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Abstract. Balian’s program of assigning a probability distribution to a random
matrix is exploited to construct a possible general form of thejoint eigenvalue distribution for
an ensemble of hermitians or unitaries. From a point of view of open system, it can be viewed
as the equilibrium statistical mechanics of an eigenvalue system in contact with Gaussian
environmental reservoir. The statistical aspect of the previously introduced Hamiltonian
level dynamics is discussed by putting it into this framework and is illustrated by way of a
concrete, exact result of Gaudin’s model in 1966.

1. On Balian’s Article in 1968

As an introduction of the present review on an aspect of Random Matrix Theories, the au-
thor wishes to begin with a brief comment about Balian’s work some thirty years $\mathrm{a}\mathrm{g}\mathrm{o}[1]$ ,
which implemented an information theoretical approach to random matrix studies for the
first time. The decade of $1960’ \mathrm{s}$ was the initial development of this field, where the name of
Wigner, Dyson, Porter, Mehta and others may be cited. Its revise after $1980’ s$ was stimu-
lated in connection with broad interests in quantum chaos studies and applications to various
branches of Physics and Chemistry: it may be referred to a recent comprehensive review in
Physics Reports [2]. However, even in this report, little has been mentioned about informa-
tion theoretical $\mathrm{v}\mathrm{i}\mathrm{e}\mathrm{w}\mathrm{P}^{\mathrm{o}\mathrm{i}\mathrm{n}}\mathrm{t}$ (the same feature can be said also about Mehta’s $\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{k}[3]$ ).

In the present article, we would like to emphasize the important role of information
theory to play in the basic part of constructing random matrix theories along the proposal
by Balian cited above: this is expressed in his prescription summarized by two postulates
concerning information quantity on a continuot-ts probability space as follows. Let $P[M]$

denote a probability distribution to be assigned to a sample matrix $M$ taken up from an
ensemble of matrices, and suppose that one wishes to know $P[M]$ . Write the information
quantity associated with the ensemble as

$I \{P[M]\}\equiv\int d[M1P[M]\log P[M]$ . (1.1)

Then, postulate $A:a$ (Riemannian) metric is defined, in the matrix space to which $M$ belongs,
by the expression

$ds^{2}\equiv \mathrm{t}\mathrm{r}\delta M\delta M*$ . (1.2)

postulate $B$: among all probabdity distributiom $P[M]$ for a random $mat\dot{m}$ constrained to
satisfy some given properties, one should adopt the distribution which minimizes $I\{P[M]\}_{\rangle}$
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and is thus the least biased (equivalent to the maximum entropy principle under pertinent
constraints).

Therefore, it would be worthwhile to forcus on how these two postulates act in the
actual formalism of random matrix theories in the recent as well as old development, and
the present article is written to satisfy this purpose. Specifically, the author wishes to put
his emphasis on the role of Riemannian geometry in statistics implied by postulate $A$ which
Balian supposedly intended to clarify.

2. Information Theory and Statistical Mechanics of Gaussian-
Reservoir Open Systems

2.1. $\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{y}[4]$

Suppose that we are given two sets of random variables, $X$ and $Y$ which let us call object
variable for $X$ and reservoir variable for $Y$ , respectively. The former variable describes our
object system, while the latter an environmental system against the former. Such a situation
often occurs in statistical physics, and here we aim at a formulation of the special situations

th.at the reservoir system may be subject to a Gaussian distribution.

A Gaussian distribution, very familiar to every scientists, can be written only in terms
of two kinds of parameter i.e. the mean and the variance of the random variable, and for a
$d$-dimensional vector case it can be written as

$P_{G}(y)= \frac{1}{((2\pi)^{d}|V|)^{1}/2}\exp[-\frac{1}{2}(y-\langle y\rangle)^{;_{V^{-1}}}(y-\langle y\rangle)]$, $y\in \mathrm{R}^{d}$ , (2.1)

where $\langle y\rangle$ represents the expectation(mean) $\mathrm{v}$.alue of the random vector variable $y$ denoted
by mean(Y) and ’ implies the transpose of a vector. In the exponential part of the above
expression, $V$ represents a positive, symmetric $d\cross d$ tensor, and is related to the expectation
value

$V_{\mu,\nu}=\langle(y-\langle y\rangle)_{\mu}(y-\langle y\rangle);\nu\rangle$ (2.2)

which is called the covariance of $Y$ denoted by $\mathrm{C}\mathrm{o}\mathrm{v}(Y, Y)$ . Also, $|V|$ denotes the determinant
of the tensor $V$ which is assumed to be positive.definite.

In the present studies of open systems, we must incorporate the object variable $X$

into the above distribution, and most generally mean(Y) and $\mathrm{C}\mathrm{o}\mathrm{v}(\mathrm{Y},Y)$ must be regarded
as functions of $X$ which is assumed to be an $n$-dimensional vector random variable. Then,
in order to be able to write the joint distribution for both variables $X$ and $\mathrm{Y}$ , the Gaussian
distribution (2.1) must be modified such that its exponential part also represents a proba-
bility distribution on the object variable $X$ . Let us redefine $y$ by means of its shift, $y-\langle y\rangle$ ,
in the exponential, and write

$P_{G}(x, y)= \frac{1}{Z}\exp[-\frac{1}{2}y’V(X)^{-1}y]$ , $y\in \mathrm{R}^{d},$ $x\in D$ , (2.3)

where
$Z= \int_{D}\int_{R^{\mathrm{d}}}dxdy\exp[-\frac{1}{2}y’V(X)-1y]=(2\pi)^{d/2}\int_{D}|V(x)|^{1}/2dx$ $($2.3$a)$

is assumed to exist, that is, the integral $\int_{D}|V(x)|^{1/2}dx$ is assumed to be finite.
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We define the conditional probability density function of the $Y$-variable, when the $X$

is conditioned by fixing its value $X=x$ , by the formula

$P_{c}(_{X}, y)\equiv PG(y|x=X)\cdot P(_{X})$ (2.4)

under normalization condition

$\int_{R^{\mathrm{d}}}P_{G(y1}X=x)dy=1$ , and $\int_{D}P(X)dx=1$ . (2.5)

This yields the expression for $P(x)$ , namely

$P(x)= \int_{R^{d}}P_{G(y)d}x,y=\frac{(2\pi)^{d/2}}{Z}|V(X)|^{1}/2=\frac{|V(x)|1/2}{\int_{D}|V(x)|1/2}$ , (2.6)

called the reduced (or, coarse-grained) probability distribution, and also for $P_{G}(y|X=x)$

$P_{G}(y|X=X)=P_{G}(x,y)/P(x)=\mathrm{e}\mathrm{q}.(2.1)\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}V=V(x)$ ,

identifying that the original Gaussian distribution is the conditional probability density
function of the $Y$-variable for each fixed $x$ . Thus,

$P_{c(y1}X=x)= \frac{1}{((2\pi)^{d}|V(x)|)1/2}\exp[-\frac{1}{2}y’V(x)^{-1}y]$ , $y\in \mathrm{R}^{d},$ $x\in D.$ (2.7)

2.2. Entropy and conditional entropy

We adopt the standard definition of entropy for a continuous random variable $X\in D\subseteq \mathrm{R}^{\mathrm{d}}$

with probability density function $p(x)$ :

$H(X) \equiv h(p)=\int_{D}p(x)[-\log p(X)]dX$ (2.8)

(the so-called differential entropy of Shannon)

Unlike the entropy on a discrete probability space, $H(X)$ may take negative values,
but except with this point, the above definition of entropy satisfies most of the basic prop-
erties which are known for the concept in the field of information heory, and we list some
of them: (1) for any two probability density functions $p(x)$ and $q(x)$ ,

$H(X)= \int_{D}p(x)[-\log p(X)]dX\leq\int_{D}p(x)[-\log q(X)]d\mathcal{I}$ , (2.9)

where the equality holds only when $q(x)=p(x)$ identically (Kullback inequality [4]).
(2) $H(X,Y)$ is defind as the entropy for the joint probability density $p(x,y)$ , and $H(\mathrm{Y}|X)$

as the mean of the conditional probability density $p(y|X=x)$ over the reduced probability
density $p(x)= \int p(x, y)dy$ so that $H(Y|X)= \int_{D}H(Y|X=x)p(X)dX$ . Then, the following
two identities hold.

$H(x,Y)=H(Y|x)+H(X)=H(x|Y)+H(Y)$ . (2.10)

(3) Let $H(X)$ and $H(Y)$ be the entropy of the reduced probability density $p(x)$ and $p(y)$ of
a joint probability density $p(x, y)$ , respectively. Then,

$H(X, Y)\leq H(X)+H(Y)$ , $H(x|Y)\leq H(X)$ and $H(Y|X)\leq H(Y)$ . (2.11)

These inequalities indicate that a coarse-graining generally gives rise to an increase of the
entropy from its value before the coarse-graining.

Let us now apply these results to our Gaussian-reservoir open system:
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$P_{G}(x, y)= \frac{1}{Z}\exp[-\frac{1}{2}y’V(_{X)y}-1],$ $Z=(2 \pi)^{d/}2\int D|V(X)|dX$ ;

$H(X,Y)= \log Z+\frac{d}{2}=\log(2\pi e)^{d}/2+\log\int_{D}|V(x)|^{1}/2dx$, (2.12)

$P_{G}(y|X=x)= \frac{1}{((2\pi)^{d})|V(x)|)^{1}/2)}\exp\iota-\frac{1}{2}y’V(x)-1y]$ ;

$H(Y|x=X)= \log P(x)+\log Z+\frac{d}{2}$ (2.13)

$H(Y|X)=-H(X)+ \log Z+\frac{d}{2}$ (2.14)

$P(x)= \int_{D}P_{G(y)\frac{|V(x)|^{1/2}}{\int_{D}|V(x)|^{1}/2dx}}x,dy=$ , also by virtue of $\mathrm{e}\mathrm{q}\mathrm{s}.(2.13)$ and (2.12)

$= \frac{1}{(2\pi)^{d}/2\int D|V(_{X)}|^{1}/2dx)}e^{H(|\mathrm{x})}$ ;$Y=x$ (2.15)

$H(X)= \int_{D}P(x)[-\log P(X)]dx=-H(Y|X)+H(X, Y)$ . (2.16)

The last expression (2.16), which verifies the first of two identities in (2.10), may yield a

thermodynamic interpretation that the reduced-system entropy can be expressed as

$H(X)=$ ($\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{e}$ temperature) $\cross$ [energy-free energy], (2.17)

where $-H(Y|X)$ corresponds to energy and $-H(X, Y)$ to free energy, respectively, of the
object system $X$ . This is characteristic to the present Gaussian-reservoir open system.

2.3. Maximum conditional-entropy principle

The well-known property of the Gaussian distribution $p_{G}(y)$ is that among all distributions
of $y\in \mathrm{R}^{d}$ with mean $0$ and covariance $V$ (fixed), it has the unique maximum value of
$H(Y)$ which is equal to $\log((2\pi e)d|V|)^{1/2}$ . The proof of this fact can best be seen by the
application of Kullback inequality (2.9) to $q(y)=p_{G}(y)$ whose logarithm is a quadratic
function of the $y$ variable, yielding the expectation value $V$ when averaged over the other
arbitrary distribution $p(y)$ , and by the fact that the equality holds only when $p(y)=q(y)$ .

We may express this property as

$\max_{p}H(Y)(=\max_{p}h(p))=H_{G}(Y)(=h(p_{G}))$

under constraint mean$(Y)=0$ , and $\mathrm{C}\mathrm{o}\mathrm{v}(Y, Y)=V$ ,

and apply the same principle to the reservoir system $Y$ for each given configuration of the
object system $X=x$ . Thus,

$\max_{p(y|x}=x)H(Y|X=x)=H_{G}(Y|X=x)\equiv h_{\max}(p(y|X=X))$ (2.18)

under constraint
mean$(Y)=0$ , and $\mathrm{C}\mathrm{o}\mathrm{v}(Y,Y)=V(x)$ . $($2.18 $a)$
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The result of the maximization can be represented as the expression $(\mathrm{S}\mathrm{e}\mathrm{e}\mathrm{e}\mathrm{q}.(2.15))$

for $P(x)$ :
$P(x)= \frac{1}{(2\pi)^{d}/2\int_{D}|V(X)|1/2dx)}e^{h_{m\infty 1p(}}u|X=x)$ . (2.19)

This form of maximum entropy principle is different from the usual variational principle

in statistical mechanics, and the relation between them should be clarified by invoking the
thermodynamic interpretation (2.17), where apart from numerical factors,

$H_{G}(X, \mathrm{Y})$ (total entropy after maximization) $=$ ( $\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{y}$ of object system). (2.20).

3. Possible Riemannian Metrics and Distributions on Random
Matrix Spaces

In order to equip an ensemble of matrices with a Gaussian-reservoir structure discussed in the
preceding section, we must introduce a Riemannian metric into the space of matrices, and
for this purpose let us recall Balian’s postulate $A(1.2)$ concerning the distance between two
infinitesimally separated matrices. A Riemannian metric tensor $(g_{\mu,\nu})$ can then be defined as
the coefficient tensor of the distance $ds^{2}$ with respect to a quadratic form of an infinitesimal
parameter set. For this purpose, a recent paper by $\mathrm{P}\mathrm{e}\mathrm{t}\mathrm{z}[5]$ provides a suggestive and useful
idea, proposing an axiomatic approach to possible Riemannian metrics on matrix spaces.

Let us denote, following Petz, the space of $n\cross n$ complex matrices by $\mathcal{M}_{n}$ on which
a sesqui-linear form $\mathrm{K}(B, A)$ ( $\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\Gamma$ with respect to $A$ and anti-linear to $B;A,$ $B\in \mathcal{M}_{n}$ ) is
defined. The simplest example of such is the Hilbert-Schmidt inner product $\mathrm{K}_{H-S}(B, A)\equiv$

$\mathrm{t}\mathrm{r}B^{*}A$ which satisfies the unitary invariance, namely

$\mathrm{K}(U^{*}BU, U*AU)=\mathrm{K}(B, A)$ , (3.1)

and, importantly, it is known that such a unitary invariant sesqui-linear form must be iden-
tical to the H-S inner product.

However, if the form $\mathrm{K}$ is supposed to depend on another hermitian matrix, then
there may arise a variety of inner products of non-HS type, and it is desirable to classify
such inner products as legitimate forms. Denoting the set of all hermitian matrices in $\mathcal{M}_{n}$

by $\mathcal{M}_{n}^{\epsilon}$ , we list up the properties of the expected forms as follows.

(a)symmetry $\mathrm{K}_{H}(A^{*}, B^{*})=\mathrm{K}_{H}(B, A)$ ; $H\in\lambda 4_{n}^{S}$ , $A,B\in-\Lambda\Lambda_{n}$ . When $A$ and $B$ are
restricted to hermitians, the form $\mathrm{K}$ becomes real and symmetric, and hence it is a
bilinear form.

(b)positive definiteness $\mathrm{K}_{H}(A, A)\geq 0$ , and the equality holds only when $A=0$ .

(c)continuity of the map $Hrightarrow \mathrm{K}_{H}$ : this continuity holds for every $A\in \mathcal{M}_{n}$ in $\mathrm{K}_{H}\langle A,$ $A)$ .

(d’)unitary covariance $\mathrm{K}_{U^{*}H}u(U^{*}BU, U*AU)=\mathrm{K}_{H}(B, A)$ : this relaxes the condition of
unitary invariance in the strict sense to the same condition but with an inclusion of
the subsideary matrix $H$ , and hence the bilinear form $\mathrm{K}_{H}$ belongs to much wider class
than the Hilbert-Schmidt inner product.
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This last condition $(\mathrm{d}’)$ is important for the present purpose, and actually is weeker than the

condition (d) of monotonicity which Petz has proposed, setting it up for a density matrix
D. (A density matrix $D$ in $\mathcal{M}_{n}$ is a special hermitian matrix, positive and $\mathrm{t}\mathrm{r}D=1.$ )

(d)monotonicity $\mathrm{K}\tau(D)(T(A),T(A))\leq \mathrm{K}_{D}(A,A)$ , where $T$, a super-operator( $\mathrm{a}$ linear
map) $\mathcal{M}_{n}rightarrow \mathcal{M}_{m}$ , in which a positive matrix is mapped to a positive matrix $(\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}$

stochastic map).

An intuitive understanding of the monotonicity of $T$ is that by any coarse-graining
of the pertaining matrices in $\mathrm{K}_{D}$ , i.e. both $A$ and $D$ , the metric represented by $\mathrm{K}_{D}$ must
be a non-increasing quantity. When $T$ is a unitary map, the above monotonicity inequality
becomes the equality, because now $T$ can be an invertible super-operator from $\mathcal{M}_{n}$ onto
itself. Therefore, condition (d) includs $(\mathrm{d}’)((\mathrm{d})$ is more stringent than $(\mathrm{d}’)$ : if (d) is valid
for a form $\mathrm{K},$ $(\mathrm{d}’)$ is also valid for the same form, but the converse is not necessarily true).

The condition (d) (or $(\mathrm{d}’)$ ) enables one to take the representation of the pertinent
matrices where $D$ (or $H$) is diagonal, and to exhibit the form of $\mathrm{K}$ in terms of the matrix
elements $A_{jk}$ : Petz has shown that, under condition (d) with $D=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\lambda 1, \lambda 2, .., \lambda_{n})$

$\mathrm{K}_{D}(A,.A)=\sum_{j,k}c(\lambda_{j}, \lambda_{k})|Ajk|^{2}$
, (3.2)

where the real function $c(\lambda,\mu)$ satisfies that

$c(\lambda, \mu)=c(\mu, \lambda)$ , $c(\lambda, \lambda)=1/\lambda$ , $c(t\lambda, t\mu)=t^{-1}c(\lambda, \mu)$ . (3.3)

Thus, only a single, continuous function $c(x)$ is enough to represent a monotone metric on a
matrix space, as far as the dimensionality is finite, which is related to an operator-monotone
function according to $\mathrm{P}\mathrm{e}\mathrm{t}\mathrm{z}[5]$ , and is used to characterize a quantum mechanical Fisher
metric [6].

We will $s$eek the same kind of representation of $\mathrm{K}_{H}(A, A)$ under condition $(\mathrm{d}’)$ . For
this purpose, let us adopt another condition $(\mathrm{d}’’)$ :

(d”)translational invariance with respect to $H$ $\mathrm{K}_{H+aI()\mathrm{K}_{H(}}B,A=B,A$).

It is straightforward to show that, under conditions $(\mathrm{d}’)$ and ( $\mathrm{d}’’\rangle$ with $H=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\lambda_{1,..,n}\lambda)$

$\mathrm{K}_{H}(A, A)=\sum_{j\leq k}c(\lambda_{j}, \lambda_{k})|Ajk|^{2}$
, (3.4)

where the real function $c(\lambda,\mu)$ satisfies that

$c(\lambda,\mu)=c(\lambda-\mu)>0$ $\lambda\neq\mu$ and $c(\lambda,\lambda)=(\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{o}\mathrm{f}\lambda)\geq 0$. (3.5)

We have just obtained a general form of Riemannian metric on a matrix space $\mathcal{M}_{n}$ under

conditions (a) $\sim(\mathrm{d}’)$ and $(\mathrm{d}’’)$ , where the quadratic quantity $|A_{jk}|^{2}$ indexed by $\frac{1}{2}n(n+1)$
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pairs $(j, k)$ represents the square of a tangent vector component.

We aim at a Gaussian-reservoir distribution on the matrix space $\mathcal{M}_{n}$ by means of
this metric with a $d(= \frac{1}{2}n(n+1))$-dimensional (complex) tangent vector. For this purpose,
let us go to the cotangent vector defined by

$y_{j,k}\equiv c(\lambda_{j}-\lambda_{k})A_{j}k$ $j\neq k$ ; $y_{j,j}\underline{=}0$ ( $c(\mathrm{O})=0\mathrm{a}ss$umed). (3.6)

Then,
$\mathrm{K}_{H}(A(y),A(y))=\sum\frac{1}{c(\lambda_{j}-\lambda k)}j<k|y_{j},k|^{2}$ , (3.7)

in which $\lambda$ represents an $n$-dimensional object variable, and $y$ a $d$-dimensional reservoir
variable.

Let us change the notation of our object variable to conform to Sec.2 and write the
result for the present distribution for random matrices:

$Pc(x,y)= \frac{1}{Z}\exp[-\frac{1}{2}jk\sum_{<}\frac{1}{c(x_{j}-X_{k})}|yj,k|^{2}]$ (3.8)

mean$(Y)=0$ , $\mathrm{C}\mathrm{o}\mathrm{v}(Y, Y)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\ldots, C(X_{j}-x_{k}))..)$ $($3.8 $a)$

i.e. $\langle y_{j,k}ym,n\rangle=c(x_{j}-x_{k})$ for $(j, k)=(m, n)$ ; $=0$ for $(j, k)\neq(m,n)$ .

In the matrix space $\mathcal{M}_{n}$ , we introduce the matrix random variable $Y$ whose elementary units
are the set of all matrix units $(e_{j,k})$ , writing

$Y= \sum_{j,k}ej,ky_{j},k$
$(y_{k,j}=y_{j_{)}}k)*$ . (3.9)

Then, on the basis of the maximum conditional-entropy principle under constraint (3.8a), the
resulting Gaussian distribution (3.8) expresses the following properties which are remarkable.

(i) statistical independence of different units

$\mathrm{f}\mathrm{o}\mathrm{r}(j, k)\neq(m,n)$ , $P(y_{j},k,y_{m,n})=P(y_{j_{)}k})\cdot P(y_{m,n})$ . (3.10)

(ii) identical distribution for all the units with off-diagonal type

$\mathrm{C}\mathrm{o}\mathrm{v}(Y^{*}Yj,kj,k)$ depends on the pair $(j, k)$ only through $x_{j}-x_{k}$ in acommon function $c(.)$ .
(3.11)

Consequently, the determinant $|V|$ of the covariance function $V(x)$ is simply the
product of all the pairs of single variance $c(x_{j}-x_{k})$ , and we can get the reduced probability
distribution for the object eigenvalue system as follows:

$P(x_{1,2}x, .., X_{n})=C_{n} \prod_{j<k}c(X_{j}-xk)^{\nu/2}$ , (3.12)
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where,

$C_{n}=[ \int_{D}\prod_{j<k}c(X_{j}-xk)\nu/2dX_{1}..dX_{n}]^{-1}$
$\nu=1,2$ and 4, $(3.12a)$

the integer $\iota/$ being the multiplicity of the real component of each cotangent vector $y_{j,k}(j\neq k)$

$\mathrm{i}$ . $\mathrm{e}$ . $\nu=1$ for real part only, $\nu=2$ for real and imaginary parts, and $\nu=4$ for four quaternion

parts if Pauli spins are involved. Also, by regarding this index $\nu$ as a continuous parameter
of inverse temperature, and apart from the pure numerical factor $\log(2\pi e)^{d}/2$ ,

free energy of the reduced system $- \frac{1}{\nu}H(x, Y)=\frac{1}{\nu}\log\int_{D}\Pi_{j<}kc(xj-\mathcal{I}_{k})^{\nu}/2dX1\cdot.dxn$

(3.13)

energy of the reduced system $- \frac{1}{\nu}H(x|Y)=n\cross\Sigma_{1<k}\langle\log C(x_{1^{-}}xk)^{/2}1\rangle P(x)$ . (3.14)

4. Standard Random Matrix Distributions

joint $\mathrm{N}$-revel distribution; Gaussian ensembles

$P_{N}(_{X,\mathcal{I}}12, .., XN)=CN\beta e^{-\frac{\beta}{2}(x}1++xN2..2)_{\prod(X_{k}}x_{j}-)^{\beta}$, $-\infty<x_{j}<\infty$ (4.1)

$C_{N\beta}=$ (see ref. [3]); $\beta=1(GOE),$ $=2(GUE),$ $=4(GSE)$ $($4.1 $a)$

joint $\mathrm{N}$-level distribution; circular ensembles

$P_{N}(X_{1}, X_{2}, ..,xN)=C_{N\beta};\square |e-xk)-i(xj1|^{\beta}j<k$ ’ $-\pi<x_{j}<\pi$ (4.2)

$C_{N\beta}’= \frac{(\Gamma(1+\beta/2))^{N}}{(2\pi)^{N}\Gamma(1+\beta N/2)};\beta=1(COE),$ $=2$ (CUE), $=4(CSE)$ $($4.2 $a)$

The above two formulas, cited from Mehta’s $\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{k}[3]$ , are now recapitulated from the Gaussian-
reservoir point of view. Namely, the factor of multiple pair-product in the $N$-level joint
probability density function (4.1) and (4.2) are just the reduced function of the form (3.12)
so that

$c(x-y)=(x-y)^{2}$ for GUE (4.3)

and
$c(x-y)=|e^{\dot{\iota}1^{x}}-u)-1|^{2}=[2\sin(X-y)/2]^{2}$ for CUE. (4.4)

We show that these are the consequence of Balian’s program, specifically, postvlate $A$ about
the Riemannian metric in the information quantity applied to matrix spaces. The reason
for this can be found in the diagonalization process of a sample matrix $H$ (hermitian) in the
bilinear form $\mathrm{K}_{H}$ , or $U(\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{y})$ in $\mathrm{K}_{U}$ (a sesqui-linear form). For the hermitian case:

$H\mapsto \mathcal{U}^{*}H\mathcal{U}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(x1, ..,xn)\equiv H_{D}$ or, $H=\mathcal{U}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(x_{1,..,n}X)\mathcal{U}^{*}$ . (4.5)

Then,

$\mathcal{U}dH_{D}\mathcal{U}^{*}+uH_{D}\mathcal{U}^{*}+\mathcal{U}HDd\mathcal{U}*=\mathcal{U}(dHD+[\mathcal{U}*HD]c\mathcal{U},)\mathcal{U}*$ ( $(\mathcal{U}^{*}\mathcal{U}=-\mathcal{U}*d\mathcal{U})$ (4.6)
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where
$H_{D}\equiv \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(x1, \mathcal{I}2, ..,xN)$ , and $dH_{D}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(d_{Xd}1,X2,$

$..,$
$d_{X)}N$ (4.7)

in the same representation, and hence

$[H_{D},dH_{D}]=0$ . (4.8)

Inserting this into eq.(l.l), we obtain

$ds^{2}=\mathrm{t}\mathrm{r}dH_{D}^{2}+\mathrm{t}\mathrm{r}[\mathcal{U}^{*}d\mathcal{U}, HD]^{2}+2\mathrm{t}\mathrm{r}\mathcal{U}^{*}d\mathcal{U}[H_{D}, dHD]=\mathrm{t}\mathrm{r}dH^{2}D+\mathrm{t}\mathrm{r}[\mathcal{U}^{*}d\mathcal{U}, HD]^{2}$ .

Hence,
$ds^{2}=\mathrm{t}\mathrm{r}dH_{D}^{2}+\mathrm{t}\mathrm{r}[H_{D},\mathcal{U}^{*}d\mathcal{U}]^{2}$ . (4.9)

Accordingly, we have two ways of representing the metric of $dH$ ; namely, in the original fixed
representation(called fixed frame) and the $H$-diagonal representation (called moving frame).
For the hermitian case,

$d_{S^{2}}= \sum_{n}(dHnn)^{2}+2\sum_{m<n}|dH_{mn}|^{2}$ (fixed frame) (4.10)

$= \sum_{j=1}dx^{2}j+2\sum_{j<k}(xj-x_{k})^{2}|\Omega jk|^{2}$
(moving frame) (4.11)

where
$\Omega\equiv \mathcal{U}^{*}d\mathcal{U}=-d\mathcal{U}^{*}\mathcal{U}$. (4.12)

Similarly, for the unitary case($\mathrm{w}\mathrm{h}\mathrm{i}_{\mathrm{C}\mathrm{h}}$ may reduce to the hermitian case by setting $U=U_{0}e^{H}\dot$ ),

$ds^{2}= \sum(ndU_{nn})^{2}+2\sum_{m<n}|dU_{mn}|^{2}$
(fixed frame) (4.13)

$= \sum_{i=1}dx^{2}i+2\sum_{i<j}|e^{i(x_{\mathrm{j}}-})x_{k}-1|^{2}|\Omega_{ij}|^{2}$
(moving frame) (4.14)

where $\Omega$ is the same as in (4.12). Therefore, by identifying $2|\Omega_{jk}|^{2}$ with the square of the
tangent vector component $|A_{jk}|^{2}$ , we get the expressions of the $\mathrm{c}$-function $\mathrm{e}\mathrm{q}\mathrm{s}.(4.3,4)$ .

5. Hamiltonian Formalism and Extended Distribution

A Riemannian metric form, quadratic with respect to a tangent vector, defines a classical
mechanics, and the foregoing presentations (4.11) and (4.14) are adapted to such an expec-
tation which may be called”level dynamics”. Its motivation to the present Gaussin-reservoir
distribution should be that the random variable that corresponds to the cotangent vector
is expected to have a conjugate nature to velocity vriables: this may be illustrated by the
following chart:

tangent $\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\Gammaarrow \mathrm{c}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{t}$ vector
$\mathrm{v}\mathrm{e}1_{\mathrm{o}\mathrm{c}}\mathrm{i}\mathrm{t}\mathrm{y}arrow \mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{m}$

angular $\mathrm{v}\mathrm{e}1_{\mathrm{o}\mathrm{c}}\mathrm{i}\mathrm{t}\mathrm{y}arrow \mathrm{a}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$ momentum
Lagrangean $\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{C}\mathrm{r}\mathrm{i}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}arrow \mathrm{H}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{t}_{0}\mathrm{n}\mathrm{i}\mathrm{a}\mathrm{n}$description

We outline the framework more precisely.
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5.1. Conjugate variables; an adequate reservoir system

$\tau=\frac{1}{2}\sum_{j}(\frac{dx_{j}}{dt})^{2}+\sum_{j<k}(X_{j}-x_{k})^{2}|Ajk|^{2}$
$A_{jk}\equiv\Omega_{jk}/dt$ (angular velocity) (5.1)

for a hermitian level dynamics, and

$T= \frac{1}{2}\sum_{j}(\frac{dx_{j}}{dt})^{2}+\sum_{<jk}|e^{i(x_{j}-x_{k}}-)1|^{2}|A_{jk}|^{2}$
$A_{jk}\equiv\Omega_{jk/dt}$ ($s$ame as above) (5.2)

for a unitary level dynamics. (remark. The relation between $|\Omega|^{2}$ and $|A|^{2}$ is factor

2 different from the preceding section for the purpose of introducing Poisson brackets.)

conjugate momentum and angular momentum For the hermitian case

$p_{j}= \frac{dx_{j}}{dt}$ , $.M_{jk}.=-2(x_{j}-x_{k})^{2}A_{jk}$ , (5.3)

and for the unitary case

$p_{j}= \frac{dx_{j}}{dt}$ , $M_{jk}=-2[2\sin(xj-X_{k})/2]^{2}A_{jk}$ . (5.4)

We have made a natural introduction of the angular momentum $M$ as the conjugate

momenttum to the angular velocity: in matrix form

$M=-2[H_{D}, [H_{D}, A]]$ (for the hermitian case) (5.5)

$=-2[U_{D}^{*}-, [U_{D},A]]$ (for the unitary case). (5.6)

It can be shown that the components of $M$ satisfies Poisson bracket$s$ relations as
regards the Lie algebra for $N$-dimensional (real or compex) $\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}[7]$ (see below). One
can adopt another definition of the angular momentum by omitting the factor 2, thus

$F= \frac{1}{2}M=-[H_{D}, [H_{D}, A]]$ or, $-[U_{D}^{*}, [UD, A]])\equiv(fjk)$ ;

$f_{jk}=-(X_{j}-x_{k})^{2}A_{jk}$ or, $-[2\sin(x_{j}-x_{k})/2]2A_{jk}$ . (5.7)

Hamiltonian function In terms of this form of the angular momentum $F=(f_{jk})$ , we can
write the level dynamics Hamiltonian function as

$\mathcal{H}=\frac{1}{2}\sum_{j}p_{j}^{2}+\frac{1}{2}\sum_{j\neq k}\frac{|f_{jk}|^{2}}{(x_{j}-x_{k})^{2}}$ (the hermitian case) (5.8)

and

$= \frac{1}{2}\sum_{j}p_{j}^{2}+\frac{1}{2}\sum_{j\neq k}\frac{|f_{jk}|^{2}}{4\sin^{2}(X_{j}-x_{k})/2}$ (the unitary case). (5.9)

We can now observe that the multi-dimensional angular momentum $(f_{jk})$ provides
the relevant reservoir variable $Y$ for the Gaussian distribution $(3.8)\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}C$-function (4.3) or
(4.4). What is significant here is the Hamiltonian function so derived actually describes the
level dynamics by means of equations of motion $\mathrm{b}\mathrm{a}s$ ed on Poisson brackets (P.b.), as discussed
next.
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5.2. Origin of Poisson brackets

In general, $2f$ ( $f=\mathrm{t}\mathrm{h}\mathrm{e}$ degree of freedom) coordinates form a smooth manifold with exterior
derivatives, called symplectic manifold $\lambda 4^{2f}$ , where $s$ymplectic differential forms with symbol
A play a $\mathrm{b}\mathrm{a}s$ic role.
symplectic 1-form $\omega^{(1)}=\sum p\alpha dq_{\mathit{0}}$

$\omega^{(1)}=\mathrm{T}\mathrm{r}VdH=\sum P_{nn}dH_{nn}+\sum_{m<n}P_{mn}dH_{mn}$ (fixed frame) (5.10)

$= \sum p_{i}dXi+\sum_{i<j}Mij\Omega_{i}j$
(movingframe) (5.11)

symplectic 2-form $\omega^{(2)}=\sum dp_{\alpha}$ A $dq_{\alpha}=dv\mathrm{t}1$)

( $dx$ A $dy=-dy\wedge dx,$ $dx\wedge dx=0,$ $(dx\wedge dy)$ A $dz=d_{X}$ A $(dy$ A $dz),$ $d(dx)=0$)

This is the canonical -form by which the canonical Poisson bracket (P.b.) relations are
given to the 2$f$ coordinates, making them canonical coordinates. An important $s$ubject here
is to establish the P.b. relations involving the $f$ non-canonical coordinates $\{M_{\alpha}\}$ , each $M_{\alpha}$

being conjugate to $\Omega_{\alpha}$ . Our answer can be found in the following statement.
Proposition Let $\mathrm{G}$ be the adjoint representation of a Lie algebra on a matrix space,

generated by the basis set $\{E_{\mathrm{O}}\}(\Omega=\Sigma_{\alpha}\Omega\alpha E\alpha)$ satisfying the structure relations

$[E_{\alpha}, E_{\beta}]= \sum_{\gamma^{=}1}^{f}c_{\alpha,\beta\gamma}^{\gamma}E$ . $\alpha,\beta=1,$
$..,$

$f$. (5.12)

There exists an operation $\{$ , $\}$ on the symplectic manifold $\mathcal{M}^{f}$ ; $C^{\infty}(\mathcal{M}^{f})\cross C^{\infty}(\mathcal{M}^{f})arrow$

$C^{\infty},(\mathcal{M}^{f})$ , cdled Berezin bracket for $F$ and $G\in C^{\infty}(\mathcal{M}^{f})$ , given by

$\{F, G\}=-\sum_{\gamma 0\beta},C_{\alpha,\rho^{M_{\gamma}}}^{\gamma}\frac{\partial F}{\partial M_{\alpha}}\frac{\partial G}{\partial M_{\beta}}$ , in particular, $\{M_{\alpha}, M_{\beta}\}=-\sum C_{\alpha\beta\gamma}M\gamma\gamma$ . (5.13)

This generates another representation (called the coadjoint $repreSentati_{\mathit{0}}n$) $\mathrm{o}\mathrm{f}$ the algebra.
The Berezin $\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{k}\mathrm{e}\mathrm{t}[8]$ is an example of more general form of binary operations $\{$ , $\}$ on
$\mathcal{M}^{2f}$ , $\omega^{\mu\nu}\partial_{\mu}F\partial_{\nu}c$ (in the ten$s$or notation) with a skew symmetric, nondegenerate $2f\cross 2f$

tensor $\omega^{\mu\nu}$ ;

$(\omega^{\mu\nu})=(\omega_{\mu\nu})^{-1}$ where $\omega_{\mu\nu}=\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}_{\mathrm{C}}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}$ tensor of $\omega^{(2)}$ ; $dv^{\langle 2)}=0$ ($\omega^{(2)}$ closed). (5.14)

The closedness of $\omega^{(2)}$ is equivalent to the Jacobi identity satisfied by the operation. We
outline proof of the above Proposition by computing $\omega^{(2)}=\omega^{(1)}$ given by $\mathrm{e}\mathrm{q}.(5.11)$ in the
moving frame. A direct proof that the Berezin bracket satisfies the Jacobi identity is given
in a monograph by Fomenko and $\mathrm{T}\mathrm{r}\mathrm{o}\mathrm{f}\mathrm{i}\mathrm{m}\mathrm{o}\mathrm{v}[8]$ .
symplectic 2-form in the moving frame

$d( \sum_{j}p_{j}dx_{j}+\alpha=(j<k\sum_{)}M_{a}\Omega_{\alpha}\mathrm{I}=\sum_{j}dp_{j}\wedge dx_{j}+\sum_{\alpha}(dM_{\circ}\wedge\Omega_{\alpha}+M_{a}d\Omega_{\alpha})$ . (5.15)

But we have $d\Omega=-\Omega\wedge\Omega$ which is called Maurer-Cartan equation [7] as can be derived from
the definition $(4,12)$ i.e. $d\Omega=-\mathcal{U}^{*}$ ( $W$ A $\Omega$) $=-(\mathcal{U}^{*}d\mathcal{U})$ A $\Omega=-\Omega\wedge\Omega$ . Hence in matrix
forms,
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$(\omega_{\mu\nu})=\oplus$

a direct sum of two symplectic matrices; first, $f(=N)$ dimensional elementary one for the
vector $(dx, dp)$ and second, $f(= \frac{\nu}{2}N(N-1))$ dimensional non-elementary one for the vector
$(\Omega, dM)$ . The inverse of the above matrix yields

$(\omega^{\mu\nu})=\oplus$

providing the coefficients of the Berezin bracket from the nonvanishing $C$ part: $\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{e}_{J}1\mathrm{y}$,

by inserting $\Omega=\Sigma\Omega_{\alpha}E_{\alpha}$ into the matrix -form $\Omega$ A $\Omega$ to get $\mathrm{t}\mathrm{r}M\Omega$ A $\Omega=\frac{1}{2}\Sigma_{\alpha p^{\Omega}\alpha}\wedge$

$\Omega_{\beta}\mathrm{t}\mathrm{r}M[E_{\alpha}, E_{\beta}]$ , and by virtue of $\mathrm{e}\mathrm{q}.(5.12)$ the coefficient of $\Omega_{\mathrm{o}}\wedge\Omega_{\beta}$ in $\mathrm{t}\mathrm{r}Md\Omega$ is equal to
$- \sum_{\gamma^{C_{\alpha,\beta}^{\gamma}}}M_{\gamma}$ , where $M= \sum M_{\gamma}E_{\gamma}$ . Note that the Berezin bracket for $(f)’ \mathrm{s}$ is just one
half of that for $(M)’ \mathrm{s}$ in coefficients: $c_{\alpha\beta}^{\gamma} arrow\frac{1}{2}c_{0\beta}^{\gamma}$ , in $\mathrm{e}\mathrm{q}.(5.13)$ .

Expression (5.15) then yields all the necessary P.b.’s such that (a) $(x,p)’ s$ are canon-
ical P.b., (b) $(f)’ \mathrm{s}$ are Berezin brackets and, (c) P.b.’s between $(x,p)’ s$ and $(f)’ s$ vanish.
Thus, the foregoing discussion now establishes what is the precise meaning of our object and
reservoir variables:

(object system) $x=(x_{1},x_{2}, ..,x_{N})$ ; eigenvalues of a hermitian $H$ , or, those in $U=U_{0}e^{iH}$ .

(reservoir system 1) $p=(.. \frac{dx_{j}}{dt}..)$ . These two $\mathrm{s}\mathrm{y}s$ tems constitute a canonical system where
the usual form of canonical P.b. relations hold.

(reservoir system 2) $f_{jk}(j\neq k)$ ; all the off-diagonal elements in $H$-diagonal reprsenta-
tion, satisfying the angular-momentum P.b.’s(the Berezin bracket relations) within the
system, but its mechanical independence from the object (and the reservoir 1) system
holds:

$\{(x,p), f_{jk}\}=0$ . (5.16)

The Hamiltonian level dynamics is the one specified by the equations of motion $\dot{\eta}=$

$\{\eta, \mathcal{H}\}$ , where $\eta$ stands for $x,p$ , and $f[9]$ . Roughly speaking, for any matrix, expressed in
the representation in which a given hermitian $H$ is diagonalized, all those matrix elements
which are off-diagonal with respect to this representation (i.e. those matrices which are non-
commuting with $H$) act, in the sense of the above dynamics, as reservoir variables against
the eigenvalue system of $H$ .

5.3. Most general form of the reduced distribution for the object system

We now come to the question: what is the most general form of the (reduced) eigenvalue
system distribution ? We have described the answer elsewhere in detail $[9],[10]$ . Namely, in
terms of a real, non-negative parameter $a$ ,

$c(x-y)= \frac{(x-y)^{2}}{1+a^{-2}(X-y)2}$ (the hermitian case) (5.17)
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$c(x-y)= \frac{4\sin^{2}(x-y)/2}{1+a^{-2}4s\mathrm{i}\mathrm{n}2(_{X}-y)/2}$ (the unitary case). (5.18)

These are the most general covariance function for a single reservoir variable $y_{\alpha}=\sqrt{2}f_{\alpha}$

under conditions (a) $\sim(\mathrm{d}’)$ and $(\mathrm{d}’’)$ in the Hamiltonian description (5.8) and (5.9): it
answers the question about the most general type of Riemannian metrics allowed by the
level dynamics, as on the following reasoning.

$\mathrm{a}$. An equilibrium distribution of the Hamiltonian system is canonical type with candidates
of every constant of motion in the exponential, and the search for the maximum entropy
may be reduced to that for possible quadratic constants of the angular momentum $(f_{a})$ .

$\mathrm{b}$ . There exist only two quadratic constants of the above nature i.e. the Hamiltonian func-
tion and the Identity form as regards $(f_{\mathfrak{a}})$ .

6. A Concrete Example

The best illustration of the argument in the preceding section would be provided by way of
examples, and for this purpose let us see again an old paper; A Family of One-Parameter
Ensembles of Unitaries by $\mathrm{G}\mathrm{a}\mathrm{u}\mathrm{d}\mathrm{i}\mathrm{n}\iota 11$ ]. It is worthwhile to cite its Abstract:

A oneparameter family of unitary matrix ensembles is studied. We define the en-
semble $E_{2}(z)$ of unitary random matrices, whose eigenvalues are $\epsilon_{j}=exp(2\pi i\varphi_{j})$ , by
the following joint probability density:

$P( \epsilon_{1}\epsilon_{2}\ldots\epsilon_{n})d\varphi 1d\varphi 2\cdot.d\varphi_{n}\propto\prod_{j<k}|\frac{\epsilon_{j}-\epsilon_{k}}{\epsilon_{j}-z\epsilon_{k}}|2d\varphi_{1}d\varphi 2\cdot.d\varphi_{n}$, $0\leq\varphi\leq 1$ . (6.1)

It realizes a continuous interpolation between the distribution of the eigenvalues in the
Dyson unitary $\mathrm{e}\mathrm{n}s$emble $E_{2}$ for $z=0$ and the uniform distribution of $n$ random points
on the unit circle for $z=1$ . The thermodynamic analogy with a circular or linear
classical repulsive gas at temperature $\beta^{-1}=1/2$ is developed. The isotherm $\beta=2$

and the corresponding virial series are exactly calculated. All the correlation functions
are given in the limit of an infinite linear gas or of an infinite series of levels. This
model shows the short-range repulsion effect between eigenvalues but no long-range
crystalline order, which is a $s$trong characteristic of all ensembles so far studied.

For our present purpose, we show that Gaudin’s model (6.1) is exactly the parameter $a$

dependent distribution W.lith covariance function (5.18): this is shown as follows. Noting
that

$|e^{i2\pi\varphi}-1|^{2}=4\sin^{2}2\pi\varphi/2$ and $|e^{i2\pi\varphi}- \mathcal{Z}|^{2}=4_{Z}(1+\frac{1}{4z}(\mathrm{I}-Z)^{2}\sin^{2}\pi\varphi)$,

we can write the right hand side of (6.1) as $d\varphi_{1}d\varphi_{2}..d\varphi n\cross\Pi_{j<k}C(\varphi j-\varphi_{k})$ , where

$c( \varphi_{j}-\varphi_{k})=\frac{\sin^{2}\pi(\varphi_{j}-\varphi_{k})}{\sinh^{2}\alpha+\sin\pi(2-\varphi k)\varphi j}$ , (6.2)

and thus, in $\mathrm{e}\mathrm{q}.(5.18)$ ,

$a^{2}=\sinh^{2}\alpha$ , with $z=e^{-2a}$ in (6.1). $($6.2$a)$
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Therefore, the model offers an exact interpolation scheme between the uniform distribution
$(a=0)$ corresponding to Poisson statistics and that of the circular unitary ensemble $(aarrow\infty$ ,

if properly normalized, CUE). This scheme of Poisson-circular interpolation by mean$s$ of

parameter $a$ is expected to hold for the other classes(i.e. COE and CSE), if the index 2 is
replaced by $\beta$ ( $\nu$ , in the present notation) $=1$ and 4 in the general expression (3.12).

Furthermore, as Gaudin stated in the above Abstract, by means of a scaling of the

angular variable $\varphi$ to $x$ such that

$\varphi=\frac{x}{L}$ , $0\leq x\leq L$ , (6.3)

and taking an appropriate limit

$Larrow\infty$ with $n/L=\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}$, (6.4)

called themodynamic limit, the model becomes a linear gas model with short-range repulsion
between the gas atoms, where the variance function $c(x-y)$ reduces to (5.17).

Some significant results contained in Gaudin’s paper are listed.

1. Exact form of the partition function

$Z_{n}( \alpha \mathrm{I}=\int^{1}0^{\cdot}.\int^{1}0\frac{\sin^{2}\pi(\varphi j-\varphi_{k})}{\sinh^{2}\alpha+s\mathrm{i}\mathrm{n}^{2}\pi(\varphi_{j}-\varphi k)}d\varphi_{1}..d\varphi n\prod_{kj<}=n!e^{-}n\langle n-1)\alpha_{\prod_{=k}\frac{1-e^{-2\alpha}}{1-e^{-2k\alpha}}}n1^{\cdot}$

2. Explicit expression of the 2-point correlation(and cluster) function

$r_{2}(s)=1-| \int_{0}^{1}$ dxexp $[i \frac{s}{a}\log(e-2\pi ax1)]|^{2}$ ( $Y_{2}(S)=| \int_{0}^{1}$ dxexp $[i \frac{s}{a}\log(e^{2\pi ax}-1)]|^{2}$ ).

( $\rho\equiv \mathrm{l}\mathrm{i}\mathrm{m}n/L=1$ , i.e. the unfolding scale is used.)

3. Explicit expression of the -point form factor($\mathrm{F}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{r}$ transform of $\mathrm{Y}_{2}(S)$ )

$b(k)= \frac{1}{2sinh(|k|_{\mathit{0}}/2)}(^{\frac{e^{|k|}a/2}{2\pi a}\log[(}1+e-|k|aa-1)]-e^{-|k})e^{2\pi}|a/2$ .

These expressions enable us to get several useful $\mathrm{r}\mathrm{e}s\mathrm{u}\mathrm{l}\mathrm{t}_{S}[10]$ . Among them, we exhibit here
the information quantities $H[X, Y],$ $H[Y|X]$ and the entropy $H(X)$ (per atom) of the linear
gas of Gaudin as follows.

free energy From the partition function 1,

$- \frac{\beta}{n}F=\frac{1}{n}\log n!-(n-1)\alpha+\log(1-e^{-})2\alpha-\frac{1}{n}\sum_{k=1}\log(1-e-2ka)n$ , $\beta=2$ .

For $n>>1$ , the summation is replaced by an integration.

energy We use the formula for the average of a quantity $\frac{1}{n}\Sigma_{j},kf(Xj-x_{k})$ by means of
the two-point form factor $b(k)$ and the Fourie transform of $f;\mathcal{F}_{f}(k)$ , as follows.
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$\lim_{narrow\infty}\langle\frac{1}{n}\sum_{j\neq k}f(xj-Xk)\rangle=\mathcal{F}_{f}^{-}(\mathrm{o})-\frac{1}{2\pi}\int_{-\infty}^{\infty}\tau_{f}(k)b(k)dk$

We show the average of the singlepair (potential) energy function, $V(x-y)$ which is
given by $\frac{1}{2}\log(1+\frac{a^{2}}{(x-y)^{2}})$ , and

$\mathcal{F}_{V}(k)=\frac{1}{2}\int_{-\infty}^{\infty}\log(1+a/2X^{2})exikd_{X}=\frac{\pi(1-e-a|k|)}{|k|}$.

This together with the two-point form factor $3 now yield the necessary ingredient$s$ .

results
$- \frac{H(X,Y)}{n}=\frac{2}{n}F=\pi a+1-\log\frac{2\pi a}{1-e^{-}2\pi a}-\frac{1}{\pi a}\int_{0}^{\pi a}\frac{2kdk}{e^{2k}-1}$. (6.5)

$- \frac{H(Y|X)}{n}=\frac{2}{n}\langle U\rangle=\pi a-\int_{0}^{\infty}\frac{dk}{k}\{\frac{2}{2\pi a}\log[1+(e^{2\pi a}-1)e-k]-e^{-}\}k$ . (6.6)

$\frac{H(X)}{n}=\log(\frac{2\pi a}{1-e^{-}2\pi a})-1$

$+ \frac{1}{\pi a}\int_{0}^{\pi a}\frac{2kdk}{e^{2k}-1}-\int_{0}^{\infty}(^{\frac{1}{2\pi a}\mathrm{l}\mathrm{g}[()}01+e^{2\pi}-a1e^{-k}]-e^{-k})\frac{dk}{k}$. (6.7)

7. Concluding Remark

A. Fig.1 shows the quantity $\frac{1}{n}H(X)$ vs $a$ , representing a degree of irregularity contained
in a random sequence of eigenvalues(per $\mathrm{l}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}$ ) $:\mathrm{i}\mathrm{t}\mathrm{s}$ negative value indicates an informa-
tion gain by the sequence compared with the fully uncorrelated (Poisson) sequence.
$\mathrm{D}\mathrm{y}s\mathrm{o}\mathrm{n}[12]$ computed this quantity in the pure CU $(aarrow\infty)$ limit, showing the result
$\frac{1}{n}H(X)=-\gamma(\mathrm{E}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{r}’ s\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t})-0.577$ . Formula (6.7) agrees with this prediction.

B. statistical independence and identiclal distribution of all the matrix units are the
two strictly retained conditions in the present framework of random matrix $\mathrm{d}\mathrm{i}s$tri-
butions, and it is not strange that no long-range cristalline order of level systems is
predicted by this framework, as Gaudin stated. In the recent development of random
matrix theories for application to mesoscopic $\mathrm{p}\mathrm{h}\mathrm{y}s\mathrm{i}\mathrm{C}\mathrm{s}[2]$ , possible modifications should
be necessary in order to describe ”localization phenomena”, a big current intrest.
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Fig.1 Information-loss curve for the Gaudin model of Poisson-CU ensembles.

220


