0oooo0O0oooo
1064 0 1998 0 6-14 0

On the space problem of Helmholtz

By Mitsuo Sugiura

In section 1, we shall give a brief history of Helmholtz's space problem.

In section 2, we shall give four characterizations of the orthogonal group
of a positive definite quadratic form. One of them is that of free mobility.
Our characterization is deeply connected with the Iwasawa decomposition of

GL(n,R).
1. A brief history of Helmholtz's space problem.

A space problem is a problem which characterizes some classical spaces
in a class of spaces. 4 '

Riemann introduced the concept of manifold and Riemannian metric and their
(sectional)curvatufe in his Habilitationsvortrag [10]. Particularly he stu-
died the spaces of constant curvature and remarked that insuch a space, a
figur can be moved freely (without deformation).

Under the influence of Riemann's Vortrag, Helmholtz studied the foundation
of geometry in [5]. His models were Fuclidean and non Euclidean geometries.

His starting point was the concept of congruence and his central assumption
was the free mobility of the rigid bodies. He proved that the line element
in his geometry is a quadratic form of the differentials of the coordinates.
Helmholtz did not use the concept of groups explicitly.

Lie also studied the foundation of geometry in [7],[8] but he used his
theory of continuous transformation groups. Lie raised the question which
properties characterize the groups of isometries in Euclidean and non-
Euclidean spaces. He called the problem the Riemann-Helmholtz problem. His
answer to the problem was the infinitesimalfree mobility.

Weyl [1L4] gave a characterization of the Lie algebra g of the orthogonal
group of a non-degenerate symmetric bilinear form B on n-dimensional real
(or complex) vector space V. Of course g is the Lie algebra of the linear
transformation X on V which keep invariant B infinitesimally (®XB + BX = 0).

But Weyl gave the characterization of § which does not use the bilinear

fofm B. His result is as follows:



Theorem (Weyl [14]). Let K be the field R or €. A Lie subalgebra g of gl(n,K)
is the Lie algebra of the orthogonal group of a non-degenerate symmetric bi—i
linear form if and only if @ satisfies the following 3 conditions (a),(b),(c):

(a) dim 8§ = n(n - 1)/2, (b) Tr X =0 for all Xeg,

(c) Let Aj,°c+,A Dbe n elements in g satisfying the conditions
the k-th column of Aj; = the i-th row of A,
then necessarily we have Ay =--‘= An = 0.

Weyl proved the Theorem by a rather lengthy calculation of matrices.
Ii.Cartan [2] gave another proof using his classification theory of simple
Lie algebras and their representations.

The mathematical meaning of the condition (c) is not so clear and Weyl's
theorem seems to be isolated in mathematics.

Let R be an n-dimensional affine space over an ordered field K and An be
the affine transformation group of R. Let K*be the set of all positive
elements in K.If an r-dimensional affine subspace Sr contains (r-1)-dim-

ensional affine subspace S, ; , then 5. is a disjoint union of 5, ; and two

halfsﬁbspaces Spe_1 and Sy,_71 with reépect to Sy-1. A.decrea§ing sequence
(1) S: 8,'"28,p-1'D""">81"'>8; , 5, = R.
of halfspaces of R is called a flag of R. Let g be an element of the group
A,- Then the sequence

85: g5,' oeS,-1'D> " DgS1'> 85 ,
is another flag of R. So the group A, acts on the set F of all flags of R.
It is easily seen that the action of Ap on F is transitive.
Definition. A subgroup G of Ap is called to satisfy the axiom of free mo-
bility if G acts on F simply transitively.

Iyanaga and Abe [6] characterized the group of isometries of an n-dimen-
siomal Euclidean space by the free mobility. Their results were as follows:
Theorem (Iyanaga and Abe [6]). Let the ground field K be the field R of
all real numbers. Then a subgroup G of the affine transformation group A,
is the group of all isometries on R with respect to a distance defined by
a positive definite quadraticform of the coordinates in R if and only if
G satisfies the axiom: of the free mobility.

Iyanaga and Abe also considered the case where the ground fieldis a Py-
thagorean field. In this case some additional axioms were needed. Later

Baer [1] gave a proof of the Theorem for a Pythagorean field without the

additional axioms.



The proof for the real case are simplified by Wilker [15]. The characteri-

zation of the special orthogonal group was given by Pickert [9].
2. The free mobility and the Iwasawa decomposition.

Let RD be the real vector space of the n-dimensional column vectors x = t(xl,
e ,xp) and (x,y) Re the standard inner product defined by

= 20 xivse
(1) (x,y) =151 for x = t(xl,~~-,xn) and y = t(yl,',",yn).

Let B = (bij) be a posotive definite real symmetric matrix of degree n.
Then the bilinear form
(2) {x,y) = (Bx,y)
is symmetric and positive definite. Conversely every positive definite sym-
metric bilinear form on BR® is given by the formula (2) for s certain positive
definite symmetric matrix B. The correspondence between a matrix B and a
bilinear form (2) is bijective. So we identify the space of all positive de-
finite symmetric matrices with the space of all positive definite symmetric
bilinear forms on RE.
Theorem 1. Let T be the subgroup of G = GL(n,R) consisting of all lower
triangular matrices with positive diagonal elements. T is called the Iwasa-

wa subgroup of G. Then the only compact subgroup of T is the identity sub-

group {I}.
Proof. Let K be a compact subgroup of T and
‘ . .
(3) t = 4 . ’ ti? O, tijﬂR-
‘ t.. J
ij ty

be an arbitrary element of T. For any integer m, the matrix t® has the form

£, m
. . ‘ poéitive

The subgroup A; = {tim]meZ} of the multiplicative group ofAreals is boun-
ded. Hence the real number tj must be equall to 1, because Aj is not boun-

ded if t{> lor 1>t;>0. Therefore t has the form



For any positive integer m, the (i+l,i)-element of t™ is mti+l i Since K is
s

compact, the set Bj = {mti+l 5 |mez} (12 1 = n-1) is bounded hence ti+1 i =
N 2

0o (15i%ph-1). Repeating this process, we reach the conclusion that all t5.3
=0 in (3) and t = I. Since t is an arbitrary element of K, we get K = {I}.
Theorem 2. Let Ky = 0(n) = {geGL(n,R) ‘tgg = I} be the real orthogonal group
of degree n and T be the Iwasawa subgroup of G = GL(n,R) defined in Theorem
1. Then we have the following two proposition 1) and 2):

1) G = K;T and KyAT = {I}. (the standard Ivasawa decomposition)

2) KXo = 0(n) is a maximal compact subgroup of G = GL(n,R).
Proof. 1) Let g be an arbitrary element of G and 815" "8y be the column
vectors of the matrix g. Since g1->""",8, are linearly independent, we can
construct an orthonormal base (ky,*°",k,) from g;'s by the Schmidt orthogo-
nalization process. Let k = (kl,°",kn) be the matrix with the column vec-
tors ki's. Then k belongs to the orthogonal group K, = O(n) and can be wri-
tten as

(4) k = gs for a certain seT,
by the Schmidt's process. Here sl = ¢ belongs to T and the equality (L)is
rewritten as

g = kt, keK

o> teT.

Hence we have

(5) G = KT.

Since KO is compact, a compact subgroup K,AT of T must be equal to {I} by
Theorem 1. So we have

(6) KonT = {1} .

Thus 1) is proved.

2) K, is bounded and closed in G = GL(n, R), and is a compact subgroup of

G. Let K be any compact subgroup of G satisfying

(7) Ko < KCG.
Then KAT is compact subgroup of T. Hence we have
(8) KAT = {1},

by Theorem 1.

Let k be any element of K. By 1), k can be written uniquely as
(9) k = kot, kK, tel.
Then we have
k, 'k = t €K AT = {I} and
k = k,€Kj.
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.So we have proved that

- (10) KCK,.
(7) and (10) show that
(11) , K = Kg-

Hence we have proved that K5 is a maximal compact subgroup of G.
Theorem 3. Let B be a positive definite real symmetric matrix and O(B) =
{geGL(n, B)f thg = B} be the orthogonal group of B. Then O(B) is conjugate
to 0(n) = 0(I) = K,. More precisely, there exists an element t of the Iwa-
sawa subgroup T such that
(12) 0(B) = t™1K t.
Proof. Since B is a positive definite real symmetric matrix, there exists
a positive definite real éymmetric matrix H such that H2 = B.

By the standard Iwasawa decomposition (Theorem 2, 1)), H can be written

as

(13) H=kot, ko€K,, teT.
Hence B can be written as

(14) B = H° = HH = tttkokot = et

So we have the following equivalences:
g€0(B) &="%mg = B & teltte = Ptt &
& tetle k&= get Ikt

So we have proved (12).

Tlegt™) - (tgt™l) = T

positive ,
Definition. Let R* be the set of allAreal numbers, V. a k-dimensional vec-

tor subspace of R" and Vk-l a (k-1)-dimensional vector subspace of vV, and
vk be an element of Vk not belonging to Vi_37. Then the set

1 — +

is called a k-dimensional half-space of Vi with respect to Vi _q.
Another half-space of Vi w.r.t. Vi_1 1s given by

"no_ +
Vk—l = Vk—l + (—R )Vk.
An increasing sequence V of incident half-spaces Vk' of RN
(15) V: Vl'CVZ'C e CV,!

is called a flag of RM where Vk' is a k-dimensional half-space w.r.t. Vie_1-

The set of all flags of R™ is called the flag manifold of R" and is de-
noted by F.
To a flag V Of (15) and all integers k = 1.-.-,n, choose an element vker'
not belonging to Vy_;. Then the set (vl,-°-,vn) is a base of R" which is

called to be associated with the flag V. Conversely every flag V can be con-
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structed from a base (v,,*"*,v.) by defining

1° n

k=1
+
t = . )
Vi Z.=l Rovy + Bovy.

This flag V is called to be associated with the base (vl,"',vn).

For any flag V of (15) and an arbitrary element g in G = GL(n, R), the se-

quence of half-spces

(16) gv: ng' c gV2'<'_ s CgVn'
'is another flag of R". Hence the group G acts on the flag manifold F.
t : .
Let e, = (1,0,7°°,0), -, e, = t(O,---,O,l) be the natural base of R" and

E be the flag associated with the natural base. E is called the natural
flag of R".
Theorem L,
1) G = GL(n, R) acts on the flag manifold F transitively.
2) The Iwasawa subgroup T éf G is the stationary subgroup of G at the
natural flag E. 7 ’
3) Let K be a subgroup of G. Then K acts on F. The following two condi-
tions (a) and (b) for K are mutually equivalent;
(a) K acts on F simply transitively. |
(b) G = KT and KAT = {I}.

Proof. 1) Let V and W be two arbitrary elements of F and (v "',vn) and

»
(wl,"',wn) be the two bases of R~ associated with V and W reipectively.
Then there exists a unique element g in G satisfying gv, =W, (léign). Then
we have gV = W. Hence G acts on F transitively.

2) Each element t in T has the form (3). Hence
tE ' = E' (1%%n) and tE = E.
Conversely every element t in G satisfying tE = E belongs to T.
3) By 2), if G = KT then GE = KTE = KE.On the other hand, the condition
that G(or K) acts on F transitively is equivalent to one that GE = F (or KE
= ). Hence the condition G = KT implies that K acts on I transitively.
Conversely if K acts on F transitively then G = KT. Because in this case
for any element g in G, the flag gE con be written as gE = kE for a certain
k in K. Hence we have
| k‘lgE = E and hence k_lg =te¢T, and g =kt, G = KT.

" Thus we have proved that the condition G = KT is equivalent to one that K

acts on {F transitively.

Assume that KT = {Igand kE = k'E for two elements k and k' in K. Then
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we have

kg = E, x' 7t

k€K AT = {1} and k = k'.
Therefore the mapping f:k+H kE is injective. Conversely assume that the map-
ping f is injective and k = t be an arbitrary element of KnT. Then we have
kE = tE = E = IE.

Hence by the injectivity of f, we get k = I and K, T = {IJ}.

Thus we have proved that the condition KAT = {I} is equivalent to one that
‘the mapping f:k—+kE is an injection.

So we have proved that the condition (a) is equivalent to the condition
(v).
Main Theor

The following five conditions (1),(2),(3),(4) and (5) for a closed sub-
group K of G = GL(n, R) are mutually equivalent.
(1) A group K is equal to the orthogonal group O(B)vof a certain positive
definite real symmetric matrix B of degree n.
(2) K= t'lKot for an element t in T(the Iwasawa subgroup of G) and Ko =
0(1) = o(n).
(3) G= KT and KAT = {I}. (the Iwasawa decomposition)
(4) K is a maximal compact subgroup of G.
(5) K acts on the flag manifold F of R” simply transitively. (the condition
of free mobility) . |
Proof. (3) & (5) Theorem b, 3).
(1)=(2) Theorem 3. '
(2)==(3) By Theorem 2, we have
(a) G=KT and KqT-= {1}

By the assumption (2), K = t—lKOt. Hence applying the inner automorphism
A:x»,t—lxt on the both sides of the two equalities in (a), we get (3).

3)==> (4) By Theorem 2, the natural mapping fo:Kd—éG/T defined by fo(k) =
kT is a bijection. Since the canonical projection p:G—G/T defined by p(g)
= gT is continuous, the mapping fo is also continuous. Since Ko is a closed
and bounded set in G, K is compact. Hence G/T = £, (K )is compact. Since T
is closed in G, the quotient space G/T 1is a Hausdorff space. |

Let K be a closed subgroup of G satisfying the condition (3). Then K is a
locally compact group. Since G has a countable basis of open sets, a sub-
group K (with the relative topology) has also a countable basis. Since K
satisfies the condition (3), K acts on G/T simply transitively. Hence a lo-

cally compact group K acts continuously on a compact Hausdorff space G/T.
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So by the category theorem of Bair, the natural mapping f:K-»G/T defined by
f(K) = kT is a homeomorphism (cf. Helgason [4] Ch.II, Th.3.2. p.121).
Therefore K is a compact subgroup of G.

Let Kl be a compact subgroup of G satisfying
(b) KCK,CG.
Then Kl’\T is a compact subgroup of T and hence Kl(\ T = {IS by Theorem 1.

Since G = KT by the assumption (3), every k, in K, can be written as

kl = kt for ke K and t€ T.

Hence k_lkl = tE€K AT = -{I} and k, = k €K.Thus we have proved that KlCK and
Kl = K and K is a maximal compact subgroup of G.

(h):(l) Let K be a maximal compact = subgroup of G. Since K is a closed
subgroup of Lie group G = GL(n, R), K is a Lie group (Chevalley [3] p. 135).
There exists a unique right invariant normalized Haar integration on K:
I() = fef(k)ak for all £ in Cy(K),
where CR(K) is the space of all real valued continuous functions on X (cf.

Chevalley [3] p.161-170).

v

0 if f %0 and moreover I(f)

>0 if f 2 0and £ # 0. I is normalized as I(1) = 1.

I is a continuous linear form on CR(K). I(f)

Since I is right invariant, we have
[ £ s dax = f £(x)dk.
Put -
X yD = /K(kx,ky)dk for any X,y'e‘Rn.
Then {x,y) is a positive definite symmetric bilinear form on an. Hence there
exists a positive definite real symmetric matrix B satisfying
<x,y» = (Bx, y) for all x,ye R".
By the right invariance of the Haar integration, we have
<kx,ky> = <x,‘ > for all k in K.
This equality implies that K is a subgroup of O(B). Since O(B) is a compact
subgroup of G and Kis a maximal compact subgroup of G by the assumption (L),
we get K = 0(B). q.e.d. v
Th results in 2 were published in [11] in Japanese.
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