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§0. Introduction.

This paper has the following two aims: (1) to consider the difference between
the Schottky space and the classical Schottky space; (2) to state limits of Schottky
groups and the boundary of Teichmuller space. Furthermore, we will state the
augmented Schottky space and Jgrgensen’s numbers.

§1. Schottky space and classical Schottky space.

DEFINITION 1.1. Let C1,Cyy1;--+;Cy,Coq be a set of 29 (g > 1) mutually
disjoint Jordan curves on the Riemann sphere which comprise the boundary of a
2g-ply connected region w. Suppose there are ¢ Mobius transformations Ay, ---, A,
which have the property that A; maps C;j onto Cyyj and Aj(w) Nw=90,1<j<g.
Then the g necessarily loxodromic transformations A, generate a marked Schottky
group G = (Ay,---,Ay) of genus g with w as a fundamental region. In particular,
if all the C; (j = 1,2,---,2g) are circles, then we call Ay,---, A, a set of classical
generators of G. A classical Schottky group is a Schottky group for which there
exists some set of classical generators. '

We denote by Méb the group of all Mébius transformations. We say two marked
subgroups G = (4y,...,A,) and G = (A;...,Ag) of Méb to be equivalent if there
exists a Mobius transformation T" such that Aj =TA;T ' forj=1,2....,g.

DEFINITION 1.2. The Schbttky space (resp. the classical Schottky space) of

genus g, denoted by S, (resp. Sg), is the set of all equivalence ¢lasses of marked
Schottky groups (resp. marked classical Schottky groups) of genus g > 1.
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Fundamental Problem 1. What characterizes the difference between the
Schottky space and the classical Schottky space?

In 1974 Marden obtained the following result.
THEOREM 1.3 (Marden [13]). S, #Sj.

In 1975 Zarrow [34] claimed to have obtained an explicit example of a non-
classical Schottky group. However, Sato [24] pointed out as an application of the
general theory on the shape of the classical Schottky space [26] that the group given
by Zarrow is a clssical Schottky group. Yamamoto [33] gave an explicit example of
a nonclassical Schottky group.

Problem 1. Given a compact Riemann surface S of genus g, there exists a
Schottky group G such that Q(G)/G = S. Does there exist a classical Schottky
group Gy such that Q(Gg)/Go =S 7

§2. The boundary of Schottky space.

There are many kinds of boundaries of the Schottky space according to the space
embedded. The following definition of the Schottky space is due to Marden [13].
Consider the compact manifold P§ (g > 2), where P3 denote the complex projective
3-space with the natural topology. We represent points of this space by g-tuples of
2 x 2 complex matrices (A, -- -, A,) (With the natural equivalence relation). Let X
be the variety determined by the equation [Jdet A; = 0 and set V' = Pj — X. Fix
a Schottky group G of genus g and a set-of free generators Ay, ---, A, This set of
generators determines the point (A4;,---, A4) € V. To any homomorphism 6 : G —
H, where H is a subgroup of Méb, we associate the point (8(A1),---,0(Ag)) € V.
For simplicity we will use the notation (H, ) for the point. Conversely, a point
(Bi,---,Bg) € V can be expressed as (H,0), where H is the group generated by
By,---,By and 0 is the homomorphism determined by 8(A;) = B;. The topology
of V corresponds to the ”pointwise convergence” topology in the group H. Namely,
(Hp,0,) — (H,0) in V if and only if 6,(A;) — 6(A;) for each j,1 < j < g. Define
the Schottky space as follows:

1 . R . -
S, = {(H,0) | H:a Schottky group,0 :an isomorphism}/ ~ .

We remark that Sy = S;. Thus if there is no confusion, we write S, for S;. The
boundary BS; of the Schottky space S; is defined as the relative boundary in V.
Namely, for each (H,0) € BS; there exists a sequence (H,,¥0,) €- S'; converging to
(H,0). The classical Schottky space Sgl and its boundary are similarly defined.

DEFINITION 2.1. A boundary group G of 8S, is called a cusp if G contains
a parabolic element.

THEOREM 2.2 (Chuckrow [4]).
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(i) A boundary group (H,0) of Sy is a g-generator group which does not contain
an elliptic element. :

(ii) There exists a cusp on 8Sy.

(iii) Theﬂe ezists a point whzch is not a cusp on BS

- THEOREM 2.3 (Maskit [14]). If a finitely generated discontinuous group
(Kleinian group of the second kind) G is free and purely loxodromic, then G is a
Schottky group.

THEOREM 2.4 (Marden [13]).

(i) Each group on 8S, is a discrete group.

(ii) Each group on 350 is a disconlinuous group.
(iii) There is a not dzscontmuous group on 0S,.

DEFINITION 2.5. A group G is called geometncally finite if G has a funda-
mental polyhedron having a finite number of faces. ;

THEOREM 2.6 (Jgrgensen-Marden-Maskit [8]). IfG € 8S), then G is
geomelrically finite.

§3. Augmented Schottky space and global coordinates.

DEFINITION 3.1. A closed Riemann surface with nodes S, is a compact
complex space each point P of which has a neighborhood isomorphic either to a disk
|z| < 1in C (with P corresponding to z = 0) or to the set |z| < 1,|w| < 1,zw =0
in C? (with P corresponding to z = w = 0). In the later case, P is called a node.

Bers [3] introduced the augmented Schottky space in his sense by using the multi-
pliers and fixed points of generators , namely the augmented Schottky space in the
sense of Bers means the space which consists of all Schottky groups of genus g > 2
and all extended Schottky groups representing Riemann surfaces with only non-
dividing nodes. Furthermore, he constructed (2¢ — 1)(g — 1) numbers of linearly in-
dependent automorphic forms of weight (—2q) on the fiber space F Sy(= S,x0G))—
{thin sets} , where Q(G) is the region of discontinuity of G. For the general case con-
taining Riemann surfaces with dividing nodes, Sato [18,19] defined the augmented
Schottky space and constructed (2¢ — 1)(g — 1) numbers of linearly independent
automorphic forms of weight (—2q) on the fiber space FSg( Sy x Q(G)) {thin
sets}.

Problem 2. Construct (2¢ — 1)(g — 1) numbers of linearly independent auto-
morphic forms of weight (—2q) on the fiber space F S, = S x QG).

The coordinates introduced for defining the augmented Schottky space by Bers
[3] and Sato [18] are not invariant under a Mébius transformation. Then Sato [21]
introduced new coordinates which are invariant under a Mdbius transformation and
which have geometric means. We will state the coordinates in the case of g = 2 in
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the next section. By using these coordinates a uniformization of Riemann surfaces
with nodes is obtained (Sato [20]).

THEOREM 3.2 (Sato [20]). Given a Riemann surface with nodes S, there
exists a point in the augmented Schottky space Sg(E) which represents S, where ¥
denotes a mazximal dissection of S.

Problem 3. Given a Riemann surface with nodes S, does there exist a point in
the augmented classical Schottky space ) (%) which represents S.

For relationship between limits of Schottky groups and limits of Riemann sur-
faces, the following are studied (Sato [22]): Give a point 7 in the augmented Schottky
space Sg(Z) representing a Riemann surface with nodes S, for a sequence {7,} of
points convergence to the point 7 does the sequence {S(7,)} of Riemann surfaces
represented by 7, converge to S7 The answer to this problem is negative in the
general case, that is, for almost all maximal dissection. However the answer is affir-
mative in a special case, namely in the case that ¥ is a standard system of Jordan
curves (see [22] for the definition). Sato [22] showed that to what Riemann surfaces
does the sequence of Riemann surfaces {S(,)} converge for the general case.

§4. Jgrgensen’s numbers.

Fundamental Problem 2. Find conditions which gurantee a subgroup of Méb
to be a discrete group (Kleinian group).

Fot this problem the following are well-known:
(1) Jorgensen’s inequality as a necessary condition.
(2) Poincaré’s theorem as a sufficient condition.

Here we will consider only Jgrgensen’s inequality and Jgrgensen’s numbers.

THEOREM 4.1 (Jgrgensen [7]). If G = (A;, As) is a non-elementary discrete
group, then
tr?(A1) — 4] + |tr(A; A AT A Y) — 2] > 1,

where the lower bound 1 is best possible.

DEFINITION 4.2.
(1) The Jorgensen’s number for a marked two-generator group (A;, Ap) is

J((A1, Az)) == |tr*(A;) — 4] + |tr(A1 A2A71AY) — 2.
(2) The Jgrgensen’s number for a group G C M&b is N
(G| := inf{J((A1, A2))[(A1, A2) C G, AT* # AZ(m,n € Z)}.

Jorgensen-Lascurain-Pignataro [10] and Sato—Yamada [28] studied two—generator
groups with J((A4, A)) = 1.
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Now we will introduce the global coordinates in the Schottky space in the case of
genus g = 2, which is announced in the previous section. We denote by M, the set of
all equivalence classes [{ A1, A2)] of marked groups (A;, A2) generated by loxodromic
transformations A; and A; whose fixed points are all distinct. Let [(A;, A2)] € M.
For j = 1,2, let A; (JAj] > 1), p; and g; be the multipliers, the repelling and
the attracting fixed points of A;, respectively. We define t; (j = 1,2) by setting
t;=1/Xj. Thus t; € D* = {z | 0 < |z| < 1}. We define p by p = 1/(p1, q1,P2, %),
where (p1, q1, P2, g2), is the cross-ratio of p1, q1,p2, ¢a:

: P1—P2q1 — Q2
1,91, 2, q) = -
v @) PL— G — P

Thus p € C — {0,1}. We can define a mapping a of the space M, into (D*)? x
(C — {0,1}) by setting a([{A1, A2)]) = (1,12, p). Then we say [{A;, A2)] represents
(t1,12,p) and (t1,1s, p) corresponds to [(Aj, A2)] or (A1, A2). We can identify My
with a(My). Similarly we can define the mapping a* of S, or S} into (D*)% x (C —
{0,1}) by restricting o to this space, and identify S, (resp. S9) with a*(Sz) (resp.
a*(SY)). From now on we denote a(My),a*(Sz) and o*(SJ) by M,,S, and SJ ,
respectively. , '

DEFINITION 4.3. We call G = (A;, A2) a marked group of real type (resp.
marked Schottky group and marked classical Schottky group of real type) if (1,12, p) €
R3 N M,, (resp. (t1,12,p) € R*N'Sy, and (t1,12,p) € R3N SY,) that is, t1,t, and p
are all real numbers, where (t,%s,p) corresponds to G = (A;, As).

Then we can classify marked groups of real type into eight types as follows.

DEFINITION 4.4 (Sato [23]).
(1) G is of the first type (Type I) if t; >0, >0, p>0.
(2) G is of the second type (Type II) if t; >0, &, <0, p>0.
(3) G is of the third type (Type III) if t; >0, t2 <0, p <O.
(4) G is of the fourth type (Type IV) if ¢, >0, 12 >0, p<0.
(5) G is of the fifth type (Type V) if ¢ <0, 13 >0, p>0.
(6) G is of the sixth type (TypeVI) if t; <0, 13 <0, p>0.
(7) G is of the seventh type (Type VII) if t; <0, {, <0, p <O0.
(8) G is of the eighth type (type VIII) if t; <0, &2 >0, p<0.

The components of the coordinates (¢1, 2, p) have the following meaning. If p is
positive (resp. negative), then the axes of A; and A, are disjoint (resp. intersect). If
t; > 0 (resp. t; < 0) for j = 1,2, then A; leaves the upper half plane invariant (resp.
Aj interchanges the upper and the lower half planes). Concequently, G = (A;, Az)
is a Schottky group of Type I or Type IV, that is, a Fuchsian Schottky group if and
only if both ¢; and t; are positive. For geometrical meaning of t; and p, see Sato
18], [20], [21].

For each k = 1,11, - - -, VIII, we call the set of all equivalence classes of marked
groups (resp. marked Schottky groups and marked classical Schottky groups) of
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Type k the real space (resp. the real Schottky space and the real classical Schottky
space) of Type k , and denote it by RyM, ( resp. RxS; and RyS9). Marden [13]
and Sato [25] showed that R;S; = R;S9, RvS; = RivSs.

Problem 4. RS, = RyS? (k=1,11,..., VIII)?

THEOREM 4.5. Let G = (A1, A) be a marked Schottky group and let J(G)
be its Joargensen’s number. Then

(i) J(G) > 16 if G is of the first type (Gilman|6] , Sato[27]),

(i) J(G) > 16 ifG is of the second type (Sato[31]),

(iii) J(G) >4 ifG is of the third type (Sato[32]),

(iv) J(G) >4 ifG is of the fourth type (Gilman[6], Sato[27]),

(v)  J(G) >4(1++/2)* ifG is of the fifth type (Sato[31]),

(vi) J(G) > 16 ifG is of the sizth type (Sato[32]),

(vii) J(G) > 4(1+1/2)* if G is of the seventh type (Sato[31]),

(viii) J(G) > 16 if G of the eighth type (sato[32]).

The lower bounds are all best possible.

These are obtained by using the shape of the classical Schottky spaces, the Schot-
tky modular groups acting on the spaces and fundamental regions for the Schottky
modular groups considered in Sato [23,26,29].

Problem 5.

(1) Find the infimum of lower bounds of Jgrgensen’s numbers for classical Schottky
groups: inf{]| J(G) || | G € Sg}. '

(2) Find the infimum of lower bounds of Jgrgensen’s numbers for Schottky groups:
inf{|| J(G) | | G €8,}.

There are seventeen kinds of elementary groups. The Jgrgensen’s number for
each case is obtained (Sato [30]).

§5. Limits of Schottky groups and the boundary of Teichmiiller space.

In this section we will state Gallo’s results [5]. We consider the boundary of
Teichmiiller set by embedding in the space of all holomorphic automorphic forms of
weight (-4).

Let I' be a torsion free Fuchsian group acting on the upper half plane H such
that H/I" is a compact Riemann surface of genus two. We denote by B,(I') the
set of all holomorphic automorphic forms of weight (-4) with the norm || ¢ ||=
sup{|(2)|(2Imz)* | z € H}.

Let ¢ € B,(T'). To ¢ we associate a projective structure (f,,, x,,) on H/T", where
Jo : H — C is a meromorphic, local homeomorphism normalized by the conditions
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fo(®) =0, f,(5) = 1, f;(5) = 0, and x,, : I' = PSL(2, C) is a homomorphism which
satisfies f,, oy(z) = X‘p('y) f(,,(z) for all z € H and all v € I. Moreover, ¢ = S(f,),
where S(f) is the Schwarzian derivative given by

S(f) — (fll/fl)l _ %(f”/f,)z-

There is a bijective correspondence between normalized projective structures and
B,(I'). We set

Ca(T) := {p € Sa([) | f,: @ covering map}.

The following is a classical result. Let Ay, Bi,---, Ay, By be a canonical gen-
erators for I'; tht is, [T%,[di, Bi] = id, where [A;, Bi] = B;'A;'B;A;. Let N =
(Ay,---,A,) be the normal subgroup of ' generated by the elements A; (i =
1,...,9). Then I'/N is canonically isomorphic to a Schottky group G with the fol-
lowing properties:

(i) UG)/G =H/T,

(ii) there exists a normalized meromorphic covering map f : H — C such that
fovy=x(v)of, for v €T, where X: I'>T/N=Gis the natural homomorphism,
and

(iii) x(B;) (i=1,...,9), are free generators for G.

THEOREM 5.1 (Gallo [5]). Let ¢ € 0T(T), where the genus of H/I' is
two. Then there exists a sequence @, € C3(T"), with x,,(I') a Schottky group and

Pn — Q.

A differential ¢ € T(T') is called a cusp if there exists a hyperbolic transforma-
tion v € I for which x,(7) is a parabolic. A cusp ¢ is called mazimal if there exists
a maximal collection a; (i = 1,...,3g—3) of non-homotopic, disjoint, simple closed
curves in H/T, called a mazimal dissection of H/T', each of which is represented by
a hyperbolic element ~; with x,(v:) parabolic. If we show that every maximal cusp
can be approximated by Schottky structures, then the proof of Theorem 5.1 will
be complete by the following McMullen’s result [16]: Maximal cusps are dense in

aT(I).

There are two types of maximal dissections in genus two:
(i) a maximal dissection consists of three nondividing curves,
(ii) a maximal dissection consists of one dividing curve and two nondividing curves.

Here we will sketch the proof of Theorem 5.1 for the case (i)-due to Gallo [5].
Let ¢ € 8T(I") be a maximal cusp. A sequence {¢n} is constructed as follows. Let
by, b, by be curves of the dissection. Then we can choose By, B, € I' hyperbolic
elements representing by, by, respectively, and A;, Ay € I' such that {4, By, Az, Ba}
is a canonical set of generators for I, with W = C,By" representing bs, where
Cy = A;'ByAy. For each n € Z (n > 0), we set
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A(l,n) — WnBi"Al
,B(l,n) =W"B,W"
Agn) = A2C3W™
Beg) = B

Then

. 2
= (A ), Bany Ay, Bemy | [[1AGm, Bam] = id).
i=1

We set N, = (W "BlA;, A2CEW™). Then x,o(I') & I'/N, is a Schottky group
Gn = (xn(W"B1W™), Xx(Bz))- Furthermore, there exists a normalized meromorphic
‘covering mapping h : H — C such that (hy,xs) is a projective structure on H/T'.

Let S(hu) = n € CQ(F)

Since C3(I') is a compact set ( Kra-Maskit [12]), we can choose a sequence
{pn} C Ca(T") such that lim, ,. pn = @. We can prove the following (1)-(7) by
using results in Jgrgensen [7] and Jgrgensen-Klein [9]:

(1) x, has no elliptic elements.

(2) xo(B1) # id, xo(B2) # id, xo(W) # id.

(3) xo(W) does not commute with any conjugate of x,(B1) or of x, (Bg)

(4) x(Bz) does not commute with any conjugate of x,(B1).

(5) Let X,,Y, € PSL(2,C) be loxodromic transformations and suppose X, —
X,Y, — Y, where X,Y are neither elliptic nor trivial. Furthermore, suppose X,Y
share no fixed points and X[Y;* converges. Then X,Y are parabolic.

(6) xo(W),xe(B1), and x,(B2) are parabolic.

(7) xo(W), xo(B1), and x,(Ba) belong to distict, non-conjugate, maximal parabolic
subgroups of x,(I').

Finally we can show the following (8) by using Abikoff [1], Kra [11] and Maskit
[15]:
(8) ¢ =91

Theorem 5.1 follows from the above (1)-(8).

Problem 6. Does Theorem 5.1 hold in the case that the genus of H/T is greater
than two?

References

[1] W. Abikoff, On boundaries of Teichmiiller spaces and on Kleinian groups: III,
Acta Math. 1334 (1975), 211-237.

[2] L. Bers, On boundaris of Teichmiiller spaces and on Kleinian groups, I, Ann of
Math. 91 (1970),570-600.



59

[3] L. Bers, Automorphic forms for Schottky groups, Adv. in Math. 16 (1975),
332-361. = .

[4] V. Chuckrow, On Schottky groups with aplications to Kleinian groups, Ann. of
Math. 88 (1968), 47-61.

[5] D. M. Gallo, Schottky groups and the boundary of Teichmiiller spaces: genus
2, Cont. Math. 169 (1994), 283-305.

[6] J. Gilman, A geometric approach to Jgrgensen’s inequality, Adv. in Math. 85
(1991), 193-197.

[7] T. Jgrgensen, On discrete groups of Mobius transformations, Amer. J. Math.
98 (1976), 739-749.

[8] T. Jgrgensen, A. Marden and B. Maskit, The boundary of classical Schottky
space, Duke Math. J. 46 (1979), 441-446.

[9] T. Jgrgensen and P. Klein, Algebraic convergence of finitely generated Kleinian
groups, Quart. J. Math. 33 (1982), 325-332.

[10] I. Kra, Deformation of Fuchsian groups, II, Duke Math. J. 38 (1971), 499-508.

[11] T. Jorgensen, A. Lascurain and T. Pignataro, Translation extentions of the
classical modular group, Complex Variable 19 (1992), 205-209.

[12] I. Kra, Deformation of Fuchsian groups, II, Duke Math. J. 38 (1971), 499-508.

[13] I. Kra and B. Maskit, Remarks on projective structures, Ann. of Math. Studies
97, Princeton Univ., New Jersey, 1981, 343-359.

[14] A. Marden, Schottky groups and circles, Contribution to Analysis, Academic
Press, New York, 1974, 273-278.

[15] B. Maskit, A characterization of Schottky groups, J.Analyse Math. 19 (1967),
227-230.

[16] B. Maskit, Decomposition of certain Kleinian groups, Acta Math. 130 (1973),
243-263.

[17] C. McMullen, Cusps are dense, Ann. of Math. 133 (1991), 217-247.
[18] H. Sato, On boundaries of Schottky spaces, Nagoya Math. J. 62 (1976), 97-124.

[19] H. Sato, On augmented Schottky spaces and automorphic forms, I, Nagoya
Math. J. 75 (1979), 151-175.

[20] H. Sato, On augmented Schottky spaces and automorphic forms, II, Nagoya
Math. J. 88 (1982), 79-119.



60

[21] H. Sato, Augmented Schottky spaces and a uniformization of Riemann surfaces,
Tohoku Math. J. 35 (1983), 557-572.

[22] H. Sato, Introduction of new coordinates to the Schottky space - The general
case - , J. Math. Soc. Japan 35 (1983), 23-35. .

[23] H. Sato, Limits of sequences of Riemann surfaces represented by Schottky
groups, Tohoku Math. J. 36 (1984), 521-539.

[24] H. Sato, Classical Schottky groups of real type of genus two, I, Tohoku Math.
J 40 (1988), 51-75.

[25] H. Sato, On a paper of Zarrow, Duke Math. J. 57 (1988), 205-209.

[26] H. Sato, Discreteness of real two-generator free groups, Analytic Function The-
ory of One Complex Variable, Pitmann Research Notes in Math. 212 (1989),
263-286.

[27] H. Sato, Classical Schottky groups of real type of genus two, I, Téhoku Math.
J 43 (1991), 449-472.

[28] H. Sato, Jgrgensen’s inequality for purely hyperbolic groups, Rep. Sci. Shizuoka
Univ. 26 (1992), 1-9.

[29] H. Sato and R. Yamada, Some extremal Kleinian groups for Jgrgensen’s in-
equality, Rep. Fac. Sci. Shizuoka Univ., 27 (1993), 1-8.

[30] H. Sato, Classical Schottky groups of real type of genus two, III, Tohoku Math.
J 49 (1997), 485-502.

[31] H. Sato, Jgrgensen’s mumber for the elementary Kleinian groups, The fifth In-
ternational Congress on Complex Analysis, Peking University, 1997, to appear.

[32] H. Sato, Jgrgensen’s inequality for classical Schottky groups of real type, J.
Math. Soc. Japan 50(1998), to appear. '

[33] H. Sato, Jgrgensen’s inequality for classical Schottky groups of real type, II, in
Preparation.

[34] H. Yamamoto, An example of non-classical groups, Duke Math. J. (1991).

[35] R.Zarrow, Classical and non-classical Schottky groups, Duke Math. J. 42
(1975), 717-724. ’



