{L}ef=0$ , $t>0$ ,

in $L_{\sigma}^{2}(\Omega)$ . Furthermore, there are constants $C=C(\delta)>0mdC’=C’(s)>0_{s\mathrm{u}C}h$

that

$||\mathcal{L}e^{-tc_{f||}}\leq C(t\wedge 1)^{-}1+\delta||f||_{D}(A^{\delta})$

(6)
$+C’(t\wedge 1)^{-s/2}\{||(\omega\cross x)\cdot\nabla f||_{H^{-s}}(\Omega)+||f||\backslash \}$ ,

for all $t>0$ , where $t \wedge 1=\min\{t, 1\}$ .

(iii) Let $0<\delta<1/2$ . Then

$\lim_{tarrow 0}t^{1-\delta}||Ae^{-t\mathcal{L}}f||=0$ ,

for $\mathrm{a}l\mathrm{J}f\in D(\mathrm{A}^{\delta})$ . For the smle $\delta$ as above, Jet $0\leq s<2(1-\delta)$ . Then

$\lim_{tarrow 0}\mathrm{t}^{1-\delta}||ce^{-}ftc||=0$ ,

for all $f\in D(A^{\delta})_{\mathrm{S}}\mathrm{a}\mathrm{t}i_{S\theta^{i_{l1}g}}(\omega\cross x)\cdot\nabla f\in H^{-s}(\Omega)$ .

In Theorem 1 the case $\delta=0$ (namely, $f\in L_{\sigma}^{2}(\Omega)$ ) is excluded on account of

a technical difficulty caused by the solenoidal constraint. Indeed, in [7, Theorem 4]

sharper results including $\delta=0$ have been established for the realization of a model

operator $\Delta+(\omega\cross x)\cdot\nabla$ with the homogeneous Dirichlet boundary condition in

$L^{2}(\Omega)$ . But estimates (5) md (6) near $t=0$ together with the fractional powers of $A$

and $\mathcal{L}$ are very useful for the proof of local existence of a unique solution to (NS.3).

The strategy for the proof of Theorem 1 is as follows. We ffist derive the similar

smoothing effect to Theorem 1 for the semigroup $U(t)$ given by (4). We next employ

the method based on a refinement of the cut-off procedure developed in the proof of

Theorem 4 of [7] combined with the result of Bogovsk\"u [1] mentioned above. For the

details, see [9].
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We now fix $\zeta\in C^{\infty}(\mathbb{R}^{3})$ such that $0\leq\zeta\leq 1,$ $\zeta=1$ near $\Gamma$ and $\zeta=0$ for large

$|x|$ , and put

(7) $b(x)=- \frac{1}{2}\nabla\cross\{\zeta(_{X)}|X|2\omega\}$ .

Then $\nabla\cdot b=0$ in $\Omega,$ $b=\omega\cross x$ on $\Gamma$ and $b=0$ for large $|x|$ . We set

$\overline{u}(x, t)=u(x, t)-b(x)$ ,

in (NS.3) and apply the projection $P$ to the equation of motion to obtain the integral

equation

(NS.4) $\overline{u}(t)=e^{-t}[c-ab]-\int_{0}^{t}e-(t-s)cP[\overline{u}\cdot\nabla\overline{u}+Bu\neg(s)d_{S},$ $t\geq 0$ ,

in $L_{\sigma}^{2}(\Omega)$ , where

$B\overline{u}=\overline{u}\cdot\nabla b+b\cdot\nabla\overline{u}+F[b]$ ,

$F[b]=\triangle b+(\omega\cross x)\cdot\nabla b-\omega \mathrm{x}b-b\cdot\nabla b$ .

The main theorem then reads as follows.

Theorem 2. Suppose that $a-b\in D(\mathcal{L}^{\gamma})$ for some $1/4<\gamma<1/2$ and that

$(\omega\cross x)\cdot\nabla a\in H^{-s}(\Omega)$ for some $1\leq s<2(1-\gamma)$ . Then there exist $T>0$ and a

uniq $\mathrm{u}e$ solution $\overline{u}$ to (NS.4) on the interval $[0, T]$ , which is of dass

$\overline{u}\in C([0, T];L_{\sigma}^{2}(\Omega))$ ,

and possesses the $reg\mathrm{u}lari\mathrm{t}_{\mathrm{J}}’\overline{u}(t)\in D(A),$ $0<t\leq T$ , with the properties:

(8) $\lim_{tarrow 0}||\overline{u}(t)-(a-b)||D(A\gamma)=\mathrm{l}\mathrm{i}\mathrm{m}tarrow 0^{1}|u(t)-a||_{D(A^{\gamma})}=0$,
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(9) $tarrow 01\dot{\mathrm{m}}t^{\alpha-\gamma}||\overline{u}(t)||_{D()}A^{\alpha}=0$, $\gamma<\alpha\leq 1$ ,

(10) $||\overline{u}(t)||_{D(}A^{\alpha})\leq C_{\alpha}K_{0}t^{-\alpha}+\gamma$ , $0<t\leq T,$ $\gamma\leq\alpha\leq 1$ ,

where

$K0=||a-b||D(\mathcal{L}\gamma)+||(\omega\cross X)\cdot\nabla a||_{H}-S(\Omega)+|||x|b||+||F$.
$[b]||_{H^{1}(\Omega})$ .

The proof is given in [9]. We conclude this article with some comments on

Theorem 2.

Remark. (i) In view of (7), the assumption $a-b\in D(\mathcal{L}^{\gamma})\subset D(A^{\gamma})$ (see (3)) with

$\gamma>1/4$ implies that $a=\omega\cross x$ on $\Gamma$ (cf. Fujiwara [5]).

(ii) The critical case $\gamma=1/4$ is the well known exponent of Fujita and Kato [4].

If Theorem 1 for $\delta=0$ were deduced, then we could show Theorem 2 for the case

$\gamma=1/4$ .

(i\"u) Under the assumption $(\omega\cross x)\cdot\nabla a\in H^{-2(1\gamma)}-(\Omega)$ , it is also possible to

construct a unique solution. But the behavior (9) of such a solution is not clear.

(iv) The solution obtained in Theorem 2 is the so-called mild solution. Since we

find the solution $\overline{u}(t)$ with values in $D(A)$ and it does not belong to $D(\mathcal{L})$ in general,

it seems to be difficult to derive the differentiability of $\overline{u}$ with respect to time $t$ .

(v) Theorem 2 holds true with $\omega=(0,0,1)^{\tau}$ replaced by $\omega=(0,0,\omega 0)^{\tau}$ for every

$\omega_{0}\in \mathbb{R}$ . The existence interval $T=T(|\omega 0|)>0$ is then monotonically decreasing

with respect to $|\omega_{0}|$ .

(vi) When the obstacle $\mathcal{O}$ is not rotating, that is $\omega=0$ , the problem (NS.3)

possesses a unique local strong solution for $a\in L_{\sigma}^{3}(\Omega)\supset D(A^{1/4})$ , where $L_{\sigma}^{3}(\Omega)$

denotes the completion of $C_{0,\sigma}^{\infty}(\Omega)$ in $L^{3}(\Omega)$ . If $||a||_{L(\Omega)}3$ is sufficiently small, then

the solution is extended globally in time. This is the result of Iwashita [10].
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