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1. Introduction. There are some symmetry results due to Alessandrini [A11,2] some
of which proved a conjecture of Klamkin [K1] (see also [Zal]). We quote a theorem of
[Al 2] (see [Al 2, Theorem 1.3, p. 254]).

Theorem A (Alessandrini). Let $\Omega$ be a boun$ded$ domain in $\mathbb{R}^{N}(N\geqq 2)$ with
$bo$undary $\partial\Omega$ an$d$ let all of its boundary $poi\mathrm{n}tS$ be regul$\mathrm{a}r$ with respect to the Laplacian.
Let $\varphi\in L^{2}(\Omega)$ satisfy $\varphi\not\equiv 0$ and let $u=u(x, t)$ be the unique solution of

$\{$

$\partial_{t}u=\triangle u$ in $\Omega\cross(0, \infty)$ ,
$u(x, \mathrm{o})=\varphi(x)$ in $\Omega$ ,

$u=0$ on $\partial\Omega\cross(0, \infty)$ .

(1.1)

If there exists $\tau>0$ such that, for every $t>\tau,$ $u(\cdot, t)$ is constant on every level surface
{ $x\in\Omega$ ; $u(x,$ $\tau)=$ const. } of $u(\cdot, \tau)$ in $\Omega$ , then one of the following two cases occurs.

(i) $\varphi$ is an eigenfunction $o\mathrm{f}-\triangle$ un $d$er the homogeneous Dirichlet boundary $co\mathrm{n}$di-
tion.

(ii) $\Omega$ is a ball, $u(.\cdot, t)$ is $r\mathrm{a}$dially symmetric for each $t\geqq 0$ , and $u$ never vanishes in
$\Omega \mathrm{x}[\tau, \infty)$ .

Klamkin’s conjecture [K1] was that if all the spatial level surfaces are invariant with
respect to the time variable $t$ for positive constant initial data under the homogeneous
Dirichlet boundary condition, then the domain must be a ball. Therefore Theorem A
proved the Klamkin’s conjecture [K1].

In the present paper we consider the similar problem under the homogeneous Neu-
mann boundary condition or the problems for nonlinear diffusion equations such as the
porous medium equation. Our first result is:

Theorem 1. Let $\Omega$ be a $bo$un$ded$ Lipschitz domain in $\mathbb{R}^{N}(N\geqq 2)$ with boundary $\partial\Omega$ ,
and let $\varphi\in L^{2}(\Omega)$ sati$s\mathrm{f}y\varphi\not\equiv 0$ and $\int_{\Omega}\varphi dx=0$ . Let $u=u(x, t)$ be the $\mathrm{u}ni$que $\mathrm{s}ol$ution
of the following initial-Neumann probl$e\mathrm{m}$ :

$\{$

$\partial_{t}u=\triangle u$ in $\Omega\cross(0, \infty)$ ,
$u(x, \mathrm{O})=\varphi(x)$ in $\Omega$ ,

$\frac{}\partial u}{\partial\iota \text{ノ}=0$ on $\partial\Omega\cross(0, \infty)$ ,

(1.2)
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where lノ denotes the exterior normal unit vector to $\partial\Omega$ . If there exists $\tau>0$ such that,
for every $t>\tau,$ $u(\cdot, t)$ is constant on every level surface { $x\in\Omega$ ; $u(x,$ $\tau)=$ const. }
of $u(\cdot, \tau)$ in $\Omega$ , then one of the following two cases occurs.

(i) $\varphi$ is an eigen$fu\mathrm{n}$ction $of-\triangle$ under the $ho\mathrm{m}$ogeneous Neumann $bo$undary
condition.

(ii) By a rotation and a translation of coordinates we have one of the followin$g$:

(a) There exists a finite interval $(a, b)$ such that $u$ is $e\mathrm{x}t$ended as a function of
$x_{1}$ and $t$ on$l\mathrm{y}$, say $u=u(x_{1}, t)((x_{1}, t)\in[a, b]\cross(0, \infty))$ , and $\frac{\partial u}{\partial x_{1}}=0$ on
$\{a, b\}\cross(0, \infty)$ . Furthermore, $\Omega\subset(a, b)\cross \mathbb{R}^{N-1}$ with $\partial\Omega\cap(\{a\}\cross \mathbb{R}^{N-1})\neq\emptyset$

and $\partial\Omega\cap(\{b\}\cross \mathbb{R}^{N1}-)\neq\emptyset$ .
(b) There exist a Bnite interval $(a, b)$ with $a\geqq 0$ an$d$ a $n\mathrm{a}t$ ural $nu\mathrm{m}berk$ with

$2\leqq k\leqq N$ such that $u$ is extended as a function of $r=(x_{1}+\cdots+x_{k})^{\frac{1}{2}}$ and $t$

only, say $u=u(r, t)((r, t)\in[a, b]\cross(0, \infty))$ , whose derivative $\frac{\partial u}{\partial r}(r, t)$ does not
vani$\mathrm{s}h$ in $(a, b)\cross(\tau, \infty)$ and it vanishes on $\{a, b\}\cross(0, \infty)$ . Furthermore, th$\mathrm{e}re$

exist a Lipschitz domain $S$ in the standard k–l-dimensional unit $sph\mathrm{e}reSk-1$

in $\mathbb{R}^{k}$ ( $S$ can be the whole sphere $S^{k-1}$ ) and a bounded Lipschitz domain $\tilde{\Omega}$ in
$\mathbb{R}^{N-k}$ such that $\Omega=$ { $r\omega\in \mathbb{R}^{k}$ ; $r\in(a,$ $b)$ an$d\omega\in S$ } $\cross\tilde{\Omega}$ when $a>0$ , and either

1 $\Omega=$ { $r\omega\in \mathbb{R}^{k}$ ; $r\in(\mathrm{O},$ $b)$ and $\omega\in S$} $><\tilde{\Omega}$ with $S\neq S^{k-1}$ or $\Omega=\{(X_{1}, \ldots, X_{k})\in$

$\mathbb{R}^{k}$ ; $r<b$} $\mathrm{x}\tilde{\Omega}$ when $a=0$ . Here, when $k=N$ , the domain $\tilde{\Omega}$ is $di$sregarded.

In particular, in case (ii), if $\partial\Omega$ is $C^{1}$ , then $\Omega$ must be either a ball or an $a\mathrm{n}\mathrm{n}$ulus.

We refer the reader to [Br] for existence and uniqueness of solutions of the initial-
Neumann problem in Lipschitz cylinders. Since any constant function is a trivial solution
of the initial-Neumann problem (1.2) with constant initial data, and since adding any
constant function to the solution $u$ in Theorem 1 does not have any influence on the
invariance condition of spatial level surfaces of $u$ , so for simplicity we assumed that
$\varphi\not\equiv 0$ and $\int_{\Omega}\varphi dx=0$ for initial data $\varphi$ .

Alessandrini used an eigenfunction expansion and a special case of a well-known
theorem of symmetry for elliptic equations due to Serrin [Ser, Theorem 2, pp. 311-312]
in order to prove Theorem $\mathrm{A}$ :

Theorem $\mathrm{S}$ (Serrin). Let $D$ be a bounded $do\mathrm{m}ain$ with $C^{2}bo$undary $\partial D$ and let
$v\in C^{2}(\overline{D})$ satisfy the following:

$\{$

$\triangle v=f(v)$ and $v>0$ in $D$ ,

$v=0$ an $d \frac{\partial v}{\partial\nu}=c$ on $\partial D$ ,

where $f=f(s)$ is a $C^{1}$ function of $s,$ $c$ is a constant, and lノ denotes the exterior normal
unit vector to $\partial D$ . Then $D$ is a ball and $v$ is radially symmetric and decreasing in $D$ .

Under the hypothesis that case (i) of Theorem A does not hold, Alessandrini showed
that there exists a level set $D=\{x\in\Omega ; \psi(x)>s\}$ with $s>0$ of an eigenfunction
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$\psi=\psi(x)\mathrm{o}\mathrm{f}-\triangle$ under the homogeneous Dir\’ichlet boundary condition such that the
function $v=\psi-s$ satisfies the overdetermined boundary conditions as in Theorem S.
Then applying Theorem $\mathrm{S}$ to $v$ implies that $D$ is a ball and $v$ is radially symmetric and
decreasing in $D$ . By a little more argument one gets case (ii) of Theorem A. In this
proof essential is the fact that the boundary of $D$ does not touch the boundary $\partial\Omega$ . This
fact comes from the homogeneous Dirichlet boundary condition of the eigenfunction $\psi$ .
Therefore, in our problem (1.2) we can not use Theorem $\mathrm{S}$ because of the homogeneous
Neumann boundary condition. We overcome this obstruction by using the invariance
condition of spatial level surfaces much more with the help of the theory of isoparametric
surfaces in Euclidean space (see [Lc, Seg]). Also, we

$\mathrm{c}_{:}\mathrm{a}.\mathrm{n}$ give another pro.o$\mathrm{f}$ of Theorem
A which does not depend on Theorem S.

Next we want to consider nonlinear diffusion equations. For the porous medium
equation under the homogeneous Neumann boundary condition we have:

Theorem 2. Let $\Omega$ be a bounded domain in $\mathbb{R}^{N}(N\geqq 2)$ with smooth boundary $\partial\Omega$ ,
and let $u=u(x, t)\in C^{\infty}(\overline{\Omega}\cross(0, \infty))$ satisfy

$\{$

$\partial_{t}\beta(u)=\triangle u$ in $\Omega\cross(0, \infty)$ ,

$u>0$ in $\overline{\Omega}\cross(0, \infty)$ ,

$\frac{}\partial u}{\partial\iota \text{ノ}=0$ on $\partial\Omega\cross(0, \infty)$ ,

(1.3)

where $\beta(s)=s^{\frac{1}{m}}(m>0, m\neq 1)$ and lノ denotes the exterior $n$ormal unit vector to $\partial\Omega$ .
If there exists $\tau>0$ such that, for every $t>\tau,$ $u(\cdot, t)$ is constant on $e$very level surface
{ $x\in\Omega$ ; $u(x,$ $\tau)=con$st. } of $u(\cdot, \tau)$ in $\Omega$ , then one of the following two $c$ases occu$rs$ .

(i) $u$ is a positive constant for $t\geqq\tau$ .
(ii) $\Omega$ is either a ball or an annulus, and for each $t\geqq\tau u(\cdot, t)$ is $r\mathrm{a}$dially symmetric

with respect to the center and for $t>\tau$ the derivati $\mathrm{v}e$ with respect to the $r\mathrm{a}di\mathrm{a}l$

direction, $s \mathrm{a}y\frac{\partial u}{\partial r}$ , does not vanish in $\Omega$ except at the center of the ball.

For the generalized porous medium equation under the homogeneous Dirichlet boundary
condition we have:

Theorem 3. Let $\Omega$ be a bounded domain in $\mathbb{R}^{N}(N\geqq 2)$ with $s\mathrm{m}$ooth bound$\mathrm{a}ry\partial\Omega$ ,
and let $u=u(x, t)\in C(\overline{\Omega}\cross(0, T))\cap C^{\infty}(\Omega\cross(\mathrm{O}, T))$ satisfy

$\{$

$\partial_{t}\beta(u)=\triangle u$ and $u>0$ in $\Omega\cross(0, T)$ ,

$u=0$ on $\partial\Omega\cross(\mathrm{o}, T)$ ,
(1.4)

where $\beta$ is a continuous $f\mathrm{u}$nction on $[0, \infty)$ satisfying

(1) $\beta$ is real analytic on $(0, \infty)$ ,
(2) $\beta(0)=0$ and $\beta’(s)>0$ for any $s>0$ .
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If the$re$ exists $\tau\in(0, T)$ such that, for every $t>\tau,$ $u(\cdot, t)$ is $co\mathrm{n}st$ant on every le$\mathrm{v}el$

surface { $x\in\Omega$ ; $u(x,$ $\tau)=$ const. } of $u(\cdot, \tau)$ in $\Omega$ , then one of the following two $c$ases
occurs.

(i) There $\mathrm{e}xi\mathrm{s}tS$ a positive $C^{\infty}$ function $\lambda=\lambda(t)$ on $[\tau, T)$

.
such that $u(x, t)=$

$\lambda(t)u(x, \tau)$ for any $(x, t)\in\overline{\Omega}\cross[\tau, T)$ .
(ii) $\Omega$ is a ball, for each $t\in[\tau, T)u(\cdot, i)$ is radially $sy\mathrm{m}$metric with $r\mathrm{e}$spect to

the center, and for each $t\in(\tau, T)$ the $d$erivati $\mathrm{v}e$ with respect to $the\backslash r\mathrm{a}di\mathrm{a}l$

direction, $s \mathrm{a}y\frac{\partial u}{\partial r}$ , is negative in $\Omega$ except at the center of $\Omega$ .

See [BP, Sac 2, AMT] for existence and uniqueness of weak solutions of the initial-
boundary value problems for $\partial_{t}\beta(u)=\triangle u$ , and see [Sac 1] for continuity of bounded
weak solutions. When $\beta(s)=s^{\frac{1}{m}}$ with $0<m<1$ , if the initial data $u(x, 0)\in L^{\infty}(\Omega)$

for the initial-Dirichlet problem, then there exists a finite extinction time $\tau*$ such that
$u\equiv 0$ for $t\geqq\tau*$ (see for example $[\mathrm{B}\mathrm{e}^{\text{ノ}}\mathrm{c},$

$\mathrm{p}$ . 176]). Therefore in Theorem 3 we consider
the finite time interval $(0, T)\underline{1}$ . Concerning case (i) see [ $\mathrm{A}\mathrm{r}\mathrm{P},$ Be.rH] for separable solutions
of (1.4) when $\beta(s)=S^{m}$ with $m>0$ .

In Section 2 we prove Theorems 1, 2, and 3 simultaneously.

2. Proofs of theorems. First of all, let us quote the classification theorem of isopara-
metric hypersurfaces in Euclidean space $\mathbb{R}^{N}$ , which was proved by Levi-Civita [Lc] for
$N=3$ , and by Segre [Seg] for arbitrary $N$ . See [No, $\mathrm{P}\mathrm{a}\mathrm{T}$ ] for a survey of isoparametric-
surfaces.

Theorem $\mathrm{L}\mathrm{c}\mathrm{S}$ (Levi-Civita and Segre). Let $D$ be a bounded domain in $\mathbb{R}^{N}(N\geqq$

2) and let $f$ be a $re$al-val$ueds\mathrm{m}$ooth function on $D$ satisfying $\nabla f\neq 0$ on D. Suppose
that there exist two real-val$ued$ functions $g=g(\cdot)$ and $h=h(\cdot)$ of a real $v\mathrm{a}’\dot{\mathrm{n}}a.ble$ such
that

$|\nabla f|^{2}=g(f)$ and $\triangle f=h(f)$ on D. (2.1)

Then the $\mathrm{f}\mathrm{a}\mathrm{m}ily$ of le$vel$ surfaces $\{x\in D ; f(x)=s\}(s\in f(D))$ of $f$ must be $ei$ther
parall$\mathrm{e}lhyp$erplanes, concentric spheres, or concentric spherical cylinders. In particul$\mathrm{a}r$,
$by$ a rotation and a translation of coordinates on $e$ of the following holds:

(a) There exists a finite interval $(a_{1}, b_{1})$ such that $f$ is extended as a function of $x_{1}$

only, $s\mathrm{a}yf=f(x_{1})(x_{1}\in[a_{1}, b_{1}])$ , and $D\subset(a_{1}, b_{1})\cross \mathbb{R}^{N-1}$ with $\partial D\cap(\{a_{1}\}\cross$

$\mathbb{R}^{N-1})\neq\emptyset$ and $\partial D\cap(\{b_{1}\}\cross \mathbb{R}^{N-1})\neq\emptyset$ .
(b) There exist a finite interval $(a_{1}, b_{1})$ with $a_{1}\geqq 0$ and a $n\mathrm{a}t$ ural $\mathrm{n}$um $\mathrm{b}\mathrm{e}rk$ with

$2\leqq k\leqq N$ such that $f$ is $ext$ended as a function of $r=(x_{1}+\cdots+x_{k})^{\frac{1}{2}}$ only,
say $f=f(r)(r\in[a_{1}, b_{1}])$ , and furthermore when $a_{1}>0,$ $D\subset\{(x_{1}, \ldots, x_{k})\in$

$\mathbb{R}^{k}$ ; $a_{1}<r<b_{1}$ } $\cross \mathbb{R}^{N-k}$ with $\partial D\cap(\{(x_{1}, \ldots, x_{k})\in \mathbb{R}^{k}; r=a_{1}\}\cross \mathbb{R}^{N-k})\neq$

$\emptyset$ and $\partial D\cap(\{(x_{1}, \ldots, X_{k})\in \mathbb{R}^{k}; r=b_{1}\}\mathrm{x}\mathbb{R}^{N-k})\neq\emptyset$, and when $a_{1}=0$ ,
$D\subset\{(X_{1}, \ldots, X_{k})\in \mathbb{R}^{k} ; 0\leqq r<b_{1}\}\cross \mathbb{R}^{N-k}$ with $\overline{D}\cap(\{0\}\dot{\mathrm{x}}\mathbb{R}^{N-k})\neq\emptyset$ and
$\partial D\cap(\{(x_{1,\ldots,k}x)\in \mathbb{R}^{k}; r=b_{1}\}\mathrm{x}\mathbb{R}^{N-k})\neq\emptyset$ . Here, when $k=N,$ $\mathbb{R}^{N-k}$ is
disregar$ded$ . .
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In this theorem the function $f$ is called an isoparametric function, and the level surfaces
of $f$ are called isoparametric surfaces. For our use we assumed that the domain $D$ is
bounded.

Let us put $u(x, \tau)=\psi(x)$ for $x\in\overline{\Omega}$ . By the common assumption of Theorems 1, 2,
and 3 (the invariance condition of spatial level surfaces) as in [Al 1, (2.2), p. 231] we
have:

$u(x, t)=\mu(\psi(X), t)$ for any $(x, t)\in\overline{\Omega}\cross[\tau, \infty)([\tau, \tau)$ in Theorem 3) (2.2)

for some function $\mu=\mu(s, t)$ : $\mathbb{R}\cross[\tau, \infty)arrow \mathbb{R}$ satisfying

$\mu(s, \tau)=s$ for any $s\in \mathbb{R}$ . (2.3)

Although the time interval is $[\tau, T)$ in Theorem 3, for simplicity let us use the time
interval $[\tau, \infty)$ . In Theorems 1 and 3 $\psi$ is not constant, and in Theorem 2 if $\psi$ is
constant, then we have case (i) and we have nothing to prove. Therefore we may
assume that $\psi$ is not constant. Hence there exist a point $x_{0}\in\Omega$ and an open ball
centered at $x_{0}$ with radius $r>0$ , say $B=B_{r}(X_{0})$ , such that

$\nabla\psi\neq 0$ on $\overline{B}(\subset\Omega)$ . (2.4)

Then by a standard difference quotient argument (see [Al 1, Lemma 1, p.232] and [Al
2, Lemma 2.1, p. 255]) we have

Lemma 2.1. There exists an interval $I=[\psi(x_{0})-\delta, \psi(x0)+\delta]$ with $so\mathrm{m}e\delta>0$ such
that $I\subset\psi(B)$ and $\mu\in C^{\infty}(I\mathrm{x}[\tau, \infty))$ .

Proof. For convenience let us give a proof. The partial differentiability of $\mu$ with
respect to $t$ is a straightforward consequence of (2.2). It follows from (2.4) that there
exists an interval $I=[\psi(X_{0})-\delta, \psi(x0)+\delta]$ with some $\delta>0$ such that $I\subset\psi(B)$ . Let
$s\in I$ . Then there exists a point $y\in B$ such that $\psi(y)=s$ and $\nabla\psi(y)\neq 0$ . For $h\in \mathbb{R}$

sufficiently small, put $x(h)=y+h\nabla\psi(y)\in B$ . Hence $\psi(x(h))=s+h|\nabla\psi(y)|^{2}+O(h^{2})$

as $harrow \mathrm{O}$ . Thus for every sufficiently small $k\in \mathbb{R}$ there exists a unique $h\in \mathbb{R}$ such that
$\psi(x(h))=s+k$ , and $h=k|\nabla\psi(y)|^{-}2+O(k^{2})$ as $karrow \mathrm{O}$ . Consequently we have for each
$t\in[\tau, \infty)$

$\mu(s+k, t)-\mu(s, t)=u(x(h), t)-u(y, t)=k\frac{\nabla u(y,t)\cdot\nabla\psi(y)}{|\nabla\psi(y)|^{2}}+O(k^{2})$ as $karrow \mathrm{O}$ . (2.5)

This means that there exists a derivative $\frac{\partial\mu}{\partial s}$ given by

$\frac{\partial\mu}{\partial s}(s, t)=\frac{\partial\mu}{\partial s}(\psi(y), t)=\frac{\nabla u(y,t)\cdot\nabla\psi(y)}{|\nabla\psi(y)|^{2}}$ . (2.6)

On the other hand we have from (2.2)

$\frac{\partial\mu}{\partial t}(s, t)=\frac{\partial\mu}{\partial t}(\psi(y), t)=\partial tu(y, t)$ . (2.7)
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In view of (2.4), since the right hand sides of both (2.6) and (2.7) are bounded on $\overline{B}\cross[\tau, t]\sim$

for each $t\sim>\tau$ , by using the mean value theorem we get $\mu\in C^{0}(I\cross[\tau, \infty))$ . Because of
(2.4) the right hand side of (2.6) is smooth in $B\cross[\tau, \infty)$ , we can repeat the process as
many times as we want and prove the existence of all the partial derivatives of $\mu$ with
respect to $\mathrm{s}$ . Also, we can start the same process from (2.7) as many times as we want.
Therefore, with the help of the mean value theorem we can get $\mu\in C^{\infty}(I\cross[\tau, \infty))$ . $\square$

In view of Lemma 2.1 we can substitute (2.2) into the differential equation and get

$\beta’(\mu)\mu t=\mathrm{d}\mathrm{i}\mathrm{v}(\mu_{s}\nabla\psi)=\mu_{s}\triangle^{\psi}+\mu_{ss}|\nabla\psi|^{2}$ on $\psi^{-1}(I)\cross[\tau, \infty)$ , (2.8)

where $\psi^{-1}(I)=\{x\in\Omega ; \psi(x)\in I\}$ and in Theorem 1 we recognize that $\beta(s)\equiv s$ .
Differentiating (2.8) with respect to $t$ yields

$\beta^{\prime/}(\mu)(\mu t)^{2}+\beta’(\mu)\mu tt=\mu_{St}\triangle\psi+\mu sst|\nabla\psi|^{2}$ on $\psi^{-1}(I)\mathrm{X}[\tau, \infty)$ . (2.9)

Let us introduce the function $\mathfrak{D}$ by

$\mathfrak{D}=\det\equiv\mu_{S}\mu_{sS}t-\mu_{sS}\mu st$ . (2.10)

We distinguish the following two cases:
(1) $\mathfrak{D}\equiv 0$ on $I\cross[\tau, \infty)$ ,
(2) $\mathfrak{D}\not\equiv 0$ on $I$ $\mathrm{x}[\tau, \infty)$ .

Remark that these cases are slightly different from the cases in the paper [Al 1] where
the time is fixed, that is, $t=\tau$ . This modification is useful in dealing with nonlinear
diffusion equations (Theorems 2 and 3).

Case (1). In this case let us show that the solution $u$ must be a separable solution,
which implies case (i) of Theorems 1 and 3. It follows from (2.3) that $\mu_{s}(s, \tau)=1$ .
Therefore there exists a time $T_{1}>\tau$ such that

$\mu_{s}>0$ on $I\cross[\tau, T_{1}]$ . (2.11)

Hence we have
$(\log\mu_{s})St=\mathfrak{D}/(\mu_{S})^{2}=0$ on $I\cross[\tau, T_{1}]$ . (2.12)

Solving this equation yields

$\mu(s, t)=\lambda(t)s+\eta(t)$ for any $(s, t)\in I\cross[\tau, T_{1}]$ (2.13)

for some $C^{\infty}$ functions $\lambda=\lambda(t)\equiv\mu_{s}>0$ and $\eta=\eta(t)$ on $[\tau, T_{1}]$ satisfying

$\lambda(\tau)=1$ and $\eta(\tau)=0$ . (2.14)

On the other hand we know that for each time $t>0u(\cdot, t)$ is analytic in $x$ (see Friedman
$[\mathrm{F}2])$ . Therefore by (2.13) and (2.2) we see that

$u(x,t)=\lambda(t)\psi(x)+\eta(t)$ for any $(x,t)\in\overline{\Omega}\cross[\tau, T_{1}]$ . (2.15)
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Now we distinguish Theorems 1, 2, and 3. Let us consider Theorem 3 first. The
homogeneous Dirichlet boundary condition implies that $\eta\equiv 0$ on $[\tau, T_{1}]$ . Namely, we
have

$u(x, t)=\lambda(t)\psi(x)$ for any $(x, i)\in\overline{\Omega}\cross[\tau, T_{1}]$ . (2.16)

Let $\tau*=\sup$ { $T_{1}\in(\tau,$ $T);\mu_{s}>0$ on $I\cross[\tau,$ $T_{1}]$ }. Suppose that $\tau*<T$ . Since $u>0$ in
$\Omega \mathrm{x}(0, T)$ , in view of (2.13) and (2.16) we have by continuity

$\mu_{s}(s, \tau^{*})=\lim_{*T}\lambda(t)t\uparrow=u(x_{0}, \tau^{*})/\psi(x0)>0$ for any $s\in I$ . (2.17)

This contradicts the definition of $\tau*$ and the continuity. of $\mu_{s}$ . Therefore we get $T^{*}=T$

and have case (i) of Theorem 3.
Next we consider Theorem 1. Since $\int_{\Omega}\varphi dx=0$ , we have $\int_{\Omega}u(x, t)dx=0$ for any

$t>0$ . Therefore by integrating (2.15) we see that $\eta\equiv 0$ on $[\tau, T_{1}]$ . Hence we get (2.16).
By substituting (2.16) into the heat equation and letting $t=\tau$ , we get from (2.14)

$\triangle\psi=\lambda’(\mathcal{T})\psi$ in $\Omega$ . (2.18)

Since $\psi$ is not constant and satisfies the homogeneous Neumann boundary condition,
by separating variables we have

$u(x, t)=e-\lambda’(\mathcal{T})(t-\tau)\psi(X)$ for any $(x, t)\in\Omega\cross[0, \infty)$ .

This implies case (i) of Theorem 1.
Finally, let us consider Theorem 2. Substituting (2.15) into the diffusion equation

yields
$\frac{1}{m}(\lambda(t)\psi(x)+\eta(t))^{\frac{1}{m}-}1(\lambda’(t)\psi(x)+\eta’(t))=\lambda(t)\triangle^{\psi()}X$ . (2.19)

Dividing this by $\lambda(t)$ and differentiating the resulting equation with respect to $t$ give

$( \frac{1}{m}-1)(\lambda’(t)\psi(_{X})+\eta’(t))2+(\lambda(t)\psi(_{X)}+\eta(t))(\lambda^{\prime/}(t)\psi(x)+\eta’/(t))$

$- \frac{\lambda’(t)}{\lambda(t)}(\lambda(t)\psi(x)+\eta(t))(\lambda’(t)\psi(x)+\eta’(t))=0$ .
(2.20)

A further calculation gives

$I(t)\psi^{2}(x)+II(t)\psi(x)+III(t)=0$ , (2.21)

where

$\{$

$I(t)=( \frac{1}{m}-2)(\lambda’(t))^{2}+\lambda(t)\lambda^{\prime/}(t)$ ,

$II(t)=( \frac{2}{m}-3)\lambda’(t)\eta’(t)+\lambda(t)\eta’(/t)+\lambda//(t)\eta(t)-\frac{(\lambda’(t))^{2}}{\lambda(t)}\eta(t)$ ,

$III(t)=( \frac{1}{m}-1)(\eta’(t))^{2}+\eta(t)\eta’’(t)-\frac{\lambda’(t)}{\lambda(t)}\eta(t)\eta(/t)$ .

(2.22)
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Therefore by (2.21) we have

$I(t)\equiv II(t)\equiv III(t)\equiv 0$ . (2.23)

Solving $I(t)\equiv 0$ gives
$\lambda’(t)=\lambda^{2}-\frac{1}{m}(t)\lambda’(\tau)$ . (2.24)

By solving $II(t)\equiv 0$ with respect to $\eta’’(t)$ we get

$\eta^{\prime/}(t)=-(\frac{2}{m}-3)\frac{\lambda’(t)}{\lambda(t)}\eta/(t)-(\frac{\lambda’(t)}{\lambda(t)})/\eta(t)$ . (2.25)

Substituting this into $III(t)\equiv 0$ gives

$( \frac{1}{m}-1)(\eta’(t))^{2}-2(\frac{1}{m}-1)\frac{\lambda’(t)}{\lambda(t)}\eta(t)\eta’(t)-(\frac{\lambda’(t)}{\lambda(t)})’\eta^{2}(t)=0$. (2.26)

Here by using (2.24) we have

$\{$

$\frac{\lambda’(t)}{\lambda(t)}=\lambda^{1-\frac{1}{m}}(t)\lambda/(\tau)$ ,

$( \frac{\lambda’(t)}{\lambda(t)})’=(1-\frac{1}{m})\lambda^{2(1\frac{1}{m})}-(t)(\lambda’(\mathcal{T}))2$ .
(2.27)

By substituting these into (2.26) we get

$( \eta’(t)-\lambda^{1}-\frac{1}{m}(t)\lambda’(\mathcal{T})\eta(t))^{2}=0$ . (2.28)

Therefore by using the first equation of (2.27) once more we conclude that

$( \frac{\eta(t)}{\lambda(t)})’=0$ . (2.29)

Since $\eta(\tau)=0$( see (2.14)), this implies

$\eta(t)\equiv 0$ on $[\tau, T_{1}]$ . (2.30)

Namely we get (2.16). Since $\int_{\Omega}u^{\frac{1}{m}}(x, t)dx--\int_{\Omega}\psi\frac{1}{m}(x)dx>0$ for any $t>\backslash 0$ , we have
from (2.16)

$\lambda(t)\equiv 1$ for any $t\in[\tau, \infty)$ .

Then the diffusion equation implies that $\triangle\psi=0$ in $\Omega$ . In view of the homogeneous
Neumann boundary condition we see that $\psi$ is a positive constant. This contradicts
(2.4), that is, we can not have case (1) in the situation of Theorem 2.
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Case (2). In this case, by supposing that each case (i) of Theorems 1, 2, and 3
does not hold, we show that each case (ii) of the theorems holds. It follows from the
continuity of $\mathfrak{D}$ that there exist a nonempty open subinterval $J\subset I$ and a time $t_{0}\geqq\tau$

such that $\mathfrak{D}\neq 0$ on $\overline{J}\cross\{t_{0}\}$ . Hence we can solve equations (2.8) and (2.9) with respect
to $|\nabla\psi|^{2}$ and $\triangle\psi$ for $(x, t_{0})\in\psi^{-1}(\overline{J})\cross\{t_{0}\}$ . Namely, there exists a nonempty bounded
domain $D\subset\psi^{-1}(\overline{J})(\subset\Omega)$ in $\mathbb{R}^{N}$ such that

$|\nabla\psi|^{2}=g(\psi)$ and $\triangle\psi=h(\psi)$ on $D$ (2.31)

for some functions $g$ and $h$ as in (2.1). Then it follows from Theorem $\mathrm{L}\mathrm{c}\mathrm{S}$ that after a
rotation and a translation of coordinates there exists a finite interval $(a_{1}, b_{1})$ such that
either (a) or (b) of Theorem $\mathrm{L}\mathrm{c}\mathrm{S}$ holds for $f=\psi$ and $(a_{1}, b_{1})$ . Consequently, since $\psi$ is
analytic in $\Omega$ , by (2.2) we have one of the following:

(a) There exists a finite interval $(a, b)\supset(a_{1}, b_{1})$ such that $u$ is extended as a function
of $x_{1}$ and $t$ only, say $u=u(x_{1}, t)((x_{1}, t)\in[a, b]\cross[\tau, \infty))$ . Furthermore, $\Omega\subset$

$(a, b)\cross \mathbb{R}^{N-1}$ with $\partial\Omega\cap(\{a\}\cross \mathbb{R}^{N-1})\neq\emptyset$ and $\partial\Omega\cap(\{b\}\cross \mathbb{R}^{N-1})\neq\emptyset$ .
(b) There exist a finite interval $(a, b)\supset(a_{1}, b_{1})$ with $a\geqq 0$ and a natural number $k$

with $2\leqq k\leqq N$ such that $u$ is extended as a function of $r=(x_{1}+\cdots+x_{k})^{\frac{1}{2}}$

and $t$ only, say $u=u(r, t)((r, t)\in[a, b]\cross[\tau, \infty))$ . Furthermore, when $a>0$ ,
$\Omega\subset\{(x_{1}, \ldots, x_{k})\in \mathbb{R}^{k}; a<r<b\}\mathrm{x}\mathbb{R}^{N-k}$ with $\partial\Omega\cap(\{(x_{1}, \ldots, x_{k})\in \mathbb{R}^{k}$ ; $r=$
$a\}\mathrm{x}\mathbb{R}^{N-k})\neq\emptyset$ and $\partial\Omega\cap(\{(X_{1}, \ldots x_{k})3\in \mathbb{R}^{k}; r=b\}\mathrm{x}\mathbb{R}^{N-k})\neq\emptyset$ , and when
$a=0,$ $\Omega\subset\{(X_{1}, \ldots x_{k})?\in \mathbb{R}^{k}; 0\leqq r<b\}\mathrm{x}\mathbb{R}^{N-k}$ with $\overline{\Omega}\cap(\{0\}\mathrm{x}\mathbb{R}^{N-k})\neq\emptyset$

and $\partial\Omega\cap(\{(X_{1}, \ldots, X_{k})\in \mathbb{R}^{k}; r=b\}\cross \mathbb{R}^{N-k})\neq\emptyset$ . Here, when $k=N,$ $\mathbb{R}^{N-k}$ is
disregarded.

Here we have:

Lemma 2.2. In $c\mathrm{a}se(\mathrm{b})u(r, \tau)(=\psi(r))$ is monoton$e$ on $[a, b]$ (provided each $c\mathrm{a}se(i)$

of Theorem$s\mathit{1},\mathit{2}$, and 3 does not hold).

Proof. Suppose that $\psi$ is not monotone. Then $\psi$ has either a local maximum point
or a local minimum point. So suppose that $\psi$ has a local maximum point. Since $\psi$ is
analytic and not constant, there exist three numbers in $(a, b)$ , say $r_{1}<r_{2}<r_{3}$ , such
that

$\psi(r_{1})=\psi(r_{3})$ and $\psi’(r)\{$
$>0$ if $r_{1}\leqq r<r_{2}$ ,
$<0$ if $r_{2}<r\leqq r_{3}$ .

(2.32)

Hence by using Lemma 2.1 once more, if we put $\tilde{I}=[\psi(r_{1}), \frac{1}{2}(\psi(r_{1})+\psi(r_{2}))]$ , then
$\tilde{I}\subset\psi((a, b))$ and $\mu\in C^{\infty}(\tilde{I}\cross[\tau, \infty))$ . Therefore we get (2.8) and (2.9), where $I$ is
replaced by $\hat{I}$ . If $\mathfrak{D}\equiv 0$ on $\check{I}\mathrm{x}[\tau, \infty)$ , we have already proved that the cases $(\mathrm{i})’ \mathrm{s}$ of
both Theorem 1 and Theorem 3 hold as in Case (1) and in Theorem 2 this leads to a
contradiction. Therefore we see that $\mathfrak{D}\not\equiv 0$ on $\tilde{I}\cross[\tau, \infty)$ . By proceeding as in the
beginning of Case (2), we see that there exist a nonempty open subinterval $J\subset\tilde{I}$ and
a time $t_{0}\geqq\tau$ such that $\mathfrak{D}\neq 0$ on $\overline{J}\mathrm{x}\{t_{0}\}.$ B.y solving equations (2.8) and (2.9) with
respect to $|\nabla\psi|^{2}$ and $\triangle\psi$ for $(x, t_{0})\in\psi^{-1}(\overline{J})\cross \mathrm{f}^{t_{0}}\}$ , we have in particular that

$(\psi’(r))^{2}=g(\psi(r))$ on $\psi^{-1}(\overline{J})\cap[r_{1}, r_{3}]$ (2.33)
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for some function $g=g(\cdot)$ of a real variable as in (2.31). In view of (2.32) we see that

$\psi^{-1}(\overline{J})\cap[r_{1}, r_{3}]=[r_{4}, r_{5}]\cup[r_{6}, r_{7}]$ , (2.34)

where $r_{1}\leqq r_{4}<r_{5}<r_{2}<r_{6}<r_{7}\leqq r_{3}$ . Since $\psi(r_{4})=\psi(r_{7})$ and $\psi(r_{5})=\psi(r_{6})$ , by
using (2.33) we see that $r_{5}-r_{4}=r_{7}-r_{6}(= \int_{\psi(r}^{\psi()}r_{4}5()g(s))^{-\frac{1}{2}}ds)$ and

$\psi(r)=\psi(2r_{*}-\Gamma)$ for any $r\in[r_{4}, r_{5}]\cup[r_{6}, r_{7}]$ , (2.35)

where $r_{*}= \frac{1}{2}(r_{4}+r_{7})$ . Furthermore by (2.2)

$u(r, t)=u(2r_{*}-r, t)$ for any $(r, t)\in([r_{4}, r_{5}]\cup[r_{6}, r_{7}])\cross[\tau, \infty)$ . (2.36)

On the other hand, since $u$ satisfies the diffusion equation, we have

$\partial_{t}\beta(u)=\partial_{r}^{2}u+\frac{k-1}{r}\partial_{r}u$ in $(a, b)\cross[\tau, \infty)$ . (2.37)

Since $k\geqq 2$ , it follows from (2.36) and (2.37) that

$\partial_{r}u\equiv 0$ in $([r_{4,5}r]\cup[r_{6}, r_{7}])\cross[\tau, \infty)$ . (2.38)

In particular, this implies that $\psi’\equiv 0$ on $[r_{4}, r_{5}]\cup[r_{6}, r_{7}]$ , which contradicts (2.32).
Similarly if we suppose that $\psi$ has a local minimum point, then we get a contradiction.

Consequently we have proved that $u(r, \mathcal{T})(=\psi(r))$ is monotone on $[a, b]$ . $\square$

We distinguish Theorems 1, 2, and 3. Let us consider Theorem 1 first. In view of (b)
just before Lemma 2.2, from the boundary condition of (1.2) we see that in case (b)

$\partial_{r}u(a, t)=\partial_{r}u(b, t)=0$ for any $t\in[\tau, \infty)$ . (2.39)

Hence it follows from Lemma 2.2 and the strong maximum principle (see [ $\mathrm{F}1$ , Chapter
2] for the maximum principle) that $\partial_{r}u$ does not vanish in $(a, b)\cross(\tau, \infty)$ in case (b).
Consequently, this determines the domain $\Omega$ as in case (ii) of Theorem 1. Especially
in Theorem 1, since problem (1.2) is solved by an eigenfunction expansion, we see that
$u=u(x_{1}, t)((x1, t)\in[a, b]\cross(0, \infty))$ in case (a) and $u=u(r, t)((r, t)\in[a, b]\cross(0, \infty))$ in
case (b). This completes the proof of Theorem 1.

Next we consider Theorem 2. Since $u\in C^{\infty}(\overline{\Omega}_{\mathrm{X}}(0, \infty))$ , by using the boundary
condition of (1.3) we have (2.39) in case (b) as in Theorem 1. Then it follows from
Lemma 2.2 and the strong maximum principle that $\partial_{r}u$ does not vanish in $(a, b)\cross(\tau, \infty)$

in case (b). Furthermore, since $\partial\Omega$ is smooth, in view of (a) and (b) we see that (ii) of
Theorem 2 holds.

Finally, let us consider Theorem 3. In view of (a) and (b), it follows from Lemma
2.2 combined with the boundary condition of (1.4) that the domain $\Omega$ must be a ball.
It remains to show that $\partial_{r}u$ is negative in $(0, b)\cross(\tau, T)$ . Remark that the equation
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$\partial_{t}\beta(u)=\triangle u$ may be degenerate or singular parabolic depending on the behaviour of
$\beta’(s)$ as $s\downarrow \mathrm{O}$ , and therefore we can not always have the derivative $\partial_{r}u$ on $\partial\Omega\cross(0, T)$ .
We can overcome this obstruction by using the standard approximating problem for
$1>\in>0$ :

$\{$

$\partial_{t}\beta(v)=\triangle v$ in $\Omega\cross(\tau, \infty)$ ,
$v(x, \tau)=u(x, \tau)+\epsilon$ in $\Omega$ ,

$v=\epsilon$ on $\partial\Omega\cross(\mathcal{T}, \infty)$ .
(2.40)

(In fact this problem is useful to show existence of solutions of the initial-Dirichlet
problems for the degenerate or singular parabolic equation $\partial_{t}\beta(u)=\triangle u$ . ) Then, by
the theory of quasilinear uniformly parabolic equations (see [LSU]) there exists a unique
bounded classical solution $v=v_{\epsilon}\in C^{\infty}(\overline{\Omega}\cross(\tau, \infty))\cap C^{\infty}(\Omega\cross[\tau, \infty))\cap C^{0}(\overline{\Omega}\cross[\tau, \infty))$

of (2.40) satisfying

$\epsilon\leqq v_{\epsilon}\leqq\max_{xin\Omega}u(x, \mathcal{T})+\epsilon$ in $\overline{\Omega}\cross(\tau, \infty)$ .

It follows from this inequality combined with the regularity result of [Sac 1] that the
family $\{v_{\in}\}_{0<}\mathcal{E}<1$ is equicontinuous on each compact subset of $\Omega\cross(\tau, \infty)$ . Since by
the comparison principle we have $v_{\epsilon_{1}}\leqq v_{\epsilon_{2}}$ for $0<\epsilon_{1}\leqq\epsilon_{2}<1$ , by a diagonalization
argument, the Arzela-Ascoli theorem, and the uniqueness of the solution $u$ we see that

$v_{\epsilon}arrow u$ as $\epsilonarrow 0$ uniformly on each compact subset of $\Omega\cross(\tau, T)$ .

Furthermore, since $v_{\epsilon}\geqq u>0$ in $\Omega\cross(\tau, T)$ , by the theory of uniformly parabolic
equations ([LSU]) in particular this convergence implies

$\partial_{r}v_{\epsilon}arrow\partial_{r}u$ as $\epsilonarrow 0$ uniformly on each compact subset of $\Omega\cross(\tau, T)$ . (2.41)

Observe that for $v_{\epsilon}=v_{\epsilon}(r, t)$

$\partial_{r}v_{\epsilon}(0, t)=0$ and $\partial_{r}v_{\epsilon}(b, t)\geqq 0$ for any $t>\tau$ .

Then it follows from Lemma 2.2 and the maximum principle that

$\partial_{r}v_{\epsilon}\leqq 0$ in $(0, b)\cross(\tau, \infty)$ .

Therefore we get from (2.41)

$\partial_{r}u\leqq 0$ in $(0, b)\cross(\tau, T)$ . (2.42)

Since $u>0$ in $\Omega\cross(\tau, T)$ , we can apply the strong maximum principle to $\partial_{r}u$ and we
see that $\partial_{r}u$ is negative in $(0, b)\mathrm{x}(\tau, T)$ . This completes the proof of Theorem 3.
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