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1 Introduction
Most classical groups arising from (anti-) hermitian forms or (pseudo-) quadratic
forms contain so-called isotropic transvections. Indeed, suppose, for example, that $V$

is a vector space over some skew field If endowed with a $(\sigma, -1)$-hermitian form $f$

and let $w$ be an isotropic vector of $V$ , i.e., $f(w, w)=0$ , with $w\not\in \mathrm{R}\mathrm{a}\mathrm{d}(V, f)$ . Then,
for each $a\in I\{’\mathrm{W}\mathrm{i}*\mathrm{t}\mathrm{h}a^{\sigma}=a$, the map $v\vdash\Rightarrow v+f(v, w)aw$ for $v\in V$ is a transvection
fixing the form $f$ .

The isotropic transvection subgroups of these classical groups, i.e., the subgroups
generated by all isotropic transvections with a fixed axis, form a class $\Sigma$ of abelian
subgroups which is a class of abstract transvection groups in the sense of Timmesfeld
[25]. This means that for all $A,$ $B\in\Sigma$ we have that $[A, B]=1$ or $\langle A, B\rangle$ is a rank 1
group (i.e., $A\neq B$ , and for each $a\in A\#$ , there exists some $b\in B\#$ with $A^{b}=B^{a}$ ).

Here we describe a common characterization of all these classical groups with
isotropic transvections as linear groups generated by a class $\Sigma$ of abstract transvection
subgroups such that the elements of $A\in\Sigma$ act as transvections.

Details and proofs of the results mentioned in this paper can be found in [8] and
will appear elsewhere.

2 $\mathrm{R}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{V}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$

2.1 Notation. Suppose $V$ is a left vector space of arbitrary dimension defined over
some skew field $K$ . For any linear map $t:Varrow V$ (acting from the right) and vector
$v\in V$ , we define the commutator $[v,t]$ to equal vt–v. Here $vt$ is the image of $v$

under the linear map $t$ . If $W$ is a subspace of $V$ and $S$ a set of linear maps of $V$ , then
$[W, S]$ is the subspace of $V$ spanned by $\{[w, s]|w\in W, s\in S\}$ .

An invertible linear map $t:Varrow V$ is called a transvection if

(a) [V, $t$ ] is 1-dimensional and
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(b) [V, $t$ ] $\subseteq C_{V}(t)=\{v\in V|vt=v\}$ .

Suppose $t:Varrow V$ is a transvection. From the definition it is clear that $C_{V}(t)$ is a
hyperplane of $V$ , it is called the axis of $t$ . The 1-dimensional subspace [V, $t$ ] is called
the center of $t$ .

Let $v_{t}$ be a vector spanning the center [V, $t$ ] of $t$ . Then there is an element $\varphi\in V^{*}$ ,
the dual of $V$ , with kernel $C_{V}(t)$ such that the action of $t$ on $V$ can be described as
follows:

$t$ : $v\vdash+v+(v\varphi)v_{t}$ for $v\in V$.

2.2 Transvections in classical groups. In this paper we consider subgroups
of the general linear group on $V$ which are generated by transvections. For finite-
dimensional $V$ , it is well known that the special linear group $\mathrm{S}\mathrm{L}(V)$ is generated by
its transvections. For infinite-dimensional $V$ , the subgroup of $\mathrm{G}\mathrm{L}(V)$ generated by
the transvections is finitary, i.e., for each element $g$ of this subgroup the commutator
[V, $g$] is finite-dimensional. In fact the transvections generate the full finitary special
linear group $\mathrm{F}\mathrm{S}\mathrm{L}(V)$ .

Also the classical subgroups of $(\mathrm{F})\mathrm{S}\mathrm{L}(V)$ arising from (anti-) hermitian forms
contain transvections. Indeed, suppose $V$ is endowed with a $(\sigma, -1)$-hermitian form
$f$ and let $w$ be an isotropic vector of $V$ , i.e., $f(w, w)=0$ , with $w\not\in \mathrm{R}\mathrm{a}\mathrm{d}(V, f)$ . Then,
for each $a\in K^{*}$ with $a^{\sigma}=a$ , the map

$t:v\vdash+v+f(v, w)aw$ for $v\in V$

is a transvection fixing the form $f$ . Such a transvection will be called isotropic with
respect to $f$ , cf. Hahn and O’Meara [10, p. 213]. If the dimension of $V$ is finite, then
the subgroup of $\mathrm{S}\mathrm{L}(V)$ of isometries of $f$ is generated by its isotropic transvections.
Similarly, for infinite-dimensional $V$ , the isotropic transvections leaving $f$ invariant
generate the finitary subgroup of the corresponding classical group.

Maybe less well-known is the following class of transvections which we find in
orthogonal groups. Suppose $\sigma$ is an involutory anti-automorphism of $I${: and for
$\epsilon\in\{-1,1\}$ , set A $:=\{c-\epsilon c^{\sigma}|c\in I\acute{\iota}\}$ . Now consider a non-degenerate pseudo-
quadratic form $q$ : $Varrow I\iota^{\nearrow}/\Lambda$ with associated trace-valued $(\sigma, \epsilon)$ -hermitian form
$f$ : $V\cross Varrow K$ , see Tits [26, (8.2.1)] (a radical of $f$ is allowed). Let $w$ be an isotropic
vector of $V$ , i.e., $q(w)=0+\Lambda$ . If there exist $a\in K^{*}$ and $r_{a}\in.\mathrm{R}\mathrm{a}\mathrm{d}(V, f)$ (possibly $0$ )
with $q(r_{a})=a+\Lambda$ , then the map

$t:v\vdash+v+f(v, w)(aw+r_{a})$ for $v\in V$
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is a transvection in the isometry group of $q$ , which we also call an isotropic transvec-
tion. The axis of $t$ is the space $w^{\perp}=\{v\in V|f(v, w)=0\}$ , its center is $\langle aw+r_{a}\rangle$ .
Such transvections exist provided that $q$ is not an ordinary quadratic form with trivial
radical Rad$(V, f)$ .

We notice that these isotropic transvections act trivially on Rad$(V, f)$ and there-
fore also induce transvections on the space $V/\mathrm{R}\mathrm{a}\mathrm{d}(V, f)$ .

2.3 Transvection subgroups. Let $t_{1}$ and $t_{2}$ be two transvections on $V$ . Up to
symmetry we only have the following three possibilities for the centers and axes of $t_{1}$

and $t_{2}$ :

(1) [V, $t_{1}$ ] $\subseteq C_{V}(t_{2})$ and [V, $t_{2}$ ] $\subseteq C_{V}(t_{1})$ , then $[t_{1}, t_{2}]=1$ ,

(2) [V, $t_{1}$ ] $\not\subset C_{V}(t_{2})$ and [V, $t_{2}$ ] $\not\subset C_{V}(t_{1})$ , then $\langle t_{1}, t_{2}\rangle$ is contained in the group
$\mathrm{S}\mathrm{L}([V, t1]\oplus[V, t_{2}])\simeq \mathrm{S}\mathrm{L}_{2}(K)$ ,

(3) [V, $t_{1}$ ] $\subseteq C_{V}(t_{2})$ and [V, $t_{2}$] $\not\subset C_{V}(t_{1})$ , then $[t_{1}, t_{2}]$ is also a transvection on $V$

with center [V, $t_{1}$ ] and axis $C_{V}(t_{2})$ .

If $t_{1}$ and $t_{2}$ are isotropic transvections with respect to some anti-hermitian form $f$ ,
or some pseudo-quadratic form $q$ with associated $(\sigma, \epsilon)$ -hermitian form $f$ , then case
(3) does not occur. Indeed, for all $v,$ $w\in V$ we have that $f(v, w)=0$ if and only if
$f(w, v)=0$ .

Now suppose $t_{1}$ and $t_{2}$ are two isotropic transvections with respect to some anti-
hermitian form $f$ or pseudo-quadratic form $q$ . Denote by $T_{1}$ and $T_{2}$ , respectively, the
subgroup of $\mathrm{G}\mathrm{L}(V)$ generated by all isotropic transvections with the same axis as $t_{1}$

or $t_{2}$ , respectively. These subgroups are called isotropic transvection subgroups and
are isomorphic to $(I\acute{\iota}^{\sigma}, +)$ , if we consider the isotropic transvections with respect to
the anti-hermitian form, and to $(\triangle, +)$ in case they leave the pseudo-quadratic form $q$

invariant. Here $K^{\sigma}=\{a\in I\mathrm{t}^{\nearrow}|a^{\sigma}=a\}$ and $\triangle=\{a\in L|$ there exists $r_{a}\in \mathrm{R}\mathrm{a}\mathrm{d}(V, f)$

with $q(r_{a})=a+\Lambda\}$ .
It is straightforward to check that for $T_{1}$ and $T_{2}$ we have one of the following two

possibilities:

(1) [V, $T_{1}$ ] $\subseteq C_{V}(T_{2})$ and [V, $T_{2}$ ] $\subseteq C_{V}(T_{1})$ , then $[T_{1}, \tau_{2}]=1$ .

(2) [V, $T_{1}$ ] $\not\subset C_{V}(T_{2})$ and [V, $T_{2}$ ] $\not\subset C_{V}(T_{1})$ , then $\langle T_{1}, T_{2}\rangle$ is isomorphic to the sub-
group

$\langle$

of $\mathrm{S}\mathrm{L}_{2}(I^{\nearrow}\iota)$ , denoted by $\mathrm{S}\mathrm{L}_{2}(I\iota^{r})\sigma$ or $\mathrm{S}\mathrm{L}_{2}(\triangle)$ .
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The subgroups $\mathrm{S}\mathrm{L}_{2}(K^{\sigma})$ and $\mathrm{S}\mathrm{L}_{2}(\triangle)$ of $\mathrm{S}\mathrm{L}_{2}(I\zeta)$ are rank 1 groups in the following
sense, see Timmesfeld [25]: for each $x_{1}\in\tau_{1}\#$ there exists an $x_{2}\in\tau_{2}\#$ with $T_{2}^{x_{1}}=T_{1}^{x_{2}}$ .
Indeed, if $1\neq x_{1}=$ , then for $x_{2}$ we may take
$K^{\sigma}$ or $\triangle$ , respectively, then so is $\lambda^{-1}$ .

3 The main results
The main goal is to give a common characterization of the various classical groups (dif-
ferent from the special linear group) as groups generated by their isotropic transvec-
tion subgroups. We now describe the exact setting we will work in:

3.1 Setting. Let If be a skew field and $V$ a vector space over $I\mathrm{t}’$ . Assume that
$G\leq \mathrm{G}\mathrm{L}(V)$ such that:

(1) $G$ is generated by a conjugacy class $\Sigma$ of abelian subgroups of $G$ .

(2) For $A,$ $B\in\Sigma$ , either $[A, B]=1$ or $\langle A, B\rangle$ is a rank 1 group (i.e., $A\neq B$ , and
for each $a\in A\#$ , there exists some $b\in B\#$ with $A^{b}=B^{a}$ ).

(3) For $A\in\Sigma$ , every $a\in A\#$ is a transvection on $V$ .

(4) Each $A\in\Sigma$ contains at least 3 elements.

(5) There are $A,$ $B\in\Sigma$ with $[A, B]=1$ and $c_{\Sigma}(A)\neq C_{\Sigma}(B)$ .

(6) $V=[V, G]$ .

The conditions (1) and (2) on $\Sigma$ are the defining conditions of a class of abstract
transvection groups in a group $G$ in the sense of Timmesfeld [25]. In (5), we use
the definition $c_{\Sigma}(A)=\{T\in\Sigma|[A, T]=1\}$ , for $A\in\Sigma$ . By $P(V)$ we denote the
projective space corresponding to $V$ .

Notice that we do not assume that for each $A\in\Sigma$ the commutator space [V, $A$]
is 1-dimensional nor that $C_{V}(A)$ is a hyperplane in $V$ .

We are now able to state our first result:

3.2 Theorem. Assume $G$ is a subgroup of $\mathrm{G}\mathrm{L}(V)$ generated by a class $\Sigma$ of abstract
transvection groups as in the setting above.

If $C_{V}(G)=0$ ($e.g.,$ $V$ is irreducibfe), then $G$ is quasi-simple and we are in one of
the Cases (a) to (c):
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(a) There exist a skew field $L$ with involutory anti-automorphism $\sigma$ , some $\epsilon\in\{1, -1\}$

and a vector space $W$ over $L$ endowed with one of the folfowing forms (recall that
A $:=\{c-\epsilon c^{\sigma}|c\in L\})$ :

(1) a non-degenerate pseudo-quadratic form $q$ : $Warrow L/\Lambda$ with associated trace-
valued $(\sigma, \epsilon)$ -hermitian form $f$ : $W\cross Warrow L$ or

(2) a non-degenerate $(\sigma, \epsilon)$ -hermitian form $f$ , where A coincides with
$\{c\in L|\epsilon c^{\sigma}=-c\}$ .

The group $G$ is isomorphic to the classical normal subgroup of the isometry group of
$q$ or $f$ generated by the isotropic transvection subgroups $T_{\mathrm{p}}$ , where $p$ runs over the
points of the classical polar space $Q$ arising from $W$ and $q$ or $f(i.e.,$ $p$ runs over the
isotropic points of $P(W))$ .

(b) There exists a quaternion skew field $L$ (with standard $(anti-)involution\sigma$ and
center $Z(L))$ . Denote by $W$ the vector space $L^{4}$ over $L$ endowed with the pseudo-
quadratic form $q$ : $Warrow L/Z(L)$ defined by $q(x_{1,2,3,4}xxX):=x_{1}x_{3}^{\sigma}+x_{2}x_{4}^{\sigma}+Z(L)$

for $x_{1},$ $x_{2},$ $x3,$ $X_{4}\in L$ (with associated $(\sigma,$ $-1)$ hermitian $for^{j}mf$).
The group $G$ is isomorphic to the subgroup of the isometry group of $q$ generated by

those isotropic transvection subgroups $T_{p_{f}}$ where $p$ runs over the points of a so-called
special subquadrangle $Q$ of the classical generalized quadrangle arising from $W$ and $q$ .

(c) There exists a non-perfect commutative field $L$ of characteristic 2 with

$L^{2}\subseteq\Theta’\subseteq L’\subseteq\Theta\subseteq L$ ,

where $L’$ is a subfield of $L,$ $\Theta$ is an $L’$ -subspace of $L$ which generates $L$ as a ring
and $0’$ is an $L^{2}$ -subspace of $L’$ which generates $L’$ as a ring. Denote by $W$ the vector
space $\Theta\cross(L’)^{4}$ over $L’$ endowed with the quadratic form $q$ : $Warrow L’$ defined by
$q(x_{0};(x_{1}, x_{2}, X3, x_{4})):=x_{0}^{2}+x_{1}x_{2}+x_{3}x_{4}$ for $x_{0}\in\Theta$ and $x_{1},$ $x_{2},$ $X_{3,4}x\in L’$ (with
associated symmetric bilinear form $f$).

The group $G$ is isomorphic to the subgroup of the isometry group of $q$ generated by
those isotropic transvection subgroups $T_{\mathrm{p}_{J}}$ where $p$ runs over the points of a so-called
mixed subquadrangle $Q$ of the classical generalized quadrangle arising from $W$ and $q$ .

In Cases (a) to (c), the elements of $\Sigma$ are contained in the isotropic transvection
subgroups and in 1-1-correspondence with the points of $Q$ .

The action of $G$ on $V$ is induced by a semi-linear mapping $\varphi$ : $Warrow V$ (with
respect to an embedding $\alpha$ : $Larrow K$ resp. $\alpha$ : $L’arrow I\mathrm{t}^{\nearrow}in$ Case $(\mathrm{c}))$ with kernef
Rad$(W, f)$ .
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A detailed description of the generalized quadrangles in Cases (b) and (c) can be
found in Steinbach and Van Maldeghem [21].

In Theorem 3.2, we may conclude that any two transvections $t_{1}$ and $t_{2}$ in some
element $A\in\Sigma$ have the same center and the same axis. However, in the examples
that we have encountered in 2.2 we have seen that [V, $A$] need not always be a point
of $P(V)$ . However, the condition $C_{V}(G)=0$ forces [V, $A$] to be 1-dimensional for all
$A\in\Sigma$ .

If we relax on the condition $C_{V}(G)=0$ but still insist on [V, $A$] being l-dimensional,
we find that most of the groups $G$ are classical groups, however, now defined by a
possibly degenerate form:

3.3 Theorem. Assume $G$ is a subgroup of $\mathrm{G}\mathrm{L}(V)$ generated by a cfass $\Sigma$ of abstract
transvection groups as in the setting 3.1 above.

Assume in addition that [V, $A$] is 1-dimensional for all $A\in\Sigma$ . Then there exists
a subspace $U$ of $V$ and a subgroup $G_{0}=\langle\Sigma_{0}\rangle f\Sigma_{0}=\{A\in\Sigma|[V, A]\subseteq U\}$ of $G$ such
that:

(1) $V=U+C_{V}(G)$ $($not necessarily a direct $sum)_{i}$

(2) $U$ and $G_{0}$ are as $V$ and $G$ in the conclusion of Theorem 3.2 with the possible
exception that the kernel of the semi-linear mapping $\varphi$ is only contained in
Rad$(W, f)$ .

$Moreover_{f}$ if $U$ and $G_{0}$ are as in Case (a) of 3.2, then $G$ is isomorphic to the classical
group generated by the isotropic transvection subgroups on a vector space $\overline{W}=\underline{W}\oplus\tilde{R}$

over $L_{f}$ with extended form $q$ or $f$ such that $\overline{R}$ is isotropic and contained in Rad$(W, f)$ .
The action of $G$ on $V$ is induced by a semi-linear mapping $\tilde{\varphi}:\overline{W}arrow V$ extending $\varphi$ .

In the situation of Theorem 3.3, the classical group generated by the isotropic transvec-
tion subgroups on the vector space $\overline{W}=W\oplus\tilde{R}$ is isomorphic to $(\oplus_{i\in I}W_{i})$ : $G_{0}$ , where
each $W_{i}$ is a copy of the natural module $W$ for $G_{0}$ .

We say two elements $A,$ $B\in\Sigma$ are equivalent if $c_{\Sigma}(A)=c_{\Sigma}(B)$ . For each $A\in\Sigma$ ,
the subspace $U$ of $V$ occurring in Theorem 3.3 contains exactly one of the [V, $T$],
where $T$ runs through the equivalence class of $A$ . In the case where all [V, $T$] are
1-dimensional and the equality $C_{\Sigma}(A)=c_{\Sigma}(B)$ implies that $A=B$ , we see that
$U=V$ and $G=G_{0}$ . Hence this assumption may replace the one that $C_{V}(G)=0$ in
Theorem 3.2 (except for the statement on the kernel of $\varphi$ ).

We may overcome the assumption in Theorem 3.3 that [V, $A$] is 1-dimensional as
follows:
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3.4 Proposition. In the setting of 3.1 the subspace $R= \bigcap_{A\in\Sigma}[V, A]$ is contained
in $C_{V}(G)$ . Moreover, the codimension of $R$ in [V, $A$], $A\in\Sigma$ , is one, so that we may
apply Theorem 3.3 to $G/N\leq \mathrm{G}\mathrm{L}(V/R)$ , where $N$ is the kernel of the action of $G$ on
$V/R$ .

The proofs of these results are mainly geometric. They can be found in [8]. As may
be clear from the examples appearing in the conclusion of the theorems, all groups act
as automorphism groups on a polar space. The main idea in the proof of Theorem 3.2
is to construct this polar space together with an embedding into the projective space
$P(V)$ of $V$ . Once this is done, we can apply the full strength of the theory of polar
spaces and its embeddings. In particular, we use the classification $\mathrm{o}\mathrm{f}\backslash$ non-degenerate
Moufang polar spaces due to Tits and the classification of their weak embeddings (of
degree $>2$ ) by Steinbach and Van Maldeghem [18], [21]. We find the isomorphism
type of the group $G$ in Theorem 3.2 by identifying $G$ as a group of automorphisms of
a polar space. The action of $G$ on the space $V$ in 3.2 is determined by the embedding
of this polar space in $P(V)$ .

We note that rather than proving that the polar space constructed in Timmesfeld
[25] is weakly embedded in $P(V)$ (which is not obvious), we preferred to construct
a polar space which is automatically weakly embedded. (Hypothesis (H) of [25] is
satisfied in our setting only as long as elements of $\Sigma$ contain at least 4 elements.) The
construction does not rely on finite dimensions, commutative fields or perfect fields
in characteristic 2. It is a uniform approach resulting in all different types of classical
groups.

Theorem 3.2 is an intermediate result in the proof of 3.3. To prove 3.3 we show
that there is a subspace $U$ of $V$ such that $V=U+C_{V}(G)$ and that the centers of
abstract transvection groups in $\Sigma$ which are contained in $U$ form a non-degenerate
polar space weakly embedded in $P(U)$ . We are then able to identify the subgroup $G_{0}$

of $G$ generated by those elements of $\Sigma$ that have their center in $U$ as a (quasi-simple)
classical group generated by the isotropic transvection subgroups. The group $G$ is
finally identified as a split extension of $G_{0}$ by a normal subgroup which is a direct
sum of natural modules for $G_{0}$ (or equivalently, as a classical group arising from a
degenerate form).

4 $3-\mathrm{n}_{\mathrm{a}\mathrm{n}}\mathrm{S}\mathrm{p}\mathrm{o}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$

If $\Sigma$ is a set of abstract transvection groups of $G$ with $|A|=2$ , for $A\in\Sigma$ , then the
set of all non-trivial elements in the members of $\Sigma$ is a set of 3-transpositions of $G$ .
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Finite groups generated by 3-transpositions have been studied by Fischer, who
classified the finite almost simple groups generated by 3-transpositions, see [9]. Re-
cently, Cuypers and Hall [6] gave a complete classification of the centerfree 3-trans-
position groups containing at least 2 commuting 3-transpositions.

Among the 3-transposition groups we find various examples in which the 3-trans-
positions are in fact transvections on some natural module. Indeed, the finitary
symplectic groups $\mathrm{F}\mathrm{S}\mathrm{p}(V, f)$ , where (V, $f$ ) is a symplectic $\mathrm{G}\mathrm{F}(2)$-space, and finitary
unitary groups $\mathrm{F}\mathrm{S}\mathrm{U}(W, h)$ , with $(W, h)$ a hermitian space over $\mathrm{G}\mathrm{F}(4)$ , are generated
by their isotropic transvections which form a class of 3-transpositions.

There are more 3-transposition groups where 3-transpositions are transvections.
The group $\mathrm{S}_{\mathrm{P}_{2n}}(2)$ contains three classes of irreducible subgroups generated by trans-
vections: the symmetric group $S_{2n+2}$ and the two different types of orthogonal groups,
$\mathrm{O}_{2n}^{+}(2)$ and $\mathrm{O}_{2n}^{-}(2)$ .

The symplectic and unitary groups fit perfectly in the scheme of this paper. With
some extra effort we could have extended our methods to include these groups in
Theorem 3.2. Indeed, the set of centers of the isotropic transvections in these groups
carries the structure of a polar space, see Cuypers [7]. Reconstruction of this polar
space, $\mathrm{c}\mathrm{p}$ . Cuypers [7, Section 3] and Hall [11, Section 2], and its embedding would
yield a result similar to Theorem 3.2. The symmetric and orthogonal groups, however,
do not fit into our scheme.

5 Some historical remarks.
The roots of the present paper can be found in the work of $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{n}$ on linear
groups generated by transvections [15] and the work of Fischer on 3-transposition
groups, see [9]. Indeed, the study of linear groups generated by transvections has
been initiated by the work of $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{n}$ who classified all irreducible subgroups
of $\mathrm{G}\mathrm{L}(V),$ $V$ finite-dimensional over a field $k$ , generated by full linear transvection
subgroups. (A full linear transvection subgroup of $\mathrm{G}\mathrm{L}(V)$ consists of all transvections
to a fixed center and axis in $\mathrm{G}\mathrm{L}(V).)$ Soon after $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{n}’ \mathrm{s}$ work Piper [16], [17],
Wagner [28] and Kantor [12] considered subgroups of finite linear groups generated
by transvections. They obtained results similar to Theorem 3.2. Where Piper’s and
Wagner’s approach was very geometric, Kantor’s work had a more group theoretic
flavor. He used the work of Fischer and generalizations thereof by Aschbacher [1],
Aschbacher and Hall [2], and Timmesfeld [22].

In more recent years $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{n}’ \mathrm{s}$ work has been extended to greater classes
of groups. Li [13] and Vavilov [27] have generalized $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{n}’ \mathrm{s}$ results to finite-
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dimensional vector spaces defined over arbitrary skew fields and Cameron and Hall
[3] also considered linear transvection groups acting (possibly reducibly) on a module
$V$ of arbitrary dimension. Related results can also be found in Cuypers [4] and
Timmesfeld [23].

Timmesfeld generalized the concept of 3-transpositions to that of abstract transvec-
tion groups. In [24], [25], he obtained a classification of the quasi-simple groups
generated by a class of abstract transvection groups, under some additional richness
assumption (which implies that the abstract transvection groups contain at least 4
elements). The cases where the abstract transvection groups contain less than 4 el-
ements have been dealt with by Cuypers [5] (3 elements) and by Cuypers and Hall
[6] (3-transpositions case). Timmesfeld’s results formed the basis for. the work of the
second author on subgroups of classical groups generated by long root elements, see
Steinbach [19], [20]. With regards to linear groups generated by transvections, she de-
termines the modules $V$ (finite-dimensional over an arbitrary commutative field) for
the various groups of Timmesfeld’s classification $\dot{\mathrm{s}}\mathrm{u}\mathrm{c}\mathrm{h}$ that the abstract transvection
groups are parts of the linear transvection subgroups of $\mathrm{G}\mathrm{L}(V)$ .

Liebeck and Seitz [14] classified the closed subgroups of groups of Lie type over
algebraically closed fields which are generated by root elements.

The present approach (see [8]) combines both the work on linear groups gener-
ated by transvections as begun by $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{n}$ and the geometric study of abstract
groups initiated by the work of Fischer on 3-transpositions to obtain a common char-
acterization of all the classical groups generated by isotropic transvection subgroups.
Although we do not make use of the various results quoted above, several ideas and
methods used in this paper come from this work. In particular, the proofs of our main
results are obtained by combining the group theoretic methods of Timmesfeld [25],
the more geometric approach of Cuypers [5] and the concept of weak embeddings as
in Steinbach [19].
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