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9-PROBLEMS AND SOME APPLICATIONS
RIGKFHBEFE LiEH= (Kenzo ADACHI)

0. Preliminaries.

Let D be a bounded domain in C® with C! boundary. We denote by C1»* (8D x
D) the space of all functions in C* (8D x D) which are C* in the second variable.
A (1,0)-form W =" =1 W; (€, 2)d(; is called a generating form with coefficients in
CL°(dD x D) if W satisfies the following condltlons (1) and (2) |
(1) w;({,2) € CH°(dD x D).

(2) 23_1 w;(C, 2)(¢ — %) = 1.
We define ‘

=l-2P, B=", I=p1

The homotopy form on (0D x I) x D associated to W is defined by

W (A 2) = AW ((,2) + (1 — NB(C, 2).
Cauchy-Fantappie kernel Qq(W) of order ¢ generated by W is defined by
(—1)aa-1)/2 |

Qq(W) (2mi)™

(n;I)W/\((?“W)” —IA@,W), 0<qg<n-—L1

24(W) is defined in the same way, with W instead of W. We define K, = Qq(B).
Then we have the Cauchy-Fantappié integral formula(cf. Range[22]):

Theorem 1. For 1 < q <mn, define the linear opemtor :
TV : Coq(D) = Coq-1(D)
by
| T f = fAQe (W) - /f/\Kq 15

ODxI
and set TV =TX, =0. Then the following holds:

(a) Fork=0,1,---,00, szEC(’fq(D)ﬂCOq(D), then TWfEC(’ch (D).
(b) F0r0<q<n szEC’OQ(D) then

f:LDfAQq(W)+5T;Vf+T£15f on D.
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Remark. If W = 2?21 w;(C,2)d¢; is holomorphic in z, then Qu(W) = 0 for
q > 1. In this case, if f is a Oclosed (0, q)-form, then it holds that f = O(TY f).

In 1965, Hormander obtained L? estimates for solutions of the d-problem in
bounded pseudoconvex domains in C™. On the other hand, LP and Holder estimates
for solutions of the O-problem using the above integral formula have been studied
since 1970. We begin with the J-problem in strictly pseudoconvex domains in C™.

1. O-problems in bounded strictly pseudoconvex domains in C" with
smooth boundary.

Theorem 2. (Henkin[10],Ramirez[19]) Suppose D € C™ is strictly pseudoconvex
with C*®° boundary. There are a neighborhood U of 0D, positive constants ,c and
v, and a function g € C*°(U x Dg) with the following properties:

(i) ¢(¢, 2) is holomorphic in z on Ds.

(i) ¢9(¢,€)=0 forCeU.

(iii) Reg(¢, z) > 0 for (¢, 2) € U x Dg with r(¢) — r(2) +c|¢ — 2/2 > 0.

(iv) On {(¢,2) € U x Dgs : | — 2| < v} there is a function A € C*(U x D)

with |A(C, 2)| > %, so that g = FA, where F is the Levi polynomial.

Using Hefer’s theorem, there are functions g; € C*°(U x Ds), with g;(¢,-) €
O(Ds) such that

9(¢,2) =3 gi(¢,2)(¢ —2) on U x Ds
7j=1

We define

WHR _ & gj(§7z)d N
2 e

>

Then W#HZE is called the Henkin-Ramirez generating form. Using the above Henkin-
Ramirez generating form, the following theorem was obtained(cf. Henkin[10], Kerz-
man[13], Lieb[16], Henkin-Romanov[11], Grauert-Lieb[9], Range-Siu[25]).

Theorem 3. Let D € C™ be strictly pseudoconver with smooth boundary. For
1 < g <n, there are linear operators

Sq: L§4(D) = L§ 41(D)

and a constant C with the following properties:
(@) 18ef ey < CllfllLrpy  for 1< p<oo.
(i) [1SqllaL 00y < Cllfllzeo(py-
(iii) For k=0,1,2,---, if f € L} (D) N C*(D), then S,f € C¥ _1(D).
(iv) If f € C3 ,(D)N L} (D) and 8f =0, then 8(Syf) = f on D.
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Krantz[14] obtained the optimal Lipschitz and LP estimates for 0 in strictly
pseudoconvex domains: '

Theorem 4. Let D be a bounded strictly pseudoconver domain with CS boundary.
Let A?S 1)(D) be the space of all 8-closed (0, 1)-forms f whose coefficients are C™in

D. Then there is a linear operator
H : A%3)(D) — C=(D)

satisfying OHf = f. Moreover Hf satisfies

@) [[Hfllpersvsanin-e < Ael|fllzr for small enough
(i) ifl<p<2n+2, then ||Hf||La < Ap||fllee, where

(i) if2n+2<p< oo, then ||Hfl|a, < Apllfllzr,a =3

e>0
l—l___l
g p 2n42
_._'i'_

For i € {1,---,N}, we denote by D; a strictly pseudoconvex open sets in C*
with C? boundary. Let p; be a defining function for D;. For sufficiently small §; > 0
we denote V2 = {—6 < p;(2) < 6}. we assume that for 1 < iy < iy <--- <i; < N,
dpiy,dpiy, - -+ ,dp;, are R-linearly independent at all points of Vg N sz NV
We set D = ﬂf;lDi. Then Menini[17] proved the following:

Theorem 5. Let f € Lg (D)(1 < g <n,1<p < o0) be O-closed. Then there
exists a kernel K such that if one defines on D, T, f(2) = cqn fD f(O NK(,2)
then (1, f) = f. Moreover

(i) for 1 <p< o0,

Ty L7

(0, )(D) ~_) Ls,q—l(D)

is a bounded linear operator 'where =1 >+ 1 1+n’ 0<7< 33 mf(No Y
where Ny is the mazimal number of the common intersections,
- (i) forp=00

p
Ty L(o)

s a bounded linear operator for any € > 0.

(D) — AG2~5,(D) |

2. J-problems in ¢-convex domains in a complex manifold.

Theorem 6. (Fischer-Lieb[7]) Let X be a complex manifold and let D € X be a
strongly q-conver domain (in the sense of Andreotti-Grauert) with C® boundary.
Then there exists a constant K with the following properties:
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For each_g-closed (0,7)-form 3 on D with r > q there exists a (0,7 — 1)-form «
on D with 0a = 8 and || < K|f].

Let X be an n-dimensional complex manifold. D € X is called a strictly g-convex
C? intersection if there exists a finite number of real C? functions py,--- ,pn in a

neighborhood U of D such that
D={ze€U:pj(z) <0 for 1<j<N}

and the following condition is filfilled: if z € 0D and 1 < k; < --- < k; < N with
Pk (Z) == Pr (Z) - 07 then

dps (2) -+ N dpy () # 0

and, for all Aq,--- ,\; > 0 with \;{ +---+ A\; = 1, the Levi form at z of the function
APk, + o+ Aipg,

has at least ¢+1 pbsitive eigenvalues. D is called completely g-convex if there exists

a real C? function ¢ on D whose Levi form has at least g + 1 positive eigenvalues
at each point in D and such that

{zeD:p(z)<C}eD foral C>0.

Let F be a holomorphic vector bundle over X. Denote by Bg,r (D,E),>0,7r =
0,1,--- ,n, the Banach space of F-valued continuous (n,r)-forms f on D such that

sup || (2)||[dist(z, 8D)) < oo,
zeD .

and denote by Cf;’r(D_, E),0<a<1,r=0,1,---,n, the Banach space of F-valued

(n,r)-forms which are Holder continuous with exponent o on D. In this setting,
Laurent-Thiébaut-Leiterer[15] proved the following:

Theorem 7. Let D @ X be a strictly q-conver C? intersection and completely
q-convex. Then: ‘

(i) If0<pB < %, then there exist linear operators
T, : B% (D,E)Nkerd — Noce<1/2-sCnt (D, E),

n —q < r < n, which are compact as operators from BS,,,(D, E) Nkerd to
each Ci{f:f“s(ﬁ, E),0 <e<1/2— (3, and such that

dT,f = f
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foralln —q <r <n and f € B (D, E) Nkerd.
(i) If1/2 < B < 1, then there exist linear operators -

T, : B (D, E)Nkerd — Noee BEYY%(D, E),

nrl

n —q < r <n, which are compact as operators from Bf (D, E) Nkerd to
each BP1e~ 1/2(D E),e >0, and such that ‘

n,r—1

de f

foralln~q§r§nandf€ (DE)ﬂkerd

3. J-problems in bounded weakly pseudoconvex domains in C".
In the case of weakly pseudoconvex domains thére are several results in C2,

Thoerem 8. (Range[21]) Let D C C? be a bounded conver domain with real an-

alytic boundary. Then there are positive constants o and K such that for every
bounded d-closed f € C§ (D) there is u € C1(D) such that Ou = f and

[u(2) —u(z)| < K||fllpe(pyl2 = 2|%, 2, 2 €D.

Theorem 9. (Show([26]) Let D be a pseudoconver domain in C? of uniform strict
type m. Let f be a continuous (0,1)-form on D and Of = 0, then there exists a
function u € Aq /m(ﬁ) such that Ou = f and u satisfies the following estimates:

@) Mullpr oy < el fllLrypy + 1 fllz1aDy), ‘

(i) if p =1, then |[u|fm+2r/(mi1)— —p) < c||fllLropy  for every small e > 0,

(iil) o1 <p<m+2, then ||ul|Leap)y < cpl||fllLrap) where ;11 = % - 7,;1;5;

(iv) & p=m~+2, then ||ullLasp) < ¢pllfllzeapy  for all g < oo,

(V) fm+2<p< oo, then [[ulla,,,._miz)mp(@D) < CprHLv(aD),

(vi) HUHAP/ D) < ol fllLe(apy  for every 1 < p < oo.

Theorem 10. (Range[23]) Let D be ' a smoothly bounded pseudoconver domain in
C? of finite type m, and let f € C§,1(D) be d-closed. Then for every n > 0 there is
a solution u(™ of du = f on D which satisfies

[ (2) —ul (w)| < Cyl|fl|oo]z — w] /™

for z,w € D.
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Theorem 11. (Polking(18]) Let D € C? be conver with C? boundary. Then there
is an integral solution operator T' for @ on D such that || Tf||z»(Dy < CpllfllLe(py
foralll < p< oo.

Theorem 12. (Range[24]) Let D € C? be conver with C? boundary. Then there
is an integral solution operator T' for 0 on D such that

() |Tf|aap) < Calflao(p) for all f with df =0 and all a > 0.
(i) ITfllemow) < ClifllLw(py-

Now we study the uniform and L? estimates for solutions of the J-problem in

pseudoconvex domains which may be of infinite type.

Let ¥ € C?%([0,1]) be a real valued function satisfying

(A) ¥(0)=0and ¥(1) =1.

(B) ¥'(t) >0, 0<t<1,

(C) ¥'(t) +t¥”(t) >0, 0<t<1.

(D) There exists 7 € (0,1) such that ¥”(t) >0, 0<t<T.

Define

n—1
Dy ={z€C":|z|<1,j=1,---,n, Z 1212 + ¥(|2,)%) < 1}.
j=1
For a > 0, define ¥, (t) = eexp(—1/t*). Then ¥, satisfies all conditions (A)-(D).
In this case the domain Dy _ is not of finite type.

Theorem 13. (Adachi-Cko[2]) Let f € L§ (Dy), 1 < p < 0o, be d-closed. If
fol | log U(s)|s~2ds < 0o, then there is a solution v of du = f on Dy such that

||'U'HLP(D\1,) < C(p)HfHLP(D\p)-
where the constant c(p) is independent of f.

Remark. In case n =2 and p = oo, Theorem 13 was obtained by Verdera[28].

4. 0- problems in ellipsoids.

Define

n

Dlz{zeC":ZIzi

=1

o<1},

Dy ={z2=1(21,"-" ,2n): Z(azf‘ +y;) < 1,z; = z; + iy},
=1

where m;, [; are positive even integers. We set
ki = sup {m;}, k2= sup {inf{L, m;}}.

1<i<n 1<i<n
We have the following:
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Theorem 14. (Range[20]) For each o < 1/k1, there exists a constant Co such that
for every bounded, 0-closed (0,1)-form f on D1, there exists a a-Holder continuous
functionu on Dy such that du = f and ||u||a.(D:) < CallfllLeo(py)-

Theorem 15. (Diederich-Fornaess-Wiegerinck[5]) There exists a constant C' such
that for every bounded, 8-closed (0,1)-form f on D3, there exists a a = 1/ky-Hélder
continuous function u on Do such that Ou = f and ||ul|a (p,) < Cl|fl|Leo(Ds)-

Remark. Diederich, Fornaess and Wiegerinck pointed out in their paper that The-
orem 14 is also true in case o = 1/ky.

Theorem 16. (Chen-Krantz-Ma[4]) Let D, be the complez ellipsoid defined above.
Then for every O-closed (0,1)-form f with coefficients in LP(Dy), there ezisis a
function u on D; such that Ou = f, and u satisfies the following estimates:

() ifp=1, then ufful > t} < C{l|fllz1 (o)} for allt >0, where X = bioi2

kin+1’
(i) if 1 <p < kin +2, then ||[ul|La(p,) < CpllfllLe(D), where 7 = ;1; ~ Ty
(iii) f p = kin +2, then ||ullLe(p,) < CpllfllLe(py) for all g < oo
(IV) ifp>kin+2, then ||u||Aa(D1) < CPHfHLP(D1)’ where & = 3 — (n + kl)

We give the results obtained by Fleron[8]. Ho[12] obtained similar results in the
case where D is a complex ellipsoid.

Theorem 17. (Fleron[8]) Let 1 < ¢ <n—1. Let D be a real or complex ellipsoid.
Suppose that A9 is the mazimal order of contact of the boundary of the ellipsoid
D with q-dimensional complex linear spaces. Then there are linear operators Ty :
Clo,q) (D) — C’(O q—1)(D) satisfying the following:
(i) f feC ©, q)(D) and 0f =0, then (T, f) = f on D,
(ii) there is a constant ¢ > such that |Tof(2) — T, f(2")| < cl|f|lLo(p)|2 — 2 /|2
for z,2' € D.

Now we give the following optimal LP estimates for solutions of the d-problem
in ellipsoids.

Theorem 18. (Adachi[l]) Let m be the mazimal order of contact of the boundary
of the complez ellipsoid D with q-dimensional complex linear subspaces. Let p > 1.
Then for every O-closed (0,q)-form f with coefficients in LP(D), there exists a
function u on D such that Ou = f, and u satisfies the following estimates:

(i) if p=1, then p{lu| >t} < C{HfHLx(D)t}" for allt > 0, where A = %,
(i) if 1 <p <mn+2, then ||ul|ps(py < Cpl|fllLr(D), where L = ; — mn}+2’
(iii) if p = mn + 2, then ||u||Ls(p) < Cpl|fllLe(D) for all s < 00,

(iv) if p > mn +2, then |[ulla,p) < CpllfllLe(p), where a = o —(n+ ).
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Theorem 19. (Adachi[l]) Let m be the maximal order of contact of the boundary
of the real ellipsoid D with q-dimensional complex linear subspaces. Letp > 1. Then
for every d-closed (0, q)-form f with coefficients in LP(D), there ezists a function
u on D such that Ou = f and u satisfies the following estimates:

(i) ifp =1, then ||u||Lr-<p) < cl|fllL1 (D), wherey = 2—?{_& and € is any small

number,
(ii) i1 <p < mn+2, then ||ul|ps(py < c||fl|Lr(D), where s < qo and qo satisfies
1 _ 1 1
mn+2’

(iii) zfp mn+2 then |[ullLs(p)y < Cpl|fllLr(p) for all s < oo |
(iv) i p > mn+2, then |[u|la.(D) < CpllfllLs(D), wherea = o — (n+ %)

5. Applications of the J-problem.
A. Uniform approximation of holomorphic functions.

Theorem 20. (Kerzman(13]) Let D € C™ be a strongly pseudoconvex domain with
smooth boundary. There erists an open set De Cr,DcDe D, which has the
following properties: | ‘
(a) Any continuous function v : D — C which is holomorphic in D can be
uniformly approzimated on D by holomorphic functions G defined on D.
(b) Let u: D — C be holomorphic and assume v € LP(D);1 < p < oo. Then
there erists a sequence of holomorphic functions iy, : D — C such that
(b1), (b2) and (bs) below hold: ' ‘
(b1) Un — u uniformly on compact subsets of D when n — 00,

(b2) |ldnllzepy < Kl||ullze(p)y, 1< p <00,
(b3) if p < oo, then ||lin — ul|L»(p)y — 0 when n — oo, where K is independent
of n,p and u.

~ B. Vanishing cohomology theorems.
Theorem 21. (Kerzman(13], Lieb[16]) Let D € C™ be a strictly pseudoconvex
domain with smooth boundary. Let F and B be the sheaf of germs of holomorphic
functions in D which are continuous on D and the sheaf of germs of holomorphic

functions in D which are bounded in D, respectively. Then we have

HY(D,F) = HYD,B)=0 for g>1.

C. The Poincaré-Lelong equation.
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Theorem 22. (Show[27]) Let D be a real ellipsoid in C". Given any analytic
variety of compler dimension (n-1) such that M is the zero sets of an analytic
function on D of finite area, there exists a function h belonging to the Nevanlmna
class such that M 1is the zero sets of h.

Theorem 23. (Arlebrink[3]) Let D be a bounded strictly pseudoconvex domain
in C% with C® boundary. If X is a positive divisor of D with finite area and the
canonical cohomology class of X in H?(D,Z) is zero, then there ezists a bounded
holomorphic function that defines X.

N =

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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