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Abstract

Physical equivalence based on the experimental uncertainties is shown to be
described as the equivalence of eigenstates based on free ultra-filters on $*\mathcal{H}$ . The
coarse-graining is realized by means of the equivalent treatment with respect to
the equivalent eigenstates. Two different types of decoherence between quantum
states are simultaneously derived in the coarse-graining process. One represents the
decoherence for realizing microcanonical ensemble of statistical mechanics and the
other is that required in quantum theory of measurements.

1. Introduction
There \‘is no experiment accompanied by no experimental error. It is important that in

the analysis of experiments these uncertainties play an essential role for the determination
of the equivalence between different experimental results. In fact we understand that an
experimental result is equivalent to the other, if their difference are smaller than the
uncertainty associated with the experiment. Recognition of this equivalence (we shall call
this equivalence the physical equivalence) as a very fundamental concept is important
for our understanding of $\mathrm{n}\mathrm{a}$.ture. We, .however.’ have no theory which involves such a
fundamental concept, that $1\mathrm{S}$ , the physlcal $\mathrm{e}.$qulvalence based on our observations with
some uncertainties. Note that the .uncertalnties discussed here. are not those derived
from the usual uncertainty relations lnvolved in quantu.m. mechanlcs.’ but those are purely
caused by our observations. There are some different $\mathrm{o}\mathrm{r}_{\mathrm{l}\mathrm{n}\mathrm{s}}$ of experlmental uncertainties.
For instance, we cannot prepare completely monotonic beams and sometimes we cannot
cover all the region of parameters stlch as some regions of $\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}_{1}$ angle and etc: Such
uncertainties are us.ually. not very difficult to an.alyze in expe.riments. The most $.\mathrm{d}_{1}\mathrm{f}\mathrm{f}\mathrm{i}_{\mathrm{C}}\mathrm{u}\mathrm{l}\mathrm{t}$

one for the analysls arlses from the indetermlnacy of physlcal states of experlmental
apparatuses (dete.ctorsI, because in $\mathrm{g}$.eneral their s.t $\mathrm{r}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ are so $\mathrm{c}\mathrm{o}.\mathrm{m}$plicated that some
fundamental $\mathrm{p}\mathrm{h}\mathrm{y}_{\mathrm{S}\mathrm{l}\mathrm{c}}\mathrm{a}1$ quantities $\mathrm{r}\mathrm{e}\mathrm{q}\iota 1\mathrm{l}\mathrm{r}\mathrm{e}\mathrm{d}$ to $\mathrm{d}_{\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}}\mathrm{m}\mathrm{l}\mathrm{n}\mathrm{e}$ their Hamiltonlan, such as the total
number of constituents $(N)$ , cannot be determined. That is to say, this problem may be
represented by

“How can we describe macroscopic objects involving some indeterminable
fundamental quantities in q.uantum mechanics 9”

Similar situation also appears $\ln$ the description of thermal equilibrium in statistical me-
chanics. In statistical mechanics the existence of macroscopic objects such as heat-bath is
a fundamental recognition. We actually know that a system composed of completely free
particles without any interactions with heat-bath (their elastic scattering with walls nlay
be postulated) do never reach any thermal equilibrium, unless they are incidentally in
thermal equilibrium. However, we also know the empirical fact that snch systems reach
thermal equilibrium. Quantum-nlecllanically speaking, there nltlst exist solne thermal
interactions between the system and the heat-bath, which lead the system to thermal
equilibrium. Of course, effects of t.he thermal interactions must be negligibl.y snlall in
the evaluations of all thermod.vnamlcal observables. $\mathrm{T}1_{1}\mathrm{i}\mathrm{s}$ means that systems $\ln$ thermal
equilibrium also involve some indeterminable fundamental quantities, thermal interac-
tions in their Hamiltonians, which induce ellergy uncertainties $\triangle E$ . It is interesting that
in $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}_{\mathrm{C}}\mathrm{a}1_{\ln}\mathrm{e}\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{C}\mathrm{s}\mathrm{t}1_{1\mathrm{i}_{\mathrm{S}}}$ fact is expressed $\mathrm{b}.\mathrm{y}$ the equivalent treatlnen.t with respect to
different states covered by the energy uncertalnties $\triangle E$ , that is, the prlnciple of equal $a$
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priori probability. Thus this equivalence caused by. the energy uncertainty is also. a fun-
damental concept for describing statistical mechanlcs. We may say that this equlvalence
in statistical mechanics is one of the physical equivalence.

It is also noticeable that another common feature in these processes, quantum ob-
servations and thermal e.quilibrium, is decoherence between quantum states. In. other
$\mathrm{w}\mathrm{o}$.rds their density matrlces are describe.d not by $.\mathrm{p}_{\mathrm{t}1}\mathrm{r}\mathrm{e}$ states of quantum mech.anlcs b.utmlxed states. We may expect that there $1\mathrm{S}$ a certaln relation between the physlcal $\mathrm{e}\mathrm{q}\mathrm{u}.$ lv-
alence and the decoherence of quantum states. In this paper we shall study the $\mathrm{p}\mathrm{h}\mathrm{y}_{\mathrm{S}}1\mathrm{c}\mathrm{a}1$

equivalence in the quantum-mechanical description of macroscopic objects and also the
decoherence of quantum states derived from the equivalence.

An interesting model for the. descrip.tion of $.\mathrm{m}\mathrm{a}$.croscopic objects was proposed by va.n
$\mathrm{K}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{e}\mathrm{n}.[1].\mathrm{I}\mathrm{n}$ his idea the $\mathrm{p}\mathrm{h}_{\mathrm{y}_{\mathrm{S}1}}\mathrm{c}\mathrm{a}.1$ equlvalence $1\mathrm{s}$ lntroduced by representing $\mathrm{m}\mathrm{a}\mathrm{c}\mathrm{r}.\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{P}^{1}\mathrm{C}$

observables $\ln$ terms of coarse-gralned operators. That is to say, within an experlmental
margin of uncertainty $\triangle E$ which is much larger than the average distance between the
quantum levels $\delta E$ there exist an enormous number of eigenstates of the Hamiltonian $H$

describing the macroscopic objects. Then the corresponding eigenstates span a multidi-
mensional subspace of $H$ . It means that an actual measurement does not measure $H$ , but
only some coarse-grained version of $H$ , which will be denoted by $\hat{H}$ here. Let us decom-
pose the sequence of the energy eigenvalues $E_{n}$ into blocks of lengths $\triangle E$ . In each block
all eigenvalues $E_{n}$ are replaced by some intermediate value $E_{\epsilon}$ , where $|E_{n}-E_{\epsilon}|<\triangle E$

must be fulfilled. The resulting operator is the coarse-grained observable $\hat{H}$ . We see that
the physical equivalence with respect to the states contained in the same block of the
coarse-grained Hamiltonian $\hat{H}$ is realized in this method. The operator $\hat{H}$ commutes with
$H$ and each eigenvalue $E_{\epsilon}$ is associated with an eigenspace of $\triangle E/\delta E$ dimensions. This
idea is quite interesting and seems to be sufficient to interpret experimental situations.
From the theoretical point of view, however, we find some ambiguities in the theory. $\mathrm{F}\{\mathrm{o}\mathrm{r}$

instance, there is an ambigu.ity relating to the uncertainty $\triangle E$ in t.he division of the whole
operator $H$ into blocks havlng the eigenspaces of $\triangle E/\delta E$ dimenslons. That is to say, the
border line between two blocks can be changed within $\triangle E$ and then the elements of the
orthogonal subsets for the blocks depend on the choice of the border lines. Therefore,
it is not apparent that this ambiguity does not affect any important results such as the
probability for the system to be in the $J\mathrm{t}\mathrm{h}$ of blocks, which has been given by

$P_{J}= \sum^{g}|b_{j}l=1J\downarrow|^{2}$

for the state of the system expanded as $|\psi>=\Sigma_{J}\Sigma_{l}b_{J_{l}}|\xi_{J_{l}}>,[1]$ where $\xi_{J\iota}(l=1,2, \ldots,g_{J})$

are the orthogonal eigenstates of the $J$ block ( $J$ cell). (In details, see Ref.1.) Since the
orthogonal subsets representing the blocks depend on the choice of the border lines, the
probability generally has the ambiguity arising from the choice of the border lines. $\mathrm{F}_{\lrcorner}\mathrm{v}\mathrm{e}\mathrm{n}$

though this m.od.el has some amb.iguous points from theoretical point. of view, the idea for
the $\mathrm{c}\mathrm{o}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{e}-\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{n}\mathrm{l}\mathrm{n}\mathrm{g}$ of $\mathrm{m}\mathrm{a}\mathrm{c}\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{P}^{1}\mathrm{C}$ observables accompanied by experlmental uncertainties
is very interesting for realizing the physical equivalence.

The author proposed a model for the description of macroscopic objects in terms of
non-standard analysis.[2-5] On non-standard spaces, however, we have no stlch ambiguities
pointed out in the van Kampen’s model, because all experimental numbers which are rep-
resented by real numbers have their own infinitesimal neighborhoods denoted as monads
(the definition of monad will be given in the following review of non-standard analysis) and
then we can determine the borders between any two real numbers without any ambiguities
in non-standard space. $\mathrm{s}$ . We shall show that all the eige.nstates belonging to one neighbor-
hood (cell) $\mathrm{c}\}_{1\mathrm{a}\mathrm{r}}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{Z}\mathrm{e}\mathrm{d}$ by one real number are $\mathrm{e}\mathrm{q}_{\mathrm{U}\mathrm{l}\mathrm{V}\mathrm{a}}1\mathrm{e}\mathrm{n}\mathrm{t}$ to each other and they are
represented by ultra-eigenstates on non-standard Hilbert spaces. The physical equivalence
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is introduced in the equivalent treatment with respect to equivalent ultra-eigenstates. We
have also showed that the equivalent sum over the equivalent states derives decoherence
between th.e states. $\cdot$ We may expect that the idea for the $\mathrm{c}\mathrm{o}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{e}-\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}_{0}.\mathrm{f}$ operators for
$\mathrm{m}\mathrm{a}\mathrm{c}\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{P}^{1}\mathrm{C}\mathrm{p}\mathrm{h}_{\mathrm{y}_{\mathrm{S}1}}\mathrm{c}\mathrm{a}1$-observables will be realized in a mathematically rlgorous form on
non-standard Hilbert spaces and the decoherence problem will also be shed light on.

In \S 2 some fundamentals of non-standard $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{s}[6]$ and equivalence between quan-
tum states on non-standard Hilbert spaces[2-5,7] are briefly reviewed. The description
of macroscopic objects on non-standard Hilbert spaces, that is, the method for coarse-
graining of macroscopic observables are proposed in \S 3. The quantum-mechanical equiv-
alence on non-standard Hilbert space and the derivation of decoherence are discussed in
\S 4. In \S 5 an example for thermal equilibrium is presented. Remarks are $\mathrm{g}$.iven in \S 6.
2. Fundamentals of non-standard analysis and equivalence on
non-standard Hilbert spaces

Let us briefly review some fundamentals of nonstandard analysis [6] and a few impor-
tant results of nonstandard extension of quantum mechanics.[2-5,7]
2.1 Fundamentals in nonstandard $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{s}[6]$

(i) Free ultra-filters
The set of real numbers $\mathcal{R}$ can be extended to the set of numbers $(^{*}\mathcal{R})$ containing in-
finitesimal and infinity in terms of free ultra-filters $(\mathcal{F})$ over $N(N=(0,1,2, \ldots.)$ denotes
the set of natural numbers). The free ultra-filters satisfy the following properties:
(a) $N\in F$ , $\phi(\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{y}\mathrm{s}\mathrm{e}\mathrm{t})\not\in F$ ,
(b) $A,$ $B\in \mathcal{F}\Rightarrow A\cap B\in \mathcal{F}$,
(c) $A\in F$ , $A\subseteq B\Rightarrow B\in \mathcal{F}$,
(d) $\mathcal{F}$ contains no finite set, (the filter having this property is called free),
(e) either $E\in \mathcal{F}$ or $N-E\in F$ for $\forall_{E}\subseteq N$ (the filter having this property is called
ultra-filter over $N$).
(ii) Equivalence in terms of free ultra-filter and non-standard extension
We can construct the non-standard extension of $\mathcal{R}$ by introducing an equivalence relation
on sequences in $\mathcal{R}^{\lambda^{\Gamma}}$ by means of a ultra-filter $\mathcal{F}^{\cdot}$ . The equivalence relation is given by

$frightarrow \mathcal{F}g$ (1)

if and only if $(i\in N|f(i)=g(i))\in F$, where $f$ and $g$ are, respectively, represented by
ultra-products

$f= \prod_{i\in\Lambda\prime}f(_{i)}., g=\prod_{i\in\lambda’}g(i)$
. (2)

Note that the sequences associated with the equivalence relation may be expressed by
using ultra-powers

$\prod_{i\in\Lambda’}f(i)/rightarrow\tau$ . (3)

We may write the non-standard extension of $\mathcal{R}$ in terms of the quotient space

$*\mathcal{R}=R^{N}/rightarrow\tau$ . (4)

We also have non-standard extensions of $\Lambda’,$ $C$ ( the set of complex number) and so on,
which are denoted as $*N,$ $*c$ and so forth. It is shown that $\mathcal{R}\subset*n,$ $\forall*r\in$ $*\mathcal{R}$ obey
similar rules as those in $\mathcal{R}$ as for operations $+,$ $\cross,$ $=,$ $<$ and so on, and the magnitudes
of the non-standard natural numbers, $\forall*N\in*N-N$ , are infinity.
(iii) Standard part map(operation)
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We have a projection of every finite number$(*r)$ of $*\mathcal{R}$ to a unique element $(\Gamma)$ of $\mathcal{R}$ , which
is called as the standard part map(operation) and written by

$\mathrm{s}\mathrm{t}(^{*}r)=r$ . (5)

All infinitesimals are mapped at zero.
(iv) Monad of $r\in \mathcal{R}(\mathrm{M}\mathrm{o}\mathrm{n}(r))$

Each real number $r\in \mathcal{R}$ has its own infinitesimal neighborhood defined by the set of
$*r\in*\mathcal{R}$ satisfying

$\mathrm{s}\mathrm{t}(^{*}r-r)=0$ . (6)

In other words it may be represented by the set of $*r\in*\mathcal{R}$ satisfying $\mathrm{s}\mathrm{t}(^{*}r)=r$ . We see
that Mon(O) contains all infinitesimals.
(v) Topology on non-standard spaces
Topologies on non-standard spaces can be introduced by using the monad. (In details,
see Ref.6.) Then they are determined by the choice of infinitesimals. It means that
physical spaces defined by different limits (where different physical constants are taken to
be infinitesimal or infinity) generally have different topologies, even if they are defined on
the same extended Hilbert $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}*\mathcal{H}$ . It is also important that in non-standard analysis
we can rigorously take such limits $\mathrm{o}\mathrm{n}*\mathcal{H}$ by means of the standard part map in stead of
ambig.uous procedures for taking limits on usual Hilber.t spaces $\mathcal{H}$ . This is an important
superlority of non-standard analysis to standard $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}_{\mathrm{S}1}\mathrm{s}$ .

Finally we point out one very interesting theorem of non-standard analysis.
$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}offilters\mathrm{m},\cdot,$

.
There is one-to-one correspondence between She set of monads” and $\zeta\zeta the$ set

This theorem indicates that a choice of a monad just corresponds to a choice of an filter.
Therefore we may consider that the choice of some physical observables as infinitesimal
constants corresponds to the determination of the filter.
2.2 Equivalence on non-standard Hilbert space
General argument for quantum mechanics on non-standard spaces was performed by Far-
$\mathrm{r}\mathrm{u}\mathrm{k}\mathrm{h}[7]$ . Here we pick up some important results needed in our discussions.
(i) Ultra-eigenvectors
On $*\mathcal{H}$ eigenvectors for self-adjoint operator $A$ with eigenvalues $\lambda\in*\mathcal{R}$ are extended to
ultra-eigenvectors $f$ defined by ultra-eigenequations

$||Af-\lambda f||/||f||\approx 0$ , (7)

where $||$ . $f||$ stands for the norm of $f$ defined on $*\mathcal{H}$ and $X\approx 0$ means that $X$ is an
infiniteslm.al.
(ii) Equivalence relation and $\mathrm{p}.\mathrm{h}\mathrm{y}_{\mathrm{S}}\mathrm{i}\mathrm{c}\mathrm{a}1$ space $S(^{*}\mathcal{H})$

We cannot $\mathrm{d}\mathrm{i}_{\mathrm{S}}\mathrm{t}\mathrm{i}\mathrm{n}$.guish the infi.niteslmal difference between two.vectors $f$ and $f+d$, where
$d$ is an infiniteslmal vector, 1. $\mathrm{e}$ . $||d||\approx 0$ . The set of $\mathrm{p}\mathrm{h}_{\mathrm{y}}\mathrm{S}\mathrm{l}\mathrm{c}\mathrm{a}1$ states $S(^{*}\mathcal{H})$ must be
defined by the quotient set

$s(^{*}\mathcal{H})=U(^{*}\mathcal{H})/rightarrow$ , (8)

where $U(^{*}\mathcal{H})$ stands for the set of unit vectors on $*\mathcal{H}$ and the equivalence relation $rightarrow$

on $U(^{*}\mathcal{H})$ is defined as [7]
$f$ and $g$ are equivalent $on*\mathcal{H}(frightarrow g)$ if and only if $f,$ $g\in*\mathcal{H}$ and
$||f||=||g||=1$ and there exists a $\phi\in*\mathcal{R}$ such that $||e^{ict_{f-g||}}$

)
$\approx 0$ .

(iii) Basic equations
The ultra-eigenvectors with $||f||=1$ need not satisfy the equation $Af=\lambda f$ exactly. They
are required to satisfy it only approximately such that A$f\approx\wedge\lambda f$ , where the approximate
equality\approx \wedge is defined by the relation $||Af-\lambda f||\approx 0$ , that is, the difference $d\equiv Af-\lambda f$
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must be infinitesimal vectors on $*\mathcal{H}$ . Schroedinger equation for the stationary states with
the energy $F_{J}$ is written by the approximate equality with infinitesimal differences

$*H\phi(x)\approx E\phi(\wedge x)$ , (9)

where $\approx\wedge$ means $||(^{*}H-E)\phi(X)||\approx 0$ . In the case where $b\approx 0$ is taken such as in
the classical limit, the infinitesimal vectors $d\equiv(^{*}H-E)\phi(x)$ may be of the order of
some powers of $\mathrm{B}.[2-5]$ This extension will allow the existence of new solutions which are
excluded in the usual quantum mechanics where it is required that $h$ is not an infinitesimal
but a finite number of $\mathcal{R}.[2- 4]$

3. Coarse-graining of macroscopic observables on $*\mathcal{H}$

Let us describe a method for quantum-mechanical description of macroscopic objects
by using the ultra-power representation of non-standard analysis.[8] We can get our idea
into the following scheme:
(i) Determine Hamiltonian $H_{N}$ for the fixed number of constituents $N$ . Thus the original
Hilbert space $\mathcal{H}_{N}$ is determined.
(ii) Write down the complete set of the eigenstates in terms of the direct products of

$N- \mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}_{\mathrm{P}}\mathrm{e}\mathrm{n}.\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}$ modes { $|n_{i}>;n_{i}=1,.2,$ $\cdots$ for $(i=1,2,$ $\cdots,$ $N)$ }

$|[n_{i}]> \equiv\prod_{i=1}|n_{i}N>$ , (10)

where $[n_{i}]\equiv$ $(n_{1}, n_{2}, \cdots , n_{N})$ . The eigenstates of $H_{N}$ are generally written by the super-
position of (10).
(iii) Extend $\mathcal{H}_{N}$ to the non-standard Hilbert $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}\mathcal{H}*$ by using $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}_{A}$ ultra-products

$|^{*}[_{7l_{i}}]> \equiv\prod_{Ni\in}|n_{i}>$
, (11)

where $*[n_{i}]\equiv(n_{1}, n_{2}, \cdots\cdots)$ is an infinite series of integers.
Up to now no infinitesimal physical-observable is specified. Let us specify it.

(iv) Following the experimental situation of observed quantities, take observables $Q$ which
are covered by experimental uncertainties as infinitesimals. From the ultra-eigenequation
$||(^{*}H-E)|\psi E>||\approx o(Q)$ , ultra-eigenstates are obtained and generally written as super-
posed states of (11.). Thus the extended Hilbert $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}*\mathcal{H}_{Q}$ describing the. experimental
situation is $\mathrm{d}_{\mathrm{e}\mathrm{t}1}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{n}\mathrm{e}\mathrm{d}$.

. Let us specify the lnonad $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{l}$ to the physical observation accompanied by
the uncertainties. As noted in (v) of \S 2.1. the theorem of non-standard analysis certifies
that the determination of the monad just corresponds to the determination of the filter
$\mathcal{F}_{Q}$ for the choice of a topology on $*\mathcal{H}$ . We understand that

$ultra-filt\epsilon rS\mathcal{F}_{Q}$ represent apparatuses for searching on non-standard quantum-
rnechanical spaces and these apparatu.$\backslash ^{\neg}es$ catch $diff\epsilon rent$ observables, depending
on th $\epsilon cl_{l}o\dot{i}ce$ of infinitesirnal physical-constants $Q$ .

(v) In terllls of the filter $\mathcal{F}_{Q}$ specified by the infinitesimal physical quantity $Q$ we can
introduce the equivalence $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}rightarrow Q$ and then the non-standard $\mathrm{p}1_{1}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{c}\mathrm{a}1$-space $\iota q(*\mathcal{H})_{Q}$

is determined by means of the equivalence relation on $*\mathcal{H}_{Q}$ . (See (ii) of \S 2.2.) Sets of
equivalent $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{t}\mathrm{l}\backslash \mathrm{a}$ -eigenstates are tlniq\iota lely. determined by the $\mathrm{e}\mathrm{q}\iota \mathrm{i}_{\mathrm{V}\mathrm{a}}1\mathrm{e}\mathrm{n}.\mathrm{c}\mathrm{e}$ relation. Thus
the blocks ill van $\mathrm{K}\mathrm{a}\mathrm{m}_{1^{)\mathrm{e}\mathrm{n}}}$

. ’s model are $\mathrm{r}_{\mathrm{o}\mathrm{r}\mathrm{o}}.\iota \mathrm{s}\mathrm{l}\mathrm{y}$ defined by these equlval.ent-sets in this
model. In general an eqtllvalent-set contalns an infinite number of ultra-eigenstates.
(vi) All evaluations should be carried out on $S(^{*}\mathcal{H})_{Q}$ and the physical results on the
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observed physical-space $\mathcal{H}_{Q}^{\mathrm{o}\mathrm{b}\mathrm{s}}$ are obtained by taking the standard part map of the evalua-
tions on $S(^{*}\mathcal{H})_{Q}$ . Precisely speaking, the expectation value $<A|O|A>\mathrm{f}\mathrm{o}\mathrm{r}$ the state $|A>$

is calculated on $S(^{*}\mathcal{H})_{Q}$ and then the final result representing the experimental value is
obtained by taking the standard part map $\mathrm{s}\mathrm{t}<A|\mathcal{O}|A>$ . The observed physical-space
$\mathcal{H}_{Q}^{\mathrm{o}\mathrm{b}\mathrm{s}}$ is just the physical space which is observed by the experiment accompanied by the
uncertainties which are represented by the filter $F_{Q}$ on the non-standard Hilbert $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}\mathcal{H}*$.
Note that the standard part map corresponds to taking some limits in usual evaluations.
We need no.t take any limits on non-standard $\mathrm{s}\mathrm{p}$.aces.We $\mathrm{a}\mathrm{g}\mathrm{a}\ln$ stress that in this scheme an equlvalent-set just represents a block of van
Kampen’s idea and it is uniquely determined fronl experimental uncertainties through the
role of ultra-filters on non-standard Hilbert spaces. Thus the coarse-graining of macro-
$\mathrm{s}\mathrm{c}\mathrm{o}_{\mathrm{P}^{\mathrm{i}_{\mathrm{C}}}}$. observables is rigorously accomplished.

We still have an important problem in the evaluation on the non-standard physical
spaces $S(^{*}\mathcal{H})_{Q}$ . On $S(^{*}\mathcal{H})_{Q}$ all the equivalent states must be treated equivalently.

How is it realized in the evaluations on $S(^{*}\mathcal{H})_{Q}$ ?

4. Equivalent sum on $S(^{*}\mathcal{H})_{Q}$ and decoherence
Let us study the realization of the equivalence on $S(^{*}\mathcal{H})_{Q}$ . The most fundamental

operator in the evaluation of the expectation values is density matrix. We, therefore,
study th.is problem as the problem for $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{i}_{\mathrm{Z}}\mathrm{i}\mathrm{n}.\mathrm{g}$ the equivalent treat.ment with respect to
the equlvalent eigenstates specified by the $\mathrm{e}\mathrm{q}_{\mathrm{U}}1\mathrm{V}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ relation\leftrightarrow Q $\ln$ density matrices.

Let us investigate the problem between two different $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}_{\mathrm{V}\mathrm{a}}1\mathrm{e}11\mathrm{t}$ -sets represented by
$\{|\psi_{i}>\}(i=1,2, \ldots)$ and $\{|\phi_{j}>\}(j=1,2, \ldots)$ . The ultra-eigenstates included in the same
set are, of course, equivalent each other, i.e., $|\psi_{i}>rightarrow Q|?\mathit{1}^{)}k>\mathrm{f}_{\mathrm{o}\mathrm{r}^{\forall}}(i, k)$ and $|\phi_{\dot{J}}>rightarrow Q|\phi_{l}>$

for $\forall(j, l)$ . But the two sets are not equivalent, i.e., $|\psi_{i}>\neq+_{Q}|\phi_{j}>\mathrm{f}\mathrm{o}\mathrm{r}^{\forall}(i,j)$ , and fulfill
the orthogonality as

$<\psi_{i}|\phi_{j}>=0$ , for $\forall(i,j)$ .

Generally a state being equivalent to the set $\{|\sqrt)i>\}$ is written by the superposition of
all the elements of the set as

$| \Psi>=\sum.\cdot c_{i}|\psi_{i}>$ , with $c_{i}\in$ *C. (12)

Similarly we can write a general state equivalent to the set $\{|\phi_{j}>\}$ as

$| \Phi>=\sum_{j}d_{j}|\phi_{j}>$
, with $d_{j}\in$ *C. (13)

$\mathrm{F}\mathrm{r}\mathrm{o}\ln$ the normalization condition we have relations

$\sum_{i}|c_{i}|^{2}=1$ , $\sum_{j}|d_{j}|^{2}=1$ . (14)

Let us consider a superposed state of the above two states like

$|S>=a|\Psi>+b|\Phi>$ , with $|a|^{2}+|b|^{2}=1$ , (15)

where $a,$ $b\in*c$ . The density matrix of the state is obtained by

$|S><S|=a^{*}a|\Psi><\Psi|+b^{*}b|\Phi><\Phi|+a^{*}b|\Psi><\Phi|+b^{*}a|\Phi><\Psi|$ . (16)
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It is noted that the treatment with respect to the equivalent sates in $|\Psi>\mathrm{i}\mathrm{s}$ not equivalent,
because the coefficients $\{.c_{i}.\}$ are generally different. The situation is same as for $|\Phi>$ .
We have no reason for $\mathrm{g}_{1}\mathrm{v}\mathrm{l}\mathrm{n}\mathrm{g}$ a state a higher probability than the others in the same
equivalent-set. The completely equivalent treatment for the equivalent states can be
realized by summing up with respect to the coefficients in all allowed regions such that

$\rho Q(|S>)=N_{c}N_{d}\prod_{j}\int d^{2}d_{j}*\delta(\sum_{l}|d_{l}|2-1)\prod_{i}\int d^{2}c_{i}*\delta(\sum_{k}|c_{k}|^{2}-1)|s><S|$ , (17)

where $N_{c}$ and $N_{d}$ are, respectively, introduced for the normalization of integrals with $c_{i}$

and those with $d_{j}$ as

$N_{c}^{-1}$ $=$ $\sum_{k}\prod_{i}\int d^{2}c_{i}*\delta(\sum_{l}|_{C}l|^{2}-1)|c_{k}|^{2}=\prod_{i}\int d^{2}c_{i}*\delta(\sum_{l}|_{C_{l}|-1}2)$ ,

$N_{d}^{-1}$ $=$
$\sum_{k}\prod_{j}\int d^{2}d_{j}*\delta(\sum_{l}|d_{l}|^{2}-1)|d_{k}|^{2}=\square j\int d^{2}d_{j}*\delta(\sum_{l}|d_{l}|^{2}-1\mathrm{I},$ (18)

and $*\delta(x)$ stands for the constraint $x=0$ in the integrals. In (17) and (18) we may put
$\int d^{2}c_{i}=\frac{1}{2}\int_{0}^{1}d|c_{i}|^{2_{\int^{2}}\mathcal{T}_{\frac{d\varphi_{l}}{2\pi}}}0$ .

Let us consider the integral of the first term in $|S><S|$ , that is,

$N_{c} \prod_{i}\int d^{2}c_{i}*\delta(\sum_{l}|c_{l}|^{2}-1)|\Psi><\Psi|$ , (19)

where the integrations with $d_{j}$ are dropped from the normalization for $d_{j}$ given in (18).
We can easily perform the integrations with $c_{i}$ as follows;

$N_{c}$ $( \prod_{i}\frac{1}{2}\int_{0}^{1}d|C_{i}|2*\delta(\sum_{n}|_{C}n|^{2}-1)\int_{0}2\tau\ulcorner\sum_{l}\frac{d\varphi_{i}}{2_{T}})\sum k|C_{l}||ck|e^{i(}-\varphi\iota)|\varphi k\psi l><\psi_{k}|$

$=$ $N_{c} \prod_{i}\frac{1}{2}\int_{0}^{1}d|c_{i}|^{2}*\delta(\sum_{n}|C_{n}|^{2}-1)\sum_{k}|ck|^{2}|\psi k><^{\psi|}k$

$=$ $\frac{1}{W_{\psi}}\sum_{k}|\psi_{k}><\psi_{k}|$ , (20)

where $W_{\psi}^{-1}=N_{c} \Pi_{i}\frac{1}{2}\int d^{2}|c_{i}|2*\delta(\Sigma_{n}|c_{n}|^{2}-1)|c_{k}|^{2}$, for $\forall_{k}$ . We see that $W_{\psi} \equiv\sum_{i}1$ is the
total number of the equivalent eigenstates contained in the set $\{|\psi_{i}>\}$ . Interference terms
between different eigenst.ates disappear by the integrations over phases in (20). We can
obtain a similar result for the second term of $|S>$. $<S|$ corresponding to $|\Phi><\Phi|$ : From
the above results we may conclude that the equlvalent treatment over all the equlvalent
eigenstates in the same equivalent-set derives decoherence between the equivalent states
in the diagonal terms and the final forms of the diagonal terms are represented by mixed
states, in which all the equivalent eigenstates have an equal probability, for instance,
$1/W_{\psi}$ in $|\Psi><\Psi|$ .

Following the same method for the integrations, we easily see that the off-diagonal
terlns of $|S><S|,$ $|\Psi><\Phi|$ and $|\Phi><\Psi|$ , vanishes by the integrations over phases of
the coefficients. This fact means that decoherence between the two different states $|\Psi>$

and $|\Phi>\mathrm{i}\mathrm{s}$ accomplished. Thus we obtain the final formula of the density matrix for the
superposed state $|S>$ , which represents the observation through the filter $\mathcal{F}_{Q}$ , as

$\rho_{Q}(|S>)=\frac{|a|^{2}}{W\psi}\sum_{i}|\psi_{i}><\psi_{i}|+\frac{|b|^{2}}{W_{\phi}}\sum_{j}|\phi j><\phi_{j}|$ . (21)
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The density matrix for the state $|S>\mathrm{i}\mathrm{s}$ represented by a mixed state $\rho_{Q}(|S>)$ on the non-
standard physical space $S(^{*}\mathcal{H})_{Q}$ . We may conclude that the equivalent treatment based on
the physical equivalence derives the decoherence in the density matrix on $S.(^{*}\mathcal{H})_{Q}.$ Sinoe.
the extension of this example to general cases including many different $\mathrm{e}\mathrm{q}_{\mathrm{U}\mathrm{l}\mathrm{V}\mathrm{a}}1\mathrm{e}\mathrm{n}\mathrm{t}$ -sets $1\mathrm{S}$

trivial, so we do not proceed here.
In the above argument two different types of decoherence are maintain.e$\mathrm{d}$ , that is, one

is the decoherence between equivalent states contained ill the same equlvalent-set and
the other the decoherence between differellt equivalent-sets. It should be noted that the
former, which realizes mixed states fulfilling $\mathrm{t}\mathrm{h}.\mathrm{e}_{\mathrm{P}\mathrm{P}}$. $\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}.1\mathrm{e}$ of equ.a1 a priori probability like
that in (20), represents the decoherence for derlvlng mlcrocanonlcal ensemble of statistical
mechanics,[9-11] whereas the later does the decoherence required of states which describe
experimental apparatuses $(.\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{o}\mathrm{r}.\mathrm{s})$ in qu.antum theory of $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}.\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}.[12-14]$ In the
density matrix $\rho Q$ the $\mathrm{p}\mathrm{h}\mathrm{y}_{\mathrm{S}\mathrm{l}\mathrm{c}\mathrm{a}}1$ equlvalence $1\mathrm{s}$ expressed by the equlvalent sum with respect
to equivalent states contained in the same equivalent-set.

5. An example of the coarse-graining for thermal equilibrium
An example for the macroscopic motion of $N$ oscillator system was carried out in

Ref.5. Here we shall study the scheme for the coarse-graining, presented in \S \S 3 and 4,
in the quantum-mechanical description of thermal equilibrium for $N$ oscillator system,
which has been discussed in the usual quantum-mechanical framework.[9-11]
5.1 Hamiltonian and eigenstates on original Hilbert $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}[9]$

Following procedures (i). and. (ii) of \S 3, let us determine an origin.al Hilbert .and eigenstates.
In this model $\mathrm{H}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{t}_{0}\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{l}\mathrm{S}$ given by (for details of the $\mathrm{f}\mathrm{o}\mathrm{l}1_{0}\mathrm{w}\mathrm{l}\mathrm{n}\mathrm{g}\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{C}}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{s}$, see Ref. 9)

$H([\theta])=H_{0}+H_{I}([\theta])$ , (22)

where $H_{0}$ is the oscillator Hamiltonian

$H_{0}= \epsilon\sum_{=j1}^{N}a_{j}(\dagger\theta)a_{j}(\theta)$ (23)

and $H_{I}([\theta])$ stands for the relative-phase interaction

$H_{I}([ \theta])=\epsilon g(g\hat{N})\frac{1}{N}\sum j(\frac{1}{N}\sum\alpha^{\uparrow_{\alpha e}}jk+|i\theta_{gk}\mathrm{o}k>_{j}j<0|)$ . (24)

In $H_{0}$ the annihilation and creation operators with phases are defined by $a_{j}(\theta)=a_{j}e^{-i\theta_{J}}$

and $a_{j()}^{\uparrow\theta}e^{i\theta_{j}}$ , respectively. In $H_{I}([\theta])\epsilon_{g}$ is an energy scale, $\alpha_{j}^{\uparrow}=a_{j}^{\uparrow}(\hat{N}j+1)^{-1/2},$ $\alpha_{k}=$

$(\hat{N}_{k}+1)^{-1/2}a_{k},\hat{N}=\Sigma_{j=1}^{N}\hat{N}_{j}$ (the total excitation-number operator) with $\hat{N}_{j}=a_{j}^{\uparrow}a_{j}$ and
the relative phases $\theta_{jk}=\theta_{j}-\theta_{k}$ .

The eigenstates of $H_{0}$ are written in terms of the direct product of the number states
with phases as

$|M;[n_{j}],$ $[ \theta_{j}]>=\prod_{j=1}^{N}|n_{j},$
$\theta \mathrm{j}>\delta_{\Sigma_{\iota=}^{N}1n_{t},\Lambda}I$ ’ (25)

where $|n_{j},$ $\theta_{j}>=|n_{j}>e^{in\theta_{J}}j$ fulfills the equations $a_{j}^{\uparrow_{(\theta)|}}n_{j,j}\theta>=\sqrt{n_{j}+]}|n_{j}+1,$ $\theta_{j}>$

, $a_{j}(\theta)|n_{j}>=\sqrt{n_{j}}|n_{j}-1,$ $\theta_{j}>$ and $a_{j}^{\uparrow}(\theta)a_{j}(\theta)|n_{j,j}\theta>=n_{j}|n_{j},$ $\theta_{J}\cdot>$ . Here $|n_{j}>$ is the
usual number state fulfilling relations $N_{j}|n_{j}>=n_{j}|n_{j}>$ and $a_{j}|0>_{j}=0$ .

196



We can also see that the eigenstates of $H_{I}([\theta])$ are given by the superposition of the
eigenstates of $H_{0}$ as

$|M,$ $N,$
$[ \theta]>=\sum_{p[n]J}|M;[nj],$

$[\theta_{j}]>/\sqrt{W(M,N)}$, (26)

where the sum should be taken over all the different combinations of $[n_{j}]=(n_{1}, n_{2}, \ldots, n_{N})$

and the number of the combinations $W(M, N)$ is given by

$W$ (M. $N$ ) $= \frac{(M+N-1)!}{M!(N-1)!}$ . (27)

It is obvious that the states $|M,$ $N,$ $[\theta]>\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}$ only a subspace of the whole physical space
of $H_{0}$ and t,he eigenvalues of $H_{I}([\theta])$ are $\epsilon_{g}g(M)$ .

From the above discussion we easily see that the eigenstates of the total Hamiltonian
$H([\theta])$ are the same as those of $H_{I}([\theta])$ and we have the eigenvalue of $H([\theta])$ as follows;

$H|M,$ $N,$ $[\theta]>=(\epsilon M+\epsilon_{g}g(M))|M,$ $N,$ $[\theta]>$ . (28)

It is apparent that the Hilbert spaces having the different phases are different, that is,

$\mathcal{H}([\theta])\neq \mathcal{H}([\theta’])$ (29)

for $[\theta]\neq[\theta’].$ It. is also clear that they.are subspaces of the Hilbert space $\mathcal{H}_{0}$ for the oscil-
lator Hamiltonlan $H_{0}$ , because their elgenstates are descri.b ed by the supe.rposition of the
eigenstates of $H_{0}$ . It is, however, noted that they are $\mathrm{e}\mathrm{q}_{\mathrm{U}\mathrm{l}\mathrm{V}\mathrm{a}}1\mathrm{e}\mathrm{n}\mathrm{t}$ as $\mathrm{p}\mathrm{h}\mathrm{y}_{\mathrm{S}1}\mathrm{C}\mathrm{a}1$ space. That
is to say, all expectation values for operators $\mathcal{O}$ written by the creation and annihilation
operators are same on all Hilbert spaces with different phases as

$<M’,$ $N,$ $[\theta^{1}]|o(a_{j}^{\dagger}(\theta^{1}), a_{k}(\theta^{1}))|M,$ $N,$ $[\theta^{1}]>=<M’,$ $N,$ $[\theta^{2}]|\mathcal{O}(a_{j}^{\mathrm{t}}(\theta^{2}), a_{k}(\theta 2))|M,$ $N,$ $[\theta^{2}]>.(30)$

Note also that all the eigenstates $|M,$ $l\mathrm{V},$ $[n_{j}]>\mathrm{o}\mathrm{f}H_{0}$ can be written down in terms of
the superposition of the eigenstates of all the Hamiltonians $H([\theta])$ corresponding to.the
phases $0<^{\forall}\theta_{j}\leq 2\pi$ such that

$|M,$ $N,$ $[n,]>=j1 \prod_{=}^{\mathit{1}\mathrm{v}}\int 0\frac{d\theta_{j}}{\underline{?}\pi}e27\ulcorner-inJ\theta_{J}|M,$ $N,$ $[\theta]>$ . (31)

We see that the Hilbert space for the oscillator, $\mathcal{H}_{0}$ , is completely covered by all the
Hilbert spaces $\mathcal{H}([\theta]’)$ for $0<^{\forall}\theta_{j}\leq 2\pi$ .
5.2 Non-standard extension of $\mathcal{H}([\theta])$

Let us go to procedure (iii). We can write the direct product of number states in terms
of the ultra-product as

$|M^{*},[n_{j}]>= \prod_{\Lambda’j\in}|n_{jj},$
$\theta>$ . (32)

The eigenstates of the Halniltollian $*H([\theta])$ , where the constituent number $N$ is taken as
an infinity $*N$ of $*N-N$ , are described by the sum of the extended number-eigenstates
as

$|M,$ $[ \theta]>=\sum_{J\mathrm{P}^{*}[n]}|M,*[n_{j}]>/\sqrt{W(M)}$ , (33)
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where $W(M)$ denotes the number of the different combinations of $p^{*}[n_{\dot{J}}]$ and belongs to
an infinity of $*\mathcal{N}-N$ . They satisfy the equations

$||(^{*}H([\theta])-(\epsilon M+\epsilon_{g}g(M)))|M,$ $[\theta]>||\approx 0$ . (34)

5.3 Non-standard physical space $S(^{*}\mathcal{H}([\theta]))\epsilon_{g}$

Following procedures (iv) and (v), let us specify physical infinitesimals and determine
non-standard physical space. In this model the energy uncertainty $\triangle E$ is take to be much
larger than the eigenvalues of $H_{I}([\theta]),.\epsilon_{g}M$ , that is, $\triangle E>>\epsilon_{g}M$ for $\forall_{M}$

.
$\in N$ . This

means that $\epsilon_{g}$ is taken to be an infiniteslmal $\mathrm{o}\mathrm{f}*\mathcal{R}$ . We can show the followlng relations;

$||(^{*}H([\theta])-\epsilon M)|M,$ $[\theta’]>||=o(\epsilon_{g}g(M))\approx 0$ (35)

for $0<^{\forall}\theta_{j}’.\leq 2\pi$ , where $o(\epsilon_{g}g(M))$ stands for the order of $\epsilon_{g}g(M)$ . In the present case
where $\epsilon_{g}1\mathrm{S}$ taken as the infinitesimal, the above equation is understood as the ultra-
eigenequation and then all the states $|M,$ $[\theta’]>$ for $0<^{\forall}\theta_{j}’\leq 2\pi$ become the ultra-
eigenstates on the non-standard Hilbert $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}*\mathcal{H}([\theta])_{\epsilon}\mathit{9}$ with the fixed phases $[\theta]$ . It is
trivial that all the states have the same eigenvalue $\epsilon M$ . Thus we may consider that all the
Hilbert spaces $\mathcal{H}([\theta’])$ with different phases $([\theta’]\neq[\theta])$ are subspaces of the non-standard
Hilbert space with a fixed phase $*\mathcal{H}([\theta])_{\epsilon_{g}}$ specified by the infinitesimal $\epsilon_{g}$ . It is obvious
that the Hilbert space of the oscillator, $\mathcal{H}_{0}$ , is a subspace of $*\mathcal{H}([\theta])_{\epsilon}g$

’ because all the
eigenstates of $H_{0}$ are written by the superposition of those of $H([\theta])$ , as shown in (31).
Following the definition given in (ii) of \S 2.2, we can find the phase

$\Theta=\sum_{j}n_{j()}\theta j-\theta_{j}/$
(36)

between any pair of eigenstates for satisfying the equivalence relation

$||e^{i\ominus}|M,$ $[\theta]>-|M,$ $[\theta’]>||\approx 0$ . (37)

From the definition all the eigenstates with different phases are equivalent. Now we
can define the non-standard physical space $S(^{*}\mathcal{H}([\theta]))\epsilon_{g}$ by using the above equivalence
$\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}rightarrow\epsilon_{g}$. It is apparent that all the states $|M,$ $[\theta’]>$ (for $0<^{\forall}\theta_{j}’\leq 2\pi$ ) with a fixed
$M$ are included in the same equivalent-set, and they have the same energy eigenvalue $\epsilon M$ .
This is nothing but the realization of coarse-graining of Hamiltonian.

The important difference of $S(^{*}\mathcal{H}([\theta]))_{\epsilon_{g}}$ from $\mathcal{H}_{0}$ is represented by the fact that
all the eigenstates with the same eigenvalue $\epsilon M$ but different phases must be treated
equivalently on $S(^{*}\mathcal{H}([\theta]))\epsilon_{g})$ while there is no such a constraint on $\mathcal{H}_{0}$ .

5.4 Equivalent sum and decoherence of quantum states on $\mathcal{H}_{0}$

From (20) of \S 4 the density matrix for the eigenstate $|M>$ with a fixed energy $E=\epsilon M$

is described by the equivalent sum over $0<^{\forall}\theta_{j}\leq 2\pi$ on $S(^{*}\mathcal{H}([\theta]))_{\epsilon_{\mathit{9}}}$ such that

$\rho_{\epsilon_{g}}(|M>)$ $=$ $\prod_{j}\int_{0}^{2\pi}\frac{d\theta_{j}}{2\pi}|M,$ $[\theta_{j}]><M,$ $[\theta_{j}]|/W(M)$

$=$
$( \prod_{l}\int_{0}^{2}\pi\frac{d\theta_{l}}{2\pi}\sum_{p[n,]}\sum_{p[n_{j}]},\prod e^{i(n_{j^{-}}}jn)J\theta\prime J)|WI,$ $[n_{j}]><M,$ $[n_{j}’]|/W(M),$ (38)
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where the sum $\Sigma_{k}$ in (20) is replaced by the integrations with respect to the phases $[\theta]$ .
We can easily perform the integrations over the phases and obtain the final expression of
the density matrix on $S(^{*}\mathcal{H}([\theta]))_{\epsilon_{g}}$

$|M><M|= \frac{1}{W(M)}\sum_{p^{*}[n_{J}]}|M,*[n_{j}]><M^{*},[n_{j}]|$ . (39)

Note that the density matrix is represented by completely mixed states with respect to the
states $|M^{*},[n_{j}]>\mathrm{w}\mathrm{h}\mathrm{i}_{\mathrm{C}}\mathrm{h}$ are the eigenstates of the oscillator Hamiltonian $*H_{0\epsilon\Sigma_{jj}}=a\dagger_{a_{j}}$ .
We may say that

“decoherence with resp.e$Ct$ to the eigenstates $of*H_{0}$ is realized.”
We also see that all the elgenstates of $*H_{0}$ with the same eigenvalue $\epsilon M$ have an equal
weight $1/W(M)$ , that is, the principle of eq.ual $a$ $pri.or\dot{i}$ probability is realized. This fact
means that this density matrix represents mlcrocanonlcal ensemble of statistical mechanics
on $*\mathcal{H}_{0}$ . We may conclude that

”the observed physical space $\mathcal{H}_{\epsilon_{\mathit{9}}}^{obs}$ which is mapped by means of the standard part
operation is the thermal subsp.ace of $\mathcal{H}_{0}$

”
$.$ .Note also that the relative-phase $1\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{S}}$ understood as thermal interactions whose

existence is a fundamental postulation in thermal equilibrium but it always does not
explicitly appear in any discussions of statistical mechanics.
5.5 Remarks on $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{u}.1\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$

In the evaluations by uslng the density matrix the number of constituents $N$ should be
taken as an non-standard integer $*N\in*N-N$ . In the standard part map of the results,
therefore, $*N$ should be replaced by the number of constitu.ents $N$ , which is,. of course, of
the order of Avogadro’s number and actually an indetermlnable $\mathrm{m}\mathrm{a}\mathrm{c}\mathrm{r}\mathrm{o}\mathrm{S}\mathrm{c}\mathrm{o}_{\mathrm{P}}1\mathrm{C}$ observable
accompanied by a large uncertainty.

6. Concluding rmarks
We introduced the physical equivalence adopted in the interpretation of $\mathrm{e}\mathrm{x}\mathrm{p}.$ erimenta.1result.s into quantum theory, and we showed that the introduction of the equlvalence $1\mathrm{S}$

very $1\mathrm{m}\mathrm{p}_{0}\mathrm{r}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ to describe our observations realized by coarse-graining of macroscopic
observables on quantum-mechanical spaces. Our main results are summarized as follows:
(1) $\mathrm{T}1_{1}\mathrm{e}$ physical equivalence based on experimental uncertainties can be well represented
by the equivalence based on filters $F$ for the determination of topology on non-standard
Hilbert $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{s}*\mathcal{H}$ .
(2) The filter $F_{Q}$ for the determination of topology on $*\mathcal{H}$ is determined by taking physical
observables $Q$ , which are so small in comparison with the experimental uncertainties that
their $\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{V}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{S}}$

. are $\mathrm{i}\mathrm{m}$.possible in the $\mathrm{v}\mathrm{e}$.ry experiment, as infinitesimals on $*\mathcal{H}$ .
(3) Sets of equlvalent elgenstates are unlquely determined in terms of the equivalence
based on the filter $\mathcal{F}_{Q}$ and the non-standard physical space $S(^{*}\mathcal{H}\mathrm{I}Q$ is also determined by
means of the same equivalence.
(4) Density matrices on $S(^{*}\mathcal{H})_{Q}$ are obtained by the realization of the equivalence over all
the equivalent eigenstates, and they are described by mixed states, that is, decoherence
of quantum states are realized. All evaluations must be carried out on $S(^{*}\mathcal{H})_{Q}$ by using
the density matrices.
(5) Two different types of decoherence are maintained. One represents the decoherence
for describing microcanonical ensemble of statistical mechanics and the other is that re-
quired in quantum theory of measurements.
Not.e that the equivalent states included in the same equivalent-set are recognized as the
equlvalent one only when their differences are covered by experimental uncertainties, and
the differences are fundamentally measurable in more precise measurements.[10]
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We may conclude that quantum mechanics involving the physical equivalence.based
on our $\mathrm{o}\mathrm{b}_{\mathrm{S}\mathrm{e}1^{\backslash }\mathrm{V}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ with some uncertainties can be described by quantum mechanlcs on
non-standard Hilbert spaces. Through these arguments we may understand the fact;

a choice of an apparatus in an observation process is represented by a choice of
an filter for the determination of topology on non-standard $Hilb\theta rt$ spaces.

We peep at only some properties of nature through our filters which are represented by
the free ultra-filters on non-standard Hilbert spaces.

Finally I would like to remark on the very strong prejudice against non-standard anal-
ysis such that non-standard extension of quantum mechanics does not produ.ce any new
results. If non-standard extensions are carried out without taking any physlcal observ-
ables as infinitesimals, the prejudice is right because no filters which have definite physical
meaning.s $\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}^{\mathrm{o}\mathrm{n}}.\mathrm{g}}\mathrm{d}\mathrm{i}\mathrm{n}$ to physical observations is involved in such $\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{s}.\mathrm{i}_{0}.\mathrm{n}\mathrm{S}$ . That is
to say, $\ln$ such extenslons non-standard Hilbert spaces $*\mathcal{H}$ go back to $\mathrm{o}\mathrm{r}1.\mathrm{g}_{\mathrm{l}\mathrm{n}\mathrm{a}}1$ Hilbert
spaces $\mathcal{H}$ by taking the standard part map. In the case where some physlcal infinitesi-
mal observables $Q$ are introduced, as the nlodel presented in this paper, howev.er, we can
derive many new results which have never been obtained in quantum lnechanlcs on real
space, such as, decoherence, classical solutions $[2,3]$ and etc. The world observed through
physical filters, $\mathcal{H}_{Q}^{\mathrm{o}\mathrm{b}\mathrm{s}}$ , is quite different from the original world, $\mathcal{H}$ . We cannot reach. a
right quantum theory involving quantum-mechanical observations, unless we recognlze
the importance of the fundamental physical-equivalence associated with our observations
accompanied by some uncertainties.
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