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1 Introduction

In this talk we study tight distance-regular graphs. We show an inequality for
distance-regular graphs and we call a non-bipartite distance-regular graph tight when
equality holds in this inequality. We give some characterizations of those graphs and

give all examples known to us. At last we will study tight distance-regular with di-

ameter 3 and 4.
This talk is based on joint work with Aleksandar Juri\v{s}i\v{c} (Ljubjana) and Paul Ter-
williger (Madison).

In the remainder of this section we introduce some basic definitions and notation. An
equitable partition of a graph $\Gamma_{1}^{\vee}\mathrm{s}$ a partition of its vertices into cells $C_{1},$ $C_{2},$

$\ldots,$
$Cs$

such that for all $\dot{i}$ and $j$ the number $c_{ij}$ of neighbours, which a vertex in $C_{i}$ has in

the cell $C_{j}$ , is independent of the choice of the vertex in $C_{i}$ . In other words each cell
$C_{i}$ induces a regular graph of valency $c_{ii}$ , and between any two cells $C_{i}$ and $C_{j}$ there
is a biregular graph, with vertices of the cells $C_{i}$ and $C_{j}$ having valencies $c_{ij}$ and $c_{ji}$

respectively.
A graph $\Gamma=(X, R)$ with diameter $d$ is distance-regular when the distance

partition corresponding to any vertex $x\in X$ is equitable and the parameters of

the equitable partition do not depend on $x$ . In a distance-regular graph for a pair
of vertices $(x, y)$ at distance $h$ the number $p_{ij}^{h}$ of vertices at distance $\dot{i}$ from $x$ and $j$

$i^{\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}y}$ depends only on integers $i,$ $j,$ $h$ , and not on $(x, y)$ . We denote the intersection
numbers $p_{ii}^{i},$ $p_{i,i+}i1’ pii,i-1$ and $p_{ii}^{0}$ respectively by $a_{i},$ $b_{i},$

$c_{i}$ and $k_{i}$ , for $\dot{i}=0,1,$
$\ldots,$

$d$ ,
note $b_{0}=a_{i}+b_{i}+c_{i}$ is the valency of the graph $\Gamma$ and call $\{b_{0}, \ldots, b_{d-1}; c_{1}, \ldots, cd\}$ the

intersection array of $\Gamma$ . For a detailed treatment and all the terms which we do not
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define see [1]. A graph is $i$ -homogeneous when a distance partition corresponding to
any pair of vertices at distance $i$ is equitable, see Nomura [5]. A graph $\Gamma$ of diameter
$d$ is antipodal if the vertices at distance $d$ from a given vertex are all at distance $d$

from each other. Then ‘being at distance $d$ or zero’ induces an equivalence relation
on the vertices of $\Gamma$ , and the equivalence classes are called antipodal classes. For an
antipodal graph $\Gamma$ we define the antipodal quotient of $\Gamma$ , to be the graph with the
antipodal classes as vertices, where two classes are adjacent if they contain adjacent
vertices.

2 Tight graphs

We show that strongly regular graphs are special kind of extremal graphs. From
this one quickly derives an inequality for $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{C}\mathrm{e}- \mathrm{r}\mathrm{e}\mathrm{g}\mathrm{u}_{}1\mathrm{a}.\mathrm{r}$ graphs, see (3), $\cdot$ A graph
$\Gamma$ on $n$ vertices is called strongly regular with parameters $(k, \lambda, \mu)$ if and only if
its adjacency matrix $A$ satisfies $A^{2}=kI+\lambda A+\mu(J-I-A)$ and $AJ=kJ$ for
some integers $k,$ $\lambda$ and $\mu$ , i.e., when it is $k$-regular and has at most three eigenvalues.
A connected strongly regular graph is distance-regular and has diameter two. The
nontrivial eigenvalues $r$ and $s$ (whose eigenvectors can be assumed to be orthogonal
to the all ones vector, which corresponds to the trivial eigenvalue $k$ ) are the roots of
the quadratic equation $x^{2}-(\lambda-\mu)x+(\mu-k)=0$ and thus

$\lambda-\mu=r+s$ , $\mu-k=rS$ . (1)

The above relations show that the parameter $(k, \lambda, \mu)$ could be expressed also by the
eigenvalues $(k, r, s)$ of the strongly regular graph. By counting the edges between the
neighbours and non-neighbours of a vertex in a connected strongly regular graph we
obtain: $\mu(n-1-k)=k(k-\lambda-1)$ , and so in the case when the graph is not complete
graph we derive, by (1),

$n= \frac{(k-r)(k-s)}{k+rs}$ . (2)

$\dot{\mathrm{W}}\mathrm{e}$ will now show that the right side of the equality (2) is an upper bound on the
number of vertices of a $k$-regular graph with. the eigenvalues other then $k$ from the
interval $[s, r]$ .

Theorem 2.1 Let $\Gamma=(X, R)$ denote a $k$ -regular graph on $n$ vertices, $n>k+1$ ,
with eigenvalues $k=\eta_{1},$

$\ldots,$ $\eta_{n}$ (not necessarily distinct). Let $r$ and $s$ be such numbers
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that $r\leq\eta_{i}\leq s$ , for $i=2,2*\phi’ n$ . Then $n(k+rs)\leq(k-r)(k-s)$ . Equality holds if
and only if $\Gamma$ is strongly regular with eigenvalues in $\{k, r, s\}$ .

Proof. The trace of the adjacency matrix $A$ equals the sum of its eigenvalues and

is zero. The trace of $A^{2}$ equals the sum of squares of eigenvalues and is $nk$ , i.e., the

number of walks of length two which start and end in the same vertex. Summing the

inequalities $(\eta_{i}-r)(\eta_{i}-s)\leq 0$ for $\dot{i}=2,$
$\ldots,$

$n$ , and using the above two facts we

obtain the desired inequality, which holds with equality if and only if $\eta_{i}\in\{r, s\}$ for

$i=2,$ $\ldots,$
$n$ . It follows that in the case of equality the graph $\Gamma$ has at most three

eigenvalues, namely $k,$ $s$ and $r$ , and is therefore strongly regular. 1

We will now apply this result to distance-regular graphs. Let $\Gamma=$ (X, $R$) be a

distance-regular graph with diameter $d$ , and eigenvalues $k=\theta_{0}>\theta_{1}>\cdots>\theta_{d}$ .

For a vertex $x\in X$ let $\Gamma_{i}(x)$ denote the set of vertices at distance $i$ from $x$ , and

for a vertex $y\in X$ let $D_{j}^{i}(x, y):=\Gamma_{i}(x)\cap\Gamma_{j}(y)$ . The graph induced on the vertices

$\Gamma_{i}(x)$ is called the i-th subconstituent graph of $x$ . It is the regular graph on $k_{i}$

vertices and with valency $a_{i}$ . The first subconstituent graph of $x$ will be called also

the local graph of $x$ , and will be denoted by $\triangle=\triangle(x)$ . Let $\partial(x, y)$ denote the

distance between the vertices $x$ and $y$ . Then for $\partial(x, y)=2$ the graph induced on

$D_{1}^{1}(x, y)$ is called the $\mu(x, y)$-graph, or just the $\mu$-graph.

For $d\geq 2$ , an easy eigenvalue interlacing argument guarantees $\theta_{1}\geq 0$ and $\theta_{d}\leq-\sqrt{2}$,

so we can define

$b^{-}:=-1- \frac{b_{1}}{\theta_{1}+1}$ and $b^{+}:=-1- \frac{b_{1}}{\theta_{d}+1}$ .

Suppose the graph $\Gamma$ is nonbipartite with diameter $d\geq 3$ , and let $a_{1}=\eta_{1}\geq\eta_{2}\geq$

$...\geq\eta_{k}$ be the eigenvalues of the local graph $\Delta(x)$ . Then, by Terwilliger’s result

[1, Thm. 4.4.3 and Thm. 4.4.4] $b^{+}\geq\eta_{i}\geq b^{-}$ , for $i=2,$ $\ldots,$
$d$ , and therefore, by

Theorem 2.1, we have

$k(a_{1}+b^{+}b^{-)\leq}(a_{1}-b^{+})(a_{1^{-}}b^{-)}.$ (3)

Equality holds in (3) if and only if $\eta_{i}\in\{b^{+}, b^{-}\}$ for $i=2,$ $\ldots,$
$k$ , i.e., the local graph $\Delta$

is strongly regular with eigenvalues $a_{1},$
$b^{-}$ and $b^{+}$ . The nonbipartite distance-regular

graphs for which the equality holds are called tight graphs.

In the following theorem we will give some characterizations of tight graphs.

86



Theorem 2.2 Let $\Gamma=(X, R)$ be a non-bipartite distance-regular graph with diam-

eter $d\geq 3$ . The following are equivalent:

(i) $\Gamma$ is tight,

(ii) $\Gamma$ is 1-homogeneous and $a_{d}=0_{f}$

(iii) For each vertex $x$ the local graph $\triangle(x),$ $i.e$ . the subgraph induced by $\Gamma(x)$ , is

strongly regular with eigenvalues $a_{1},$
$b^{+},$ $b^{-}$

(iv) For some vertex $x$ the local graph $\triangle(x),$ $i.e$ . the subgraph induced by $\Gamma(x)$ , is

strongly regular with eigenvalues $a_{1},$
$b^{+},$ $b^{-}$

3 Examples

The following examples $(\mathrm{i})-(\mathrm{x}\mathrm{i}\mathrm{i})$ are all the known tight distance-regular graphs with

diameter at least 3. In each case we give the intersection array, and the parameters

and eigenvalues of the local graph.

(i) The Johnson graph $J(2d, d)$ has diameter $d$ and intersection numbers $b_{i}=(d-i)^{2}$ ,

$c_{i}=i^{2}$ for $i=0,1,$ $\ldots$ , $d$ . It is locally the lattice graph $I\iota_{d}^{\nearrow}\cross I\iota_{d}^{\nearrow}$ , with parameters

$(d^{2},2(d-1),$ $d-2,2)$ and non-trivial eigenvalues $r=d-2,$ $s=-2$ .

(ii) The halved cube $\frac{1}{2}H(2d, 2)$ has diameter $d$ and intersection numbers $b_{i}=(d-$

$i)(2d-2i-1),$ $c_{i}=i(2i-1)$ for $i=0,1,$ $\ldots,$
$d$ . It is locally the Johnson graph

$J(2d, 2)$ , with parameters $(d(2d-1), 4(d-1),$ $2(d-1),4)$ and non-trivial eigenvalues

$r=2d-4,$ $S=-2$ .

(iii) The Taylor graph are the distance-regular graphs with $k_{3}=1$ . See Taylor [8]

and Seidel and Taylor [6] for more information.

(iv) The Conway-Smith graph has intersection array $\{10, 6, 4, 1; 1, 2, 6, 10\}$ . It is

locally the Petersen graph, with parameters $(10, 3, 0,1)$ and non-trivial eigenvalues

$r=1,$ $s=-2$ .

(v) The Blokhuis-Brouwer graph with intersection array {45, 32, 12, 1; 1, 6, 32, 45}.
It is locally the generalized quadrangle $\mathrm{G}\mathrm{Q}(4,2)$ , with parameters (45, 12, 3, 3) and

87



non-trivial eigenvalues $r=3,$ $s=-3$ .

(vi) The graph 3. $O_{7}(3)$ with intersection array $\{117, 80, 24, 1; 1, 12, 80,117\}$ . It is
locally strongly regular, with parameters (117, 36, 15, 9) and non-trivial eigenvalues
$r=9,$ $s=-3$ .

(vii) The graph 3. $Fi_{24}$ with intersection array {31671, 28160, 2160, 1; 1, 1080, 28160,
31671}. It is locally strongly regular, with parameters (31671, 3510, 693, 351) and
non-trivial eigenvalues $r=351,$ $s=-9$ .

(viii) The Soicherl graph with intersection array {56, 45, 16, 1; 1, 8, 45, 56}, cf. [7].
It is locally strongly regular, with parameters $(56, 10,0,2)$ and non-trivial eigenvalues
$r=2,$ $s=-4$ .

(ix) The Soicher2 graph with intersection array {416, 315, 64, 1; 1, 32, 315, 416}, cf.
[7]. It is locally strongly regular, with parameters (117, 36, 15, 9) and non-trivial
eigenvalues $r=9,$ $s=-3$ .

(x) The Meixnerl graph with intersection array {176, 135, 24, 1; 1, 24, 135, 176}, cf.
[4]. It is locally strongly regular, with parameters (176, 40, 12, 8) and non-trivial
eigenvalues $r=8,$ $s=-4$ .

$(\mathrm{x}\mathrm{i})$ The Meixner2 graph with intersection array {176, 135, 36, 1; 1, 12, 135, 176}, cf.
[4]. It is locally strongly regular, with parameters (176, 40, 12, 8) and non-trivial eigen-
values $r=8,$ $s=-4$ . It is a 2-cover of example (x).

$(\mathrm{x}\mathrm{i}\mathrm{i})$ The Patterson graph with intersection array $\{280, 243, 144, 10; 1, 8, 90, 280\}$ . It
is locally generalized quadrangle $\mathrm{G}\mathrm{Q}(9,3)$ , with parameters (280, 36, 8, 4) and non-
trivial eigenvalues $r=8,$ $s=-4$ .

For more information about the examples (i) and (ii), see [1, Chapter 9] and for
examples (iii), (iv), (v), (vi), (vii), $(\mathrm{x}\mathrm{i}\mathrm{i})$ , see [1, Chapter 13].
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4Tight graphs with small diameter

With the exception of Patterson graph all known tight graphs are antipodal, see [3].
For diameter larger than four there are only two examples known, the Johnson graph
$J(2d, d)$ and the halved cube $\frac{1}{2}H(2d, 2)$ , both having diameter $d$ .
In this section we focus on tight graphs of small diameter. The Taylor graphs are
the distance-regular graphs with intersection array of the form $\{k, c, 1;1, C, k\}$ . We
show that these are all the tight graphs with diameter three.

Theorem 4.1 Let $\Gamma=(X, R)$ be a tight distance-regular graph with diameter three.
Then $\Gamma$ is a Taylor graph.

In the following we will concentrate on antipodal graphs with diameter 4.
We say that a distance-regular graph $\Gamma$ is an $\mathrm{A}\mathrm{T}_{4}(p, q, r)$ ($p,$ $q,$ $r$ real numbers) if it
has intersection array

$\{q(pq+p+q), (q-21)(p+1), \frac{(r-1)q(p+q)}{r}, 1;1, \frac{q(p+q)}{r}, (q^{2}-1)(p+1), q(pq+p+q)\}$ .

Theorem 4.2 Let $\Gamma=(X, R)$ be an $antipod.aldiStanCe_{i}-reg.ulargra\vee\cdot p_{J},h$ with dia.meter

four. Then the following are equivalent.

(i) $\Gamma$ is tight.
(ii) $\Gamma$ is an $AT_{4}(p, q, r)$ , for some real numbers $p_{f}q$ and $r$ .

(iii) The antipodal quotient of $\dot{\Gamma}$ has the following parameters

$(k, \lambda,\mu)=(q(pq+p+q),p(q+1),$ $q(p+q))$ .

for some real numbers $p$ , and $q$ .
(iv) The graph $\Gamma$ is locally strongly regular with parameters $(k’, \lambda’, \mu’)=(p(q+$

1), $2p-q,p)$ for some real numbers $p$ , and $q$ . :.

If $(i)-(iv)$ holds for some real numbers $p,$ $q,$ $r$ , then $p,$ $q,$ $r$ are integers with $p\geq 1,$ $q\geq$

$2,$ $r\geq 2$ .

A graph with diameter at least two is $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}’ \mathrm{e}\mathrm{d}$ Terwilliger $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\acute{\mathrm{h}}$ when $\mathrm{e}\dot{\mathrm{v}}\mathrm{e}\mathrm{r}\mathrm{y}\mu-$

graph has the same number of vertices and is complete. We now give new feasibility
conditions for the parameters of tight graphs with parameters $(p, q, r)$ and group them
with all previously known conditions in the following result.
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Theorem 4.3 Let $\Gamma=(X, R)$ be an $AT_{4}(p,q, r)$ for some real numbers $p,q,$ $r$ . Then

(i) $pq(p+q)/r$ is even.

(ii) $r(p+1)\leq q(p+q)$ , with equality if and only if $\Gamma$ is Terwilliger graph.

(iii) $r|p+q$ .
(iv) $p\geq q-2$ .
(v) $p+q|q^{2}(q-12)$ .

(vi) $p+q^{2}|q^{2}(q-21)(q+q-21)(q-2)$ .

In the next theorem we show when an $\mathrm{A}\mathrm{T}_{4}(p, q, r)$ is a Terwilliger graph.

Theorem 4.4 Let $\Gamma=(X, R)$ be an $AT_{4}(p, q, r)$ for some real numbers $p,$ $q,$ $r$ . Then

the following are equivalent.

(i) $\Gamma$ is a Terwiliger graph.
(ii) $p=1$ .
(iii) $(p, q, r)=(1,2,3)$ and $\Gamma$ is the Conway-Smith graph.

(iv) $p+q=r$ .

In the following we study the family $\mathrm{A}\mathrm{T}_{4}(qs, q, q)$ where $q$ and $s$ are integers, with

$q,$ $s\geq 2$ .

Theorem 4.5 Let $\Gamma=(X, R)be,anA\tau_{4}(qs, q, q)$ for some real numbers $q,$ $s$ . Then

one $\mathit{0}\acute{f}$ the following holds.

(i) $(q, s)=(3,1)$ and $\Gamma$ is the Blokhuis-Brouwer graph.

(ii) $(q, s)=(2,1)$ and $\Gamma$ is the Johnson graph $J(8,4)$ .
(iii) $(q, s)=(2,2)$ and $\Gamma$ is the halved 8-cube.

(iv). $(q, s)=(3,3)$ .
(v) $(q, s)=(4,2)$ .

In case (iv) and (v) of the above theorem we are able to show that $\Gamma$ is locally locally

locally $GQ(2,2)$ and locally locally $GQ(3,3)$ , respectively. Note that the $3.O_{7}(3)-$

graph and the Meixner2 graph are examples of case (iv) and (v) respectively. In the

near future we hope to show that those two examples are unique.
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