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A 72-arc associated with the Ag-invariant sextic

FILRFEFES  3KHE ¥ ( Hitoshi Kaneta )

0 Introduction

We shall show that some highly symmetric curves give highly symmetric arcs. Let C be a
compact Riemann surface with genus g. If g > 2, then the order of the automorphism group
G(C) of C is bounded by 84(g—1)(Hurwitz inequality). If g = 3, a compact Riemann surface
attains the upper bound if and only if C is isomorphic to the Klein quartic zy+y?2+2z. As
is well known, the automorphism group of the curve is isomorphic to PSL(2,7). If g = 10,
the maximum order of the automorphim groups is not known. A. Wiman [3], however, has
shown that the Wiman sextic Fy = 10z3y3 +9(z° +1°) 2z — 452%y%2% — 1352y2* +272° has the
automorphim group isomorphic to Ag ~ PSL(2,9), and that the group acts transitively on
the set of flexes. Recall that an automorphim of a non-singular plane curve (defined over
C) of degree n > 4 is given by a projective transformation [2, theorem 5.3.17(3)].

An n-point set K, in the r-dimensional projective space PG(r, k) defined over a field &
is called an n-arc, if any 7 + 1 points of them are linearly independent. We write PG(r,q)
for PG(r,GF(q)), where GF(q) is the finte field of ¢ elements. '

Following theorems are our main results.

Theorem 1 Let k be an algebraically closed field with char k# 7. Then the 24-point set
Fou of flezes of the Klein quartic is a 24-arc in PG(2,k) if and only if char k# 2. Fo lies
in PG(2,q) if and only if 7 |(g—1).

Theorem 2 Let k be an algebraically closed field with char k# 2,3,5. Then

(1) The 72-point set Fro of flexes of the Wiman sextic Fg is a 72-arc in PG(2,k) if and
only if char k#1119, 31,61.

(2) Fro lies in PG(2,q),if 30 |(¢—1).

More detailed results on the Klein quartic and the Wiman sextic are summarized in the
follwoing §1 and §2 respectively without proof in principle.

These results were obtained in collabration with F. Pambianco and S. Marcugini who
are combinatorial geometers at Department of Mathematics of Perugia University, Perugia,
Italy. ’

Definition. Let B, C € PGL(3,k), and let f € klz,y,2]. Then the map f — f»
is a ring-isomorohism of k[z,y,z], where fp(z,y,2) = f(B~Y(z,y,2)). To be precise
F(BY(z,y,2)) = fF(H{B™" Yz,y,2)}). It is known that (fs)c = fcp. Let f € klz,y, 2|
be a homogeneous polynomial of degree n (or a plane curve f of degree n). The curve f is
said to be invariant under a projectivity (B) if fg ~ f. More generally let G be a subset
of PGL(3,k). Then a homogeneous polynomial f ( or a curve f ) is called G-invariant if
f is invariant under every (B) € G. Aut(f) is the set of projectivities (B) such that fg ~ f.
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1 The Klein quartic

Obviously £ = 5 is a primitive element of the Galois field GF(7). A representaiony of
PSL(2,7) in the projective plane PG(2, k) over k(i.e. group homomorphism of PSL(2,7)
into the projective transformation group PG L(3, k)) is completely determined by the images
©((v)), ¢((v)), and ¢((w)), where matrices u, v, and w take the following forms:

u:[(l) il, U:~'[(1) —01}, | and w’:[g 591}.

An A€ GL(S, k) gives a projective transformation (A) of PG(2, k) in the usual manner:

(5)-C)

We shall describe all injective homomorphisms ¢ of PSL(2,7) into PGL(3,%). To this end
it suffices to define matrices U, V,and W such that

p((w) = (U), ¢((v)) = (V), and p((w)) = (W).

Let € be a primitive 7-th root of 1, and let

T

Y
z

U = diagle,€* €] and
o f o
V = |8 v al|,wherea=e+¢° f=-1—€>—¢% andy=1
Yy oo B |
W = les, e1, ez, where E3 = [ey, €3, e3].
IftM= [ Z z ] € SL(2,7), then we define p((M)) as follows:

(M) = (U:VU W' ) if c#£0
(M) = (UaVU W8 if g 0.

Theorem 1.1 Assume that the field k is algebraically closed and chark # 7.

(1) The map ¢ defined above is an isomorphism of PSL(2,7) into PG’L(S k).

(2) Any automorphism T of the field k fixzes o(PSL(2,7)).

(3) Let v be an isomorphism of PSL(2,7) into PGL(3,k). Then there exists an auto-
morphism o of k and a T' € GL(3,k) such that ¥((g)) = o((T")rp((g))(T")) for any
(9) € PSL(2,7). In particular the groups ¢(PSL(2,7)) and ¥(PSL(2,7)) are conjugate in
PGL(3,k).

vThe plane cueve f ':‘ 23y + 32+ 2z is called‘the Klein quartic, which we denote by C.

Lemma 1.2 The curve C defined over an algebraically closed ﬁeld k is non- smgular if
and only if chark # 7.
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It is a classical result that a non-singular plane quartic with the projective automorphism
group Aut(f) such that 7| |Aut(f)| is projectively equaivalent to the the Klein quartic.
Consider the following curve or polynomial called Hessian of f;

fa::c f.'zy fxz 6:cy 3%2' '32.'2 ‘
foo Jyy Ty | = det 322 6yz 3y* '—“‘—54’7'0(55, Y, 2),
fea 'fzy Jaz 322 3y2‘ 6zxz -

where ho(z,y,2) = zy° + y2°® + 22° — 5z%y?2%. Let A = [a;] € GL(3,k). The matrix A
induces a ring automorphism R4 of the polynomial ring k[z, y, z] as follows; (R4 p)(z,y, 2) =
pa(z,y,2z) = p(A~Yz,y, 2]), where p € k[z,y,2]. It is known that R4p = RaRp, that is,
pap = (pB)a- We say that a homogeneous polynomial p € klz,y,2]( or a curve p) is
invariant under a projectivity (A) if p4 ~ p, in other words, if there exists a constant A € k
such that pa = Ap. : '

h(z,y, z).= det

Proposition 1. 3 Assume that chark # 7. The polynomials f and hy defined above are
invariant under every element of p(SL(2,7)), where ¢ is the group isomorphism defined in
the previous section. ‘ ' o '

A point (z,y, 1) lies on the Klein quartic C' if and only if 23y + 3% + 2 = 0. Therefore
(0,0,1) is a flex of C. If chark # 2,3,7, then the set of flexes is the intersection of f and
ho, and Ifﬂhol S4>< 6.

Lemma 1.4 The orbit Foy 0of (0,0, 1) under the group o(PSL(2,7)) consisits of 24 points,
and f24 = f n ho.

Theorem 1.5 The 24-point set Foq in Lemma 2,3 is an arc if chark # 2,7, and not an
arc if char =2.

P’f‘OOf. Let Pl '—-"(1,0, 0), P2 = (0, 1, 0), P3 = (0, O, 1) and.’F’ = f\{P3} Since P3 € fﬂho,
and both f and hg is invariant under (PSL(2,7), F C f N hy. By Bezous’s theorem
F = f N hg. We shall show that there exist non lines L through P; such that [LNF'| > 2.
Since the line z and y do not satisfy the condition, we will show that there exist no lines
L :y = az (a # 0) through P; such that [LNF'| > 2. Clearly fNz = {P,P}. So L
passes through a point (z,y,1) # (0,0,1) such that f(z,y,1) = ho(z,y,1) = 0. Hence the
following two polynomials in # must have at least two common roots, which are evidently
non-Zero:
p=az®+a®2? +1, ¢=da%2"+2* - 5a’2® +a

Conversely, if p and ¢ have at least two common roots z, then = # 0, and a # 0 so that the
line y = az satisfies the condition |L N F'| > 2. We have ' B

q = (a*z® + a)p + z%r, where r = (1 = a")z? — 6a’z — 2a*.

This implies that if char k = 2, then p divides ¢ for a such that a” = 1. In other words, the
|F Ny — az| = 3+ 1, for p has no multiple roots, and F is not an arc, provided chark = 2.
If a” = 1, then p and ¢ have at most one root in common. We may assume a’ # 1. The
common roots of p and q are those of p and r. We may assume that r has no multiple roots,
namely 2a’ # 11. Hence r must divide p. Thus, by simple calculation we conclude that a
polynomial a®(44 — 8a”)z + (1 — a”)? + 2a"(7 — a”) must vanish. However the coefficient of
£ cannot vanish. We have shown that there does not exist an a # 0 such that p and ¢ have
at least two roots in common.
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Theorem 1. 6 If the projective automorphims group Aut(K) of a 24-point set K in PG(2, k)
has a subgroup isomorphic to PSL(2,7), then K is projectively equivalent to Faa.

2 The Wiman sextic

Let Fs be the Wlman sextic:
Fy = 10w3y3+9(w + y°)z — 4537y 2 — 135zyz* + 272°.
Lemma 2.1 Fg is non-singular if and only if char k & {2, 3, 5}.

From now on' we asssume that char k£ ¢ {2,3,5}. Wiman has shown that Aut(Fs) is
isomorphic to Ag and that Aut(Fg) acts transitively on the set Fr; of flexes of the curve
(defined over C). One can verify the latter assertion immediately by the following Lemma
2.2, provided |Aut(Fg)| > 360, because we know that there are at most 72 flexes for a plane
sextic.

Lemma 2.2 (1) P, =(1,0,0) and P, = (0,1,0) are flezes ofF6 '

(2) A projectivity (B) € Aut(Fs) fizes P2 (1,0,0), if and only if B ~ dlag[l B, 3] where
=1

(3) An involutive projectivity (C) fizes P3 =(0,0,1) and Fg, if and only if

0 80
gt 0 0.
0 01

Theorem 2.3 Assume that char k ¢ {2,3,5}. Frp is an arc in PG(2,k) zf and only if
char k ¢ {11,19, 31, 61}.

Proof. Note that P;=(1,0,0) € Fra. We use the fact that Aut(Fe) As, hence it acts
transitively on F7o by Lemma 1.2. This has been proved by Wiman in the case k = C, and
will be proved in §3 for any algebraically closed field k¥ with char k& & {2, 3, 5}. Consequently
Foy is an arc if and only if there pass 71 lines £ through P; such that [{NF7|> 2. A line
through P, takes the form by + cz = 0. Note that if ¢ = 0, then P is the only point both
on the line and Frs. Other lines take the form z = ay. It can be easily seen that the line
z = 0 intersects Ko at Py and P, = (0,1,0). Now Fry is an arc if and only if there exist
70 lines £ z = ay(a # 0) satisfying |¢ N Frz| > 2. Recall that P € Frs if and only if
Fg(P) = Hy3(P) = 0, where Hiy is the Hessian of Fg[1, p.116(see the proof given there) |:
Fy = 10231® 4 9(2® + y°)z — 45z%y?2? 135a:yz + 2728

Hyy=2-3%.53 ‘ .
- =6(aMy + zytt) + 389:63/6 —90(zy® + 239°) 2 +{9(z1° + ') + 46825y°} 22
, —1080(2"y? + z%y") 23 —33759:4 424 +324(x% + 2y°)2°
o +1080z3y328  —2916(2® + 1°)27 | ~121522y22®
—.4374a:yzm, —1729212

We define polynomials f5 and hi11 by

Fs(1,y,ay) = yfs(y), Hiz(l,y, ay).z 2-3*-5% yhii(y) :



34

fs = 27y5%a® + 9y5a — 135y%a* — 45y%a® + 10y2 + 9a -

hi1 = =729y a'? — 2916y*1a” + 9y*ta? — 4373y 4 324y%a5 — 6y'°

— 6y0 — 12153%a8 — 1080y%a® + 1080y3a® — 90384

— 3375y7a* — 21963547 + 468y8a? + 324y°a’ + 38y5

— 1080y*a® — 90y%a + 9ya? — 6.

It is obvious that a point P=(z,y, z) on the line ¢: z = ay(a # 0) coincides with P, if and
only if y = 0. So the line £: z = ay(a # 0) satisfies [(NF'75|> 2 if and only if there exists a
solution y to the equations

f5(y) =0, hu(y) =0.

The latter condition holds if and only if the resultant R(fs,h11) is equal to zero. Indeed,
the coefficients 27a% and —729a'? of the leading terms are not equal to zero, because char
k # 3 and a # 0. By computer we get

R(fs,h11) = 10° - 25% . 5. 37a r(a®), where the polynomial r(b) in b takes the form

—1601009443167990624b*
—8008065785727592768989b"3
—3522007883538993505734b12
—107544939428319502854789b!!
—2225677590261675159296491°
+91462705805749927596498b°
+1562605913478508734570358
+502757663372218581093b"
+19352902678040528478b°
+316996719792892173b°
+12682159485650015*
+40400195510286b°
—13463272359b>

—37196064b

—1024.

Note that the coefficient of b is equal to —25 - 33%(# 0). Now F; is an arc if and only if
the polynomial r(b) of degree 14 has no multiple roots. Again by computer we get the value
of the resultant R(b,?'). It has 503 decimal digits, and its prime factors are 2,3,5,11,19,31,
and 61. : .

The alternating group Ag of order 6 is known to be isomorphic to PSL(2, 3%). We turn
to the problem to describe all non-trivial representaions of PSL(2,32) in PGL(3,k) up to
equivalence . Two representaions of 1 and ¢ is said to be equivalent, if there exists an
S € GL(3,k) such that ¥(g)=(S"1)¥(g)(S) for every g € PSL(2,3%), where (S) is a pro-
jective transformation of PG(2, k) such that (S)([z])=(Sz). Here z € k® is a homogeneous
coordinates of a point ([z]) € PG(2,k). GF(3?) is the finite field of characteristic 3, which
has a primitive element 7 satisfying n2=n + 1. For our later use, we note that

w=n+1, *=2+1, gt=-1, =2, *=2+2, ' =n+2
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A representaion(i.e. group homomorphism)p of PSL(2,32%) is completely determined
by the images ©((g1)), ©((g2)), ¥((g3)), and ©((g4)), where |

[n o o -1 11 19
gl"‘[o'n—lilag2_[1 0]193““[01]7311(194—[01 3
and (g;)€ PSL(2,3?) for gi € SL(2,3%). In other words it suffices to specify matrices A4,
V, Q and W in GL(3, k) such that

(1)) = (4), »((g2)) = (V), sé((ga))=(9),'and ©((g4)) = (W).

Let w(resp. i) be a primitive 3-th(resp. 4-th) root of 1€ k, and /5 be a square root of
5€ k. ;

Theorem 2.4 (1) Under the above notation there exists a homomorhism ¢ of PSL(2, 3%)
into PGL(3, k) such that

w1l w 2 —4 —w? +vB(w—1)
A=|1 w w |, V=] -4 2 —w2+\/5—>(w——1)},
11 Ww? | ~w+ V5w =1) —w+VBw?-1) 2
1 0 0 001
Q=|0 w 0|, and W=|1 0 0 |.
0 0 w? 010}

(2) Any injective homomorphism 3 of PSL(2,3%) into PGL(3,k) is equivalent to this .

Remark 2.5 (1) Note that w and v/5 have two possible values. So ¢ gives rise to four
representaions. However, it turns out that these four groups ¢(PSL(2,3?)) are cunjugate
in PGL(3, k)(Corollary 2.14).

(2) Clearly Q3 = W = E3 and QW ~ WQ. Furthermore, let

1 14w 1-wi 1 2(w—-1)i —2(w-—1) 0
T=|-1 14+wi 1—wi ,soT‘1:4—,—-1— 1—3 1-i  2(=1+4wi)
0 1—-i 1—3 =D 1 Z1-i 2014w

Here 7 is a primitive 4-th root of 1 € k. Then it holds that

| 1007
T'AT =(w—-1){ 0 4 0 |, and T7'VT =
00 ¢

where bc = 1, and

2 _ .
v + w——;’ﬂm {—2+ W* —w)i} =0,

hence 5 5
¢+ %—_———164— {—2— (W —w)i} = 0.

In other words, b = (—w + w? 4+ 34)(1 £ v/54) and ¢ = (—w + w? — 37)(1 F V/51).
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We will search for a plane sextic which is invariant under the projective transformations

@(PSL(2,3%).

Theorem 2. 6. Let ¢ be the representation of PSL(2,3?%) given by Theorem 2.2. Then the
following homogeneous polynomial is p(PSL(2, 3%))-invariant:

fo = @41+ 20 {-5— VBw—u?)
+ztyz + aytz + Tyt |
Ha%y? + 52 + 229 5 {1+ VB(w — o)
| +2%y% 22302, | o
A few lemmas preceed the proof of Theorem 2.6

Lemma 2.7 Let B,C,T € GL(3,k) with C = T~'BT, and f € k[z,y,2]. If f5 = M,
then (fr-1)c = fr-1.

Lemma 2.8 Let
f = (2% + 40+ 2%)Cs + (ays + zy'z + 2y2*)Cs + (2%° + 2% + 2°2°) G5 + 2%*2°C,

where Cg, Cy, C3,Co € k, and let A € GL(3,k) be as in Theorem 2.4. Then fq = fw = f,
and f is invariant under (A) if and only if one of the following two cases holds.

1) C3 = —10Cs — 2wCy and Co = 3w?Cy.

2) C4 = 6(.0206, 03 = 206 and 02 = 0.

Lemma 2.9 Let f be as in Lemma 2.8. Then f is invariant under (A) and (V) (see
Theorem 2.4 for the definition of A and V'), if and only if f is proportional to the polynomial
fe in Theorem 2.6.

Proof. Assume that f satisfies the invaraince condition. f takes the form given in the
previous lemma. Let h be as in the proof of the lemma. We will first show that 2) of
Lemma 2.8 does not hold. Let Cs =1, Cy = 6w?, C3 =2 and C; = 0. Then

b= 36{2(1 — w?) + 3iw}uv? + 36{2(1 — w?) — iw}uPvt
+ 144{1 — w — 3iw? JuvPw + 144{1 — w + 3iw*}utvw?

+ 36{3(w? — w) + 3i}v® + 36{3(w® — w) — 3i}u®

4+ 108{2(w? — w) + 5i}v*w2 + 108{2(w?* — w) — 5i}v*w?

Since hy-1 ~ h, the firsr two terms give

b2_2(1—w2)+3iw and B2 — 1—w— 3iw?

2(1 — w?) — 3w 1 —w+ Biw?

As one can see easily, these two equalities are not compatible.
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By Lemma 2.8 1) h takes the following form:

h = uPv*{Cy(—540w? + 360wi — 3608) + Cy(24w? — 24wi — 18)}

+ . wPw*{Cs(—540w? — 360wi + 360i) + Ca(—24w?i + 24wi — 18}

+ v5w{06(—4‘32w2z' — 432wi — 864) + Cy(—144w" + —253w + 144i) }

+ vw®{Co(—432w% + 432wi — 864) + Cy(144w? — 252w — 1443)}

+ u®{Cs(12) + C4(12w)} + uPv*w?{Cs(1080w?) + C4(180)} + v*w?{Cy(—T72w)}

Denote by «, 8, v and § the coefficients of u?v*, u?w?*, v>w and vw® respectively. Since at
least one of the coefficients of u® and v*w?® does not vanish, we must have hy,-1 = h. The
equality hy.-1 = h holds if and only if the following two conditions are satisfied.

i) o= Bbt, ii) v = 6b* :

(recall that bc = 1). The condition i) is equivalent to

Co  (—24w? + 24wi — 18)b* — 24w? + 24wi + 18

Cy  (360wi — 3605 + 540w?2)bt + 360wi — 360i — 540w? "

Making use of the equalities

b +ec + ?—g(w w?) and b —c? = éi(w —wh) + ——\/_—5—(——41'),
3 3 3 3
we get Cg/Cy = —w{5+v/5(w — w?)}/30. Similarly the condition ii) is equivalent Cg/C =
—w{5 + V5(w — w?)}/30. Thus f is invariant under (A) and (V) if and only if the
coeficeints C; satisfy the condition (1) of Lemma 2.8 and the ratio Cs/Cy is equal to
—w{5 + v5(w — w?)}/30. -

Proof of Theorem 2.6. Since the sextic fg is invariant also under (§2) and W by Lemma 2.8,
it is PSL(2, 3%)-invariant by Lemma 2.9. =

We proceed to show that the sextic fe in Theorem 2.6 is projectively equivalent to the
Wiman sextic Fg.

Lemma 2. 10 Let X = [ Z Z ] € SL(2,3%) \ {*E5}. Then (X) € PSL(2,3%) has order

5 if and only if TrX = —1 in GF(3?%).

" As a result of Lemma 2.10, ©((gag2)) = (WV) has order 5. Note that WV ~ D, where

—w+VBw?—1) —w+v5w?—1) 2 ‘
D= 2 —4 —w?+VBw-1)

—4 2 —w? 4+ /5w —1)
and ‘that ‘

Vo5

det(D = AB) = (A +6)(3 + 8(~1+ VE) + 36) = ~6(6 + 1)(¢* — — )
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where A = —66. Let 6§ be a solution to t2 — %@t +1 = 0. The another solution §’ to this

quardratic equation is —6 + :1;—‘/5 Let e, ez and e3 be eigenvectors of D for eigenvalues
—68, —66" and —6 respectively; ‘

[ 6 —w? + v5(w —1) + 6{6 — w + V5(—w — 2)}
e1 = | —w?+VBw—1)+26 ' ,
245 |
" w? + V5w +3) +6{—6+w + V5w + 2)}
es = | wvbw—26 ,
| 4—2v5+46
[ 2
es = | 24w —Bw-1) |.
2

The following matrix

—4 2 —w? + V5w —1)
I=| - 2 —4 —w? 4+ v/5(w —1)
w4 V5w —1) —w+V5w?-1) 2
satisfies I2 = 36E3,Je; = —6aey, Te; = —60e; and Je3 = —6e3 for some constants « and

B. a3 =1, because I?> = 36E3. Consequently Q = 6[3e;, ez, es] diagonalizes I as

010 010 |
QIQ=|1 0 0|, because IQ=Q| 1 0 0| (= 6leq,Pe1,es]).
0 01 001

In terms of A = —66 satisfying A2 = 3(1 — v/5) A — 36 the matrix Q takes the following form:

12(w — 1) + Aw + v/5) 6(w + VBw) + 2X Qs |
12(w — w?) + Mw? + V5(2 —w?)} 6(4—2v5) —4) Qs3

where Q13 = 12, Q23 = 6{—2 +w2 - \/g(w - 1)}’ Q33 = 12.

[ 6(—3 + 3v/5) + A(4 — 24/5) | 6{w? + V5(w+3)} + M6 —w — V5(w +2)} Qs

Since (v/5)? = 5, w? = —w —1, and A* = 3(1 — v/5)X — 36, the coefficients of the polynomial
(fs)g-1 take the form : .

no + (Puw + nigA + TL13\/S) + (nog1wA + nzzw)\\/g + n23)\\/5) + ﬂgw)\\/g,

where ng, 711, N2, N13, N1, 22, N23, and ng are integers( to be precise, we interprete them
as elements of the prime field Z, = GF(p) of k if char k=p > 0). Using computer, we get
(fs)g-1 = (6°10)(1223) f, where

F o= 239°{9360 + 900w — 80X + 230w + v/5(~120 + 1020w + 140\ — 650w)}
+ 2(z° + yP){—2862 — 216w + 450\ + 90w + v/5(1026 + 648w — 90X + 90wA}
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2°2y?{—2160 — 1620w + 660X + 15w + v/5(1620 + 1620w — 150\ + 15wA}
2*zy{270'080w + 135X + 90w + v/5(—90 + 360w — 75X — 60w}

28{—48 — 24w + v/5(24 + 12w)}

102%y°{936 -+ 90w + 485 — 138w8 + v/5(—12 + 102w — 846 + 390ws)}

92(z® + y°){—318 — 24w — 3008 — 60ws + v/5(114 + 72w + 606 — 60ws)}
45222y {48 + 36w + 886 + 2w6 + v/5(—36 — 36w — 206 + 2wb)}
1352*zy{—2 + 8w + 66 + 4w8 + V/5(2 — 8w — 106 — 8wéb)/3}

28{—48 — 24w + V/5(24 + 12w)}

10z%y3a + 92(z® + ¥°)b — 452%x%y%c — 1352 zyd + 2Ce.

We will show that there exists an r € k such that

b 2 4
f(z,y,r2) = a[l02°y® +92(2° + ys)% - 45z2z2y2% - 135z4my£z;‘l 4282
. G - a

6
6T €

= O,Fﬁ

The following lemma, is easy to prove.

Lemma 2. 11 The follouﬁ'ng conditions (1) and (2) are equivalent.
(1) rb/a = f?c/a =r*d/a = %/(27a) = 1.
(2) r = a/b,b? = ac,27d/e = (a/b)?, ce = 27d>.

Now we are in a position to prove the following

Theorem 2.12 The curve

| fo = (@8 +19° 4 2%)w{—5 - V5w — w?)} + zyz(a® + y3 + 2%)30

+ (%P +y*2 + 222 10w{ -1 + V5(w — w?} + 222 2290w?

1s projectively equivalent to the Wiman sextic

Fs = 103y + 9(&:5 +95) 2z — 4522222 — 135zy2* + 2725.

Proof. Let a, b, ¢, d, and e be as in Lemma 2.11, and let r = a/b, and R=Qdiag|[1,1,r].
We will show that (fg)g-1 = aFg. Careful calculation shows that

b2

27d

2200
b C

ce

622{739 + 1284w + 20606 + 1840w5 + v/5(—359 — 964w — 5006 — 520w6)} = ac
3{14432 + 11264w + 32126 + 2090wS + v/5(—1300 + 20w — 57526 + 386w} = a2
24{—150 — 264w — 2798 — 135w8 + V/5(66 + 114w + 1296 + 63w} = 27d2.

In verifying the second equality above we make use of the equality 1/e = (24++/5)(1—w)/36.

Corollary 2. 13 (1) The projective automorohism group Aut(Fg) of Fs has order 360, and
Aut(Fg) acts transitively on the set Fra of flexes. »

(2) If o is an automorphism of k, and (T) € Aut(Fg), then (¢T) € Aut(Fs), namely
oAut(Fg)=Auf (Fg).
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Corollary 2.14 Let R € PG(3,k) be as in the proof of Theorem 2.12, and let ¢ be the
representaion of PS L(2 32) in Theorem 2.4.

(1) Aut(Fs) is (R)*(PSL(2,3%))(R). In particular a subgroup G 0fPG’L(3 k) is isomor-
phic to PSL(2,3%), if and only if G is conjugate to Aut(Fs) in PGL(3,k).

(2) The set of flezes Fra of Fg lies in PG(2, k1), where ky = ko(w, 8), ko -being the prime
field of k. If char k =p > 0, then GF (q) contains k; if and only if 30|(g — 1).

Theorem 2. 15 Let char k ¢ {2,3, 5} An A6 tnvariant sextzc n PG’(2 k) is projectively
equivalent to the Wiman sextic Fg.

Theorem 2. 16 Let char k ¢ {2,3,5}. If the projective automorphz'ms group Aut(K) of a
72-point set K in PG(2, k) has a subgroup G which is isomorphic to As, and acts tmnsztwely
on K, then K and Fry are projectively equivalent.
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