$\bar{\partial}$ -PROBLEMS AND SOME APPLICATIONS

長崎大学教育学部 安達謙三 (KENZŌ ADACHI)

0. Preliminaries.

Let D be a bounded domain in \mathbb{C}^n with C^1 boundary. We denote by $C^{1,\infty}(\partial D \times D)$ the space of all functions in $C^1(\partial D \times D)$ which are C^∞ in the second variable. A (1,0)-form $W=\sum_{j=1}^n w_j(\zeta,z)d\zeta_j$ is called a generating form with coefficients in $C^{1,\infty}(\partial D \times D)$ if W satisfies the following conditions (1) and (2):

- (1) $w_j(\zeta, z) \in C^{1,\infty}(\partial D \times D)$.
- (2) $\sum_{j=1}^{n} w_j(\zeta, z)(\zeta_j z_j) = 1.$

$$eta = |\zeta - z|^2, \quad B = rac{\partial_\zeta eta}{eta}, \quad I = [0, 1].$$

The homotopy form on $(\partial D \times I) \times D$ associated to W is defined by

$$\hat{W}(\zeta, \lambda, z) = \lambda W(\zeta, z) + (1 - \lambda)B(\zeta, z).$$

Cauchy-Fantappiè kernel $\Omega_q(\hat{W})$ of order q generated by \hat{W} is defined by

$$\Omega_q(\hat{W}) = \frac{(-1)^{q(q-1)/2}}{(2\pi i)^n} \binom{n-1}{q} \hat{W} \wedge (\bar{\partial}_{\zeta,\lambda} \hat{W})^{n-q-1} \wedge (\bar{\partial}_z \hat{W})^q, \quad 0 \leq q \leq n-1.$$

 $\Omega_q(W)$ is defined in the same way, with W instead of \hat{W} . We define $K_q = \Omega_q(B)$. Then we have the Cauchy-Fantappiè integral formula(cf. Range[22]):

Theorem 1. For $1 \le q \le n$, define the linear operator

$$T_q^W: C_{0,q}(\overline{D}) \to C_{0,q-1}(D)$$

by

$$T_q^W f = \int_{\partial D \times I} f \wedge \Omega_{q-1}(\hat{W}) - \int_D f \wedge K_{q-1},$$

and set $T_0^W = T_{n+1}^W = 0$. Then the following holds:

- (a) For $k = 0, 1, \dots, \infty$, if $f \in C_{0,q}^k(D) \cap C_{0,q}(\overline{D})$, then $T_q^W f \in C_{0,q-1}^k(D)$.
- (b) For $0 \le q \le n$, if $f \in C^1_{0,q}(\overline{D})$, then

$$f = \int_{\partial D} f \wedge \Omega_q(W) + \bar{\partial} T_q^W f + T_{q+1}^W \bar{\partial} f \quad \textit{on} \quad D.$$

Remark. If $W = \sum_{j=1}^{n} w_j(\zeta, z) d\zeta_j$ is holomorphic in z, then $\Omega_q(W) = 0$ for $q \geq 1$. In this case, if f is a $\bar{\partial}$ closed (0, q)-form, then it holds that $f = \bar{\partial}(T_q^W f)$.

In 1965, Hörmander obtained L^2 estimates for solutions of the $\bar{\partial}$ -problem in bounded pseudoconvex domains in \mathbb{C}^n . On the other hand, L^p and Hölder estimates for solutions of the $\bar{\partial}$ -problem using the above integral formula have been studied since 1970. We begin with the $\bar{\partial}$ -problem in strictly pseudoconvex domains in \mathbb{C}^n .

1. $\bar{\partial}$ -problems in bounded strictly pseudoconvex domains in \mathbb{C}^n with smooth boundary.

Theorem 2. (Henkin[10],Ramirez[19]) Suppose $D \in \mathbb{C}^n$ is strictly pseudoconvex with C^{∞} boundary. There are a neighborhood U of ∂D , positive constants δ, c and γ , and a function $g \in C^{\infty}(U \times D_{\delta})$ with the following properties:

- (i) $g(\zeta, z)$ is holomorphic in z on D_{δ} .
- (ii) $g(\zeta, \zeta) = 0$ for $\zeta \in U$.
- (iii) $\operatorname{Re} g(\zeta, z) > 0$ for $(\zeta, z) \in U \times D_{\delta}$ with $r(\zeta) r(z) + c|\zeta z|^2 > 0$.
- (iv) On $\{(\zeta, z) \in U \times D_{\delta} : |\zeta z| \leq \gamma\}$ there is a function $A \in C^{\infty}(U \times D_{\delta})$ with $|A(\zeta, z)| \geq \frac{2}{3}$, so that g = FA, where F is the Levi polynomial.

Using Hefer's theorem, there are functions $g_j \in C^{\infty}(U \times D_{\delta})$, with $g_j(\zeta, \cdot) \in \mathcal{O}(D_{\delta})$ such that

$$g(\zeta, z) = \sum_{j=1}^{n} g_j(\zeta, z)(\zeta_j - z_j)$$
 on $U \times D_{\delta}$

We define

$$W^{HR} = \sum_{j=1}^{n} \frac{g_{j}(\zeta, z)}{g(\zeta, z)} d\zeta_{j}.$$

Then W^{HR} is called the Henkin-Ramirez generating form. Using the above Henkin-Ramirez generating form, the following theorem was obtained (cf. Henkin[10], Kerzman[13], Lieb[16], Henkin-Romanov[11], Grauert-Lieb[9], Range-Siu[25]).

Theorem 3. Let $D \in \mathbb{C}^n$ be strictly pseudoconvex with smooth boundary. For $1 \leq q \leq n$, there are linear operators

$$\hat{S}_q: L^1_{0,q}(D) \to L^1_{0,q-1}(D)$$

and a constant C with the following properties:

- (i) $\|\hat{S}_q f\|_{L^p(D)} \le C \|f\|_{L^p(D)}$ for $1 \le p \le \infty$.
- (ii) $||\hat{S}_q||_{\Lambda_{1/2}(D)} \le C||f||_{L^{\infty}(D)}$.
- (iii) For $k = 0, 1, 2, \dots$, if $f \in L^1_{0,q}(D) \cap C^k(D)$, then $\hat{S}_q f \in C^k_{0,q-1}(D)$.
- (iv) If $f \in C^1_{0,q}(D) \cap L^1_{0,q}(D)$ and $\bar{\partial} f = 0$, then $\bar{\partial}(\hat{S}_q f) = f$ on D.

Krantz[14] obtained the optimal Lipschitz and L^p estimates for $\bar{\partial}$ in strictly pseudoconvex domains:

Theorem 4. Let D be a bounded strictly pseudoconvex domain with C^5 boundary. Let $A_{(0,1)}^{\infty}(D)$ be the space of all $\bar{\partial}$ -closed (0,1)-forms f whose coefficients are C^{∞} in D. Then there is a linear operator

$$H: A_{(0,1)}^{\infty}(D) \to C^{\infty}(D)$$

satisfying $\bar{\partial} Hf = f$. Moreover Hf satisfies

(i) $||Hf||_{L^{(2n+2)/(2n+1)-\varepsilon}} \le A_{\varepsilon}||f||_{L^1}$ for small enough $\varepsilon > 0$

(ii) if
$$1 , then $||Hf||_{L^q} \le A_p ||f||_{L^p}$, where $\frac{1}{q} = \frac{1}{p} - \frac{1}{2n+2}$ (iii) if $2n + 2 , then $||Hf||_{\Lambda_{\alpha}} \le A_p ||f||_{L^p}$, $\alpha = \frac{1}{2} - \frac{n+1}{p}$.$$$

(iii) if
$$2n + 2 , then $||Hf||_{\Lambda_{\alpha}} \le A_p ||f||_{L^p}$, $\alpha = \frac{1}{2} - \frac{n+1}{p}$.$$

For $i \in \{1, \dots, N\}$, we denote by D_i a strictly pseudoconvex open sets in \mathbb{C}^n with C^2 boundary. Let ρ_i be a defining function for D_i . For sufficiently small $\delta_i > 0$ we denote $V_i^{\delta} = \{-\delta < \rho_i(z) < \delta\}$. we assume that for $1 \le i_1 < i_2 < \cdots < i_l \le N$, $d\rho_{i_1}, d\rho_{i_2}, \cdots, d\rho_{i_l}$ are \mathbb{R} -linearly independent at all points of $V_{i_1}^{\delta} \cap V_{i_2}^{\delta} \cap \cdots \cap V_{i_l}$. We set $D = \bigcap_{i=1}^{N} D_i$. Then Menini[17] proved the following:

Theorem 5. Let $f \in L^p_{0,q}(D)$ $(1 \le q \le n, 1 \le p \le \infty)$ be $\bar{\partial}$ -closed. Then there exists a kernel K such that if one defines on D, $T_q f(z) = c_{q,n} \int_D f(\zeta) \wedge K(\zeta,z)$ then $\bar{\partial}(T_q f) = f$. Moreover

(i) for
$$1 \leq p < \infty$$
,

$$T_q: L^p_{(0,q)}(D) \to L^r_{0,q-1}(D)$$

is a bounded linear operator where $\frac{1}{r} = \frac{1}{p} + \frac{1}{1+\eta}$, $0 \le \eta < \frac{1}{2n-1+2\inf(N_0,n-1)}$, where N_0 is the maximal number of the common intersections,

(ii) for
$$p = \infty$$

$$T_q: L^p_{(0,q)}(D) \to \Lambda^{1/2-\varepsilon}_{(0,q-1)}(D)$$

is a bounded linear operator for any $\varepsilon > 0$.

2. ∂ -problems in *q*-convex domains in a complex manifold.

Theorem 6. (Fischer-Lieb[7]) Let X be a complex manifold and let $D \subseteq X$ be a strongly q-convex domain (in the sense of Andreotti-Grauert) with C^3 boundary. Then there exists a constant K with the following properties:

For each $\bar{\partial}$ -closed (0,r)-form β on D with $r \geq q$ there exists a (0,r-1)-form α on D with $\bar{\partial}\alpha = \beta$ and $|\alpha| \leq K|\beta|$.

Let X be an n-dimensional complex manifold. $D \subseteq X$ is called a strictly q-convex C^2 intersection if there exists a finite number of real C^2 functions ρ_1, \dots, ρ_N in a neighborhood U of \overline{D} such that

$$D = \{ z \in U : \rho_i(z) < 0 \text{ for } 1 \le j \le N \}$$

and the following condition is filfilled: if $z \in \partial D$ and $1 \le k_1 < \cdots < k_l \le N$ with $\rho_{k_1}(z) = \cdots = \rho_{k_l}(z) = 0$, then

$$d\rho_{k_1}(z) \wedge \cdots \wedge d\rho_{k_l}(z) \neq 0$$

and, for all $\lambda_1, \dots, \lambda_l \geq 0$ with $\lambda_1 + \dots + \lambda_l = 1$, the Levi form at z of the function

$$\lambda_1 \rho_{k_1} + \cdots + \lambda_l \rho_{k_l}$$

has at least q+1 positive eigenvalues. D is called completely q-convex if there exists a real C^2 function φ on D whose Levi form has at least q+1 positive eigenvalues at each point in D and such that

$$\{z \in D: \varphi(z) < C\} \Subset D \quad \text{for all} \quad C > 0.$$

Let E be a holomorphic vector bundle over X. Denote by $B_{n,r}^{\beta}(D,E), \beta \geq 0, r = 0, 1, \dots, n$, the Banach space of E-valued continuous (n, r)-forms f on D such that

$$\sup_{z \in D} ||f(z)||[\operatorname{dist}(z,\partial D)]^{\beta} < \infty,$$

and denote by $C_{n,r}^{\alpha}(\overline{D}, E)$, $0 \le \alpha \le 1, r = 0, 1, \dots, n$, the Banach space of E-valued (n, r)-forms which are Hölder continuous with exponent α on \overline{D} . In this setting, Laurent-Thiébaut-Leiterer[15] proved the following:

Theorem 7. Let $D \subseteq X$ be a strictly q-convex C^2 intersection and completely q-convex. Then:

(i) If $0 \le \beta < \frac{1}{2}$, then there exist linear operators

$$T_r: B_{n,r}^{\beta}(D,E) \cap \ker d \to \bigcap_{0 < \varepsilon \le 1/2 - \beta} C_{n,r-1}^{1/2 - \beta - \varepsilon}(\overline{D},E),$$

 $n-q \leq r \leq n$, which are compact as operators from $B_{n,r}^{\beta}(D,E) \cap \ker d$ to each $C_{n,r-1}^{1/2-\beta-\varepsilon}(\overline{D},E), 0 < \varepsilon \leq 1/2-\beta$, and such that

$$dT_r f = f$$

for all $n-q \leq r \leq n$ and $f \in B_{n,r}^{\beta}(D,E) \cap \ker d$.

(ii) If $1/2 \le \beta < 1$, then there exist linear operators

$$T_r: B_{n,r}^{\beta}(D,E) \cap \ker d \to \bigcap_{0 < \varepsilon} B_{n,r-1}^{\beta+\varepsilon-1/2}(D,E),$$

 $n-q \leq r \leq n$, which are compact as operators from $B_{n,r}^{\beta}(D,E) \cap \ker d$ to each $B_{n,r-1}^{\beta+\varepsilon-1/2}(D,E), \varepsilon>0$, and such that

$$dT_r f = f$$

for all $n-q \leq r \leq n$ and $f \in B_{n,r}^{\beta}(D,E) \cap \ker d$.

3. $\bar{\partial}$ -problems in bounded weakly pseudoconvex domains in \mathbb{C}^n .

In the case of weakly pseudoconvex domains there are several results in \mathbb{C}^2 .

Thoerem 8. (Range[21]) Let $D \subset \mathbb{C}^2$ be a bounded convex domain with real analytic boundary. Then there are positive constants α and K such that for every bounded $\bar{\partial}$ -closed $f \in C^1_{0,1}(D)$ there is $u \in C^1(D)$ such that $\bar{\partial} u = f$ and

$$|u(z)-u(z')| \le K||f||_{L^{\infty}(D)}|z-z'|^{\alpha}, \quad z,z' \in D.$$

Theorem 9. (Show[26]) Let D be a pseudoconvex domain in \mathbb{C}^2 of uniform strict type m. Let f be a continuous (0,1)-form on \overline{D} and $\bar{\partial}f=0$, then there exists a function $u \in \Lambda_{1/m}(\overline{D})$ such that $\bar{\partial} u = f$ and u satisfies the following estimates:

- (i) $||u||_{L^1(D)} \le c(||f||_{L^1(D)} + ||f||_{L^1(\partial D)}),$
- (ii) if p = 1, then $||u||_{L^{(m+2)/(m+1)-\varepsilon}(\partial D)} \le c||f||_{L^1(\partial D)}$ for every small $\varepsilon > 0$,
- $\begin{array}{ll} \text{(iii)} \ \ if \ 1$
- $\begin{array}{ll} \text{(v)} & \text{if } m+2$

Theorem 10. (Range[23]) Let D be a smoothly bounded pseudoconvex domain in \mathbb{C}^2 of finite type m, and let $f \in C^1_{0.1}(\overline{D})$ be $\bar{\partial}$ -closed. Then for every $\eta > 0$ there is a solution $u^{(\eta)}$ of $\bar{\partial}u=f$ on D which satisfies

$$|u^{(\eta)}(z) - u^{(\eta)}(w)| \le C_{\eta} ||f||_{L^{\infty}} |z - w|^{(1/m) - \eta}$$

for $z, w \in D$.

Theorem 11. (Polking[18]) Let $D \in \mathbb{C}^2$ be convex with C^2 boundary. Then there is an integral solution operator T for $\bar{\partial}$ on D such that $||Tf||_{L^p(D)} \leq C_p ||f||_{L^p(D)}$ for all 1 .

Theorem 12. (Range[24]) Let $D \in \mathbb{C}^2$ be convex with C^2 boundary. Then there is an integral solution operator T for $\bar{\partial}$ on D such that

- (i) $|Tf|_{\Lambda_{\alpha}(D)} \leq C_{\alpha}|f|_{\Lambda_{\alpha}(D)}$ for all f with $\bar{\partial}f = 0$ and all $\alpha > 0$.
- (ii) $||Tf||_{BMO(D)} \le C||f||_{L^{\infty}(D)}$.

Now we study the uniform and L^p estimates for solutions of the $\bar{\partial}$ -problem in pseudoconvex domains which may be of infinite type.

Let $\Psi \in C^2([0,1])$ be a real valued function satisfying

- (A) $\Psi(0) = 0$ and $\Psi(1) = 1$.
- (B) $\Psi'(t) > 0$, $0 < t \le 1$.
- (C) $\Psi'(t) + t\Psi''(t) > 0$, $0 < t \le 1$.
- (D) There exists $\tau \in (0,1)$ such that $\Psi''(t) > 0$, $0 < t < \tau$.

Define

$$D_{\Psi} = \{z \in \mathbb{C}^n : |z_j| < 1, j = 1, \dots, n, \sum_{j=1}^{n-1} |z_j|^2 + \Psi(|z_n|^2) < 1\}.$$

For $\alpha > 0$, define $\Psi_{\alpha}(t) = e \exp(-1/t^{\alpha})$. Then Ψ_{α} satisfies all conditions (A)-(D). In this case the domain $D_{\Psi_{\alpha}}$ is not of finite type.

Theorem 13. (Adachi-Cho[2]) Let $f \in L^p_{0,q}(D_{\Psi})$, $1 \leq p \leq \infty$, be $\bar{\partial}$ -closed. If $\int_0^1 |\log \Psi(s)| s^{-\frac{1}{2}} ds < \infty$, then there is a solution u of $\bar{\partial} u = f$ on D_{Ψ} such that $||u||_{L^p(D_{\Psi})} \leq c(p)||f||_{L^p(D_{\Psi})}$.

where the constant c(p) is independent of f.

Remark. In case n=2 and $p=\infty$, Theorem 13 was obtained by Verdera[28].

4. $\bar{\partial}$ - problems in ellipsoids.

Define

$$D_1 = \{z \in \mathbb{C}^n : \sum_{i=1}^n |z_i|^{m_i} < 1\},$$

$$D_2 = \{z = (z_1, \dots, z_n) : \sum_{i=1}^n (x_i^{l_i} + y_i^{m_i}) < 1, z_j = x_j + iy_j\},$$

where m_i , l_i are positive even integers. We set

$$k_1 = \sup_{1 \le i \le n} \{m_i\}, \quad k_2 = \sup_{1 \le i \le n} \{\inf\{l_i, m_i\}\}.$$

We have the following:

Theorem 14. (Range[20]) For each $\alpha < 1/k_1$, there exists a constant C_{α} such that for every bounded, $\bar{\partial}$ -closed (0,1)-form f on D_1 , there exists a α -Hölder continuous function u on D_1 such that $\bar{\partial}u = f$ and $||u||_{\Lambda_{\alpha}(D_1)} \leq C_{\alpha}||f||_{L^{\infty}(D_1)}$.

Theorem 15. (Diederich-Fornaess-Wiegerinck[5]) There exists a constant C such that for every bounded, $\bar{\partial}$ -closed (0,1)-form f on D_2 , there exists a $\alpha = 1/k_2$ -Hölder continuous function u on D_2 such that $\bar{\partial}u = f$ and $||u||_{\Lambda_{\alpha}(D_2)} \leq C||f||_{L^{\infty}(D_2)}$.

Remark. Diederich, Fornaess and Wiegerinck pointed out in their paper that Theorem 14 is also true in case $\alpha = 1/k_1$.

Theorem 16. (Chen-Krantz-Ma[4]) Let D_1 be the complex ellipsoid defined above. Then for every $\bar{\partial}$ -closed (0,1)-form f with coefficients in $L^p(D_1)$, there exists a function u on D_1 such that $\bar{\partial}u = f$, and u satisfies the following estimates:

- (i) if p = 1, then $\mu\{|u| > t\} \le C\{||f||_{L^1(D_1)} \frac{1}{t}\}^{\lambda}$ for all t > 0, where $\lambda = \frac{k_1 n + 2}{k_1 n + 1}$, (ii) if $1 , then <math>||u||_{L^q(D_1)} \le C_p ||f||_{L^p(D_1)}$, where $\frac{1}{q} = \frac{1}{p} \frac{1}{k_1 n + 2}$,
- (iii) if $p = k_1 n + 2$, then $||u||_{L^q(D_1)} \le C_p ||f||_{L^p(D_1)}$ for all $q < \infty$.
- (iv) if $p > k_1 n + 2$, then $||u||_{\Lambda_{\alpha}(D_1)} \le C_p ||f||_{L^p(D_1)}$, where $\alpha = \frac{1}{k_1} (n + \frac{2}{k_1}) \frac{1}{p}$.

We give the results obtained by Fleron[8]. Ho[12] obtained similar results in the case where D is a complex ellipsoid.

Theorem 17. (Fleron[8]) Let $1 \le q \le n-1$. Let D be a real or complex ellipsoid. Suppose that Δ^q is the maximal order of contact of the boundary of the ellipsoid D with q-dimensional complex linear spaces. Then there are linear operators T_q : $C_{(0,q)}(\overline{D}) \to C_{(0,q-1)}(D)$ satisfying the following:

- (i) if $f \in C^1_{(0,q)}(\overline{D})$ and $\bar{\partial} f = 0$, then $\bar{\partial}(T_q f) = f$ on D,
- (ii) there is a constant c> such that $|T_qf(z)-T_qf(z')|\leq c||f||_{L^\infty(D)}|z-z'|^{\frac{1}{\Delta^q}}$ for $z, z' \in D$.

Now we give the following optimal L^p estimates for solutions of the ∂ -problem in ellipsoids.

Theorem 18. (Adachi[1]) Let m be the maximal order of contact of the boundary of the complex ellipsoid D with q-dimensional complex linear subspaces. Let $p \ge 1$. Then for every ∂ -closed (0,q)-form f with coefficients in $L^p(D)$, there exists a function u on D such that $\bar{\partial}u = f$, and u satisfies the following estimates:

- $\begin{array}{ll} \text{(i)} & \textit{if } p = 1, \; \textit{then } \mu\{|u| > t\} \leq C\{||f||_{L^1(D)} \frac{1}{t}\}^{\lambda} \; \textit{for all } t > 0, \; \textit{where } \lambda = \frac{mn+2}{mn+1}, \\ \text{(ii)} & \textit{if } 1$
- (iii) if p = mn + 2, then $||u||_{L^{s}(D)} \le C_{p}||f||_{L^{p}(D)}$ for all $s < \infty$,
- (iv) if p > mn + 2, then $||u||_{\Lambda_{\alpha}(D)} \le C_p ||f||_{L^p(D)}$, where $\alpha = \frac{1}{m} (n + \frac{2}{m}) \frac{1}{p}$.

Theorem 19. (Adachi[1]) Let m be the maximal order of contact of the boundary of the real ellipsoid D with q-dimensional complex linear subspaces. Let $p \geq 1$. Then for every ∂ -closed (0,q)-form f with coefficients in $L^p(D)$, there exists a function u on D such that $\partial u = f$ and u satisfies the following estimates:

- (i) if p=1, then $||u||_{L^{\gamma-\varepsilon}(D)} \leq c||f||_{L^1(D)}$, where $\gamma=\frac{mn+2}{mn+1}$ and ε is any small
- (ii) if $1 , then <math>||u||_{L^{s}(D)} \le c||f||_{L^{p}(D)}$, where $s < q_0$ and q_0 satisfies $\begin{array}{c} \frac{1}{q_0} = \frac{1}{p} - \frac{1}{mn+2}, \\ \text{(iii)} \quad \text{if } p = mn+2, \text{ then } ||u||_{L^s(D)} \leq C_p ||f||_{L^p(D)} \text{ for all } s < \infty, \\ \end{array}$

(iv) if p > mn + 2, then $||u||_{\Lambda_{\alpha}(D)} \le C_p ||f||_{L^p(D)}$, where $\alpha = \frac{1}{m} - (n + \frac{2}{m}) \frac{1}{n}$.

5. Applications of the ∂ -problem.

A. Uniform approximation of holomorphic functions.

Theorem 20. (Kerzman[13]) Let $D \in \mathbb{C}^n$ be a strongly pseudoconvex domain with smooth boundary. There exists an open set $\hat{D} \in \mathbb{C}^n, D \subset \overline{D} \in \hat{D}$, which has the following properties:

- (a) Any continuous function $u: \overline{D} \to \mathbb{C}$ which is holomorphic in D can be uniformly approximated on \overline{D} by holomorphic functions \hat{u} defined on D.
- (b) Let $u: D \to \mathbb{C}$ be holomorphic and assume $u \in L^p(D), 1 \leq p \leq \infty$. Then there exists a sequence of holomorphic functions $\hat{u}_n:\hat{D}\to\mathbb{C}$ such that (b_1) , (b_2) and (b_3) below hold:
- (b_1) $\hat{u}_n \to u$ uniformly on compact subsets of D when $n \to \infty$,

 $(b_2) ||\hat{u}_n||_{L^p(D)} \leq K||u||_{L^p(D)}, \quad 1 \leq p \leq \infty,$

 (b_3) if $p < \infty$, then $||\hat{u}_n - u||_{L^p(D)} \to 0$ when $n \to \infty$, where K is independent of n, p and u.

B. Vanishing cohomology theorems.

Theorem 21. (Kerzman[13], Lieb[16]) Let $D \in \mathbb{C}^n$ be a strictly pseudoconvex domain with smooth boundary. Let $\mathcal F$ and $\mathcal B$ be the sheaf of germs of holomorphic functions in D which are continuous on D and the sheaf of germs of holomorphic functions in D which are bounded in D, respectively. Then we have

$$H^q(\overline{D}, \mathcal{F}) = H^q(\overline{D}, \mathcal{B}) = 0$$
 for $q \ge 1$.

C. The Poincaré-Lelong equation.

Theorem 22. (Show[27]) Let D be a real ellipsoid in \mathbb{C}^n . Given any analytic variety of complex dimension (n-1) such that M is the zero sets of an analytic function on D of finite area, there exists a function h belonging to the Nevanlinna class such that M is the zero sets of h.

Theorem 23. (Arlebrink[3]) Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^2 with C^3 boundary. If X is a positive divisor of D with finite area and the canonical cohomology class of X in $H^2(D,\mathbb{Z})$ is zero, then there exists a bounded holomorphic function that defines X.

REFERENCES

- 1. K. Adachi, $\bar{\partial}$ problem in ellipsoid, (preprint).
- 2. K. Adachi and H. R. Cho, $L^p(1 \le p \le \infty)$ estimates for $\bar{\partial}$ on a certain pseudoconvex domain in \mathbb{C}^n , Nagaya Math. J. 148 (1997), 127–136.
- 3. J. Arlebrink, Zeors of bounded holomorphic functions in strictly pseudoconvex domains in \mathbb{C}^n , Ann. Inst. Fourrier, Grenoble 43(2) (1993), 437–458.
- 4. Z. Chen, S. G. Krantz and D. Ma, Optimal L^p estiamtes for the $\bar{\partial}$ estiamtes for the $\bar{\partial}$ -equation on complex ellipsoids in \mathbb{C}^n , Manuscripta Math. 80 (1993), 131–149.
- 5. K. Diederich, J. E. Fornaess and J. Wiegerinck, Sharp Hölder estimates for $\bar{\partial}$ on ellipsoids, Manuscripta Math. **56** (1986), 399–417.
- 6. C. Fefferman and J. J. Kohn, Hölder estimates on domains in two complex dimensions and on three dimensional CR manifolds, Adv. Math. 69 (1988), 233-303.
- 7. W. Fischer and I. Lieb, Lokale Kerne und beschränkte Lösungen für den $\bar{\partial}$ -Operator auf q-konvexen Gebieten, Math. Ann. 208 (1974), 249-265.
- 8. J. F. Fleron, Sharp Hölder estimates for $\bar{\partial}$ on ellipsoids and their compliments via order of contact, Proc. Amer. Math. Soc. **124(10)** (1996), 3193–3202.
- 9. H. Grauert and I. Lieb, Das Ramirezsche Integral und die Gleichung $\bar{\partial}u = f$ im Bereich der beschrankten Formen, Rice Univ. Studies **56** (1970), 29–50.
- 10. G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Math. USSR-Sb. 11 (1970), 273-282.
- 11. G. M. Henkin and A. V. Romanov, Exact Hölder estimates of solutions of the ∂-equation, Math. USSR-Izv. 5 (1971), 1180–1192.
- 12. L. H. Ho, Hölder estimates for local solutions for $\bar{\partial}$ on a class of nonpseudoconvex domains, Rocky Mountain J. Math. 23(2) (1993), 593-607.
- 13. N. Kerzman, Hölder and L^p estimates for solutions of $\bar{\partial}u = f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379.
- 14. S. G. Krantz, Optimal Lipschitz and L^p regularity for the euation $\bar{\partial}u = f$ on strongly pseudoconvex domains, Math. Ann. 219 (1976), 233-260.
- 15. C.Laurent-Thiébaut and J. Leierer, Uniform estimates for the Cauchy-Riemann equation on q-convex wedges, Ann. Inst. Fourier, Grenoble 43(2) (1993), 383-436.
- 16. I. Lieb, Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten: Beschränkte Rösungen, Math. Ann. 190 (1970), 6–44.
- 17. C. Menini, Estimations pour la resolution du $\bar{\partial}$ sur une intersection d'ouverts strictment pseudoconvexes, Math. Z. **225** (1997), 87–93.
- 18. J. Polking, The Cauchy Riemann equations on convex sets, Proc. Symp. Pure Math. **52(3)** (1991), 309–322.
- 19. E. Ramirez, Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann. 184 (1970), 172–187.
- 20. R. M. Range, Holomorphic functions and integral representations in several complex variables, Proc. Int. Conf. Cortona (1977).

- 21. _____, Hölder estimates for $\bar{\partial}$ on convex domains in \mathbb{C}^2 with real analytic boundary, Proc. Symp. Pure Math. (1977).
- 22. _____, Holomorphic functions and integral representations in several complex variables, Berlin Heiderberg New York (1986).
- 23. _____, Integral kernels and Hölder estimates for $\bar{\partial}$ on pseudoconvex domains of finite type in \mathbb{C}^2 , Math. Ann. 288 (1990), 65–74.
- 24. _____, On Hölder and BMO estimates for $\bar{\partial}$ on convex domains in \mathbb{C}^2 , J. Geom. Anal. 2(6) (1992), 575–584.
- 25. R. M. Range and Y. T. Siu, Uniform estimates for the δ-euation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354.
- 26. M. C. Show, Prescribing zeros of functions in the Nevanlinna class on weakly pseudoconvex domains in \mathbb{C}^2 , Trans. Amer. Math. Soc. 313(1) (1989), 407-418.
- 27. _____, Optimal Hölder and L^p estimates for $\tilde{\partial}_b$ on the boundaries of real ellipsoids in \mathbb{C}^n , Trans. Amer. Math. Soc. **324(1)** (1991), 213–234.
- 28. J. Verdera, L^{∞} -continuity of Henkin operators solving $\bar{\partial}$ in certain weakly pseudoconvex domains of \mathbb{C}^2 , Proc. Royal Soc. Edinburgh 99A (1984), 25–33.