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Abstract

Set optimization problems with objective set-valued maps are considered, and

some criteria of solutions are defined. Also, cone lower semicontinuities of set-valued

maps are introduced, and existence theorems of solutions of such problems are es-
tablished. Moreover, some duality results of these problems are investigated.

1 Introduction
We observe a set-valued optimization problem $(\mathrm{S}\mathrm{P})$ as follows:

$(\mathrm{S}\mathrm{P})$ Minimize $F(x)$

subject to $x\in S$

where $X$ is a set, $(\}’,$ $\leq)$ an ordered vector space, $F$ a map from $X$ to $2^{1}$ , and $S$ a
nonempty subset of $\mathrm{D}\mathrm{o}\mathrm{m}(F)=\{x\in X|F(x)\neq\emptyset\}$ . This type of set-valued optimization
problem has been developed as a generalization of vector-valued optimization problems for
around twenty years. In many paper concerned with set-valued optimization( $\mathrm{f}\mathrm{o}\mathrm{r}$ example
[2, 5, 4, 6, 7, 11] $)$ , we can see that a minimal solution $x_{0}\in S$ is defined such as:

$F(x_{0})\cap{\rm Min}\cup F(_{X)}x\in S\neq\emptyset$

and this problem are often called (vector optimization with set-valued maps.’ However
the criterion of solutions is sometimes not suitable for set-valued $\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}_{\mathrm{I}}\mathrm{n}\mathrm{i}_{\mathrm{Z}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ because it
is only based on simple comparisons between vectors though our problem is set-valued
optimization.
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Our aim of this paper is to introduce some natural, suitable, and proper criteria based on
comparisons between values of the (set-valued) objective map for set-valued optimization,
and investigate some properties concerned with the problem. In this paper, we call such
criteria based on the idea above natural criteria for set-valued optimization, see [9].

The organization of this paper is as follows: in Section 2, we formulate our set-valued op-
timization problem and define two types of notions of solutions. In Section 3, we introduce
(natural) lower semicontinuities for set-valued maps, characterize such continuities, and
derive some existence theorems of solutions by using the lower semicontinuities. Finally,
we show some duality theorems for our set-valued optimization in Section 4.

2 Natural Criteria of Set-Valued Optimization
First, we redefine our set-valued minimization problem $(\mathrm{S}\mathrm{P})$ . Let $X$ be a topological

space, $(Y, \leq_{K})$ an ordered topological space with an ordering convex cone $K,$ $F$ a map
from $X$ to $2^{Y}$ , and $S\subset \mathrm{D}\mathrm{o}\mathrm{m}(F)(=\{x\in X|F(x)\neq\emptyset\})$ . Our set-valued minimization
problem is the following:

$(\mathrm{S}\mathrm{P})$ Minimize $F(x)$

subject to $x\in S$ .

To define notions of solutions for our problem, we introduce some relations between
two nonempty sets which like the order relation in topological vector spaces; though the
number types of such relations is six, we treat two important relations of them, see [8].

In this paper, we define

$A\leq^{l}B\Leftrightarrow \mathrm{d}\mathrm{e}\mathrm{f}A+K\supset B$ ,

$A\leq^{u}B\Leftrightarrow \mathrm{d}\mathrm{e}\mathrm{f}A\subset B-K$ ,

for nonempty subsets $A,$ $B$ of $Y$ . In these cases, $A$ is said to be smaller than $B$ with
$l$-inequality(resp. $u$-inequality) if $A\leq^{l}B$ (resp. $A\leq^{u}B$ ).

In the above notations, $l$ means lower and $u$ means upper. Note that $A\leq^{l}B$ is equivalent
to ${\rm Min} A=\mathrm{b}\mathrm{I}\mathrm{i}\mathrm{n}B$ and $A\leq^{u}B$ is equivalent to ${\rm Max} A={\rm Max} B$ .

By using the set relations above, we introduce two types criteria of minimal solutions
in the following definition. In this paper, when we consider $l$-minimal solution, we assume
that $F$ is $l$-closed map, that is $F(x)$ is $l$-closed for each $x\in X$ for simple consideration. Also
we assume similar assumption, $u$-closedness of $F$ , when we consider $u$-minimal solution.

Definition 2.1 [9] An element $x_{0}\in S$ is said to be

(i) $l$-minimal solution of $(\mathrm{S}\mathrm{P})$ if
for any $x\in S$ with $F(x)\leq^{l}F(X_{0}),$ $F(X_{0})\leq^{l}F(x)$ is satisfied;

(ii) $u$-minimal solution of $(\mathrm{S}\mathrm{P})$ if
for any $x\in S$ with $F(x)\leq^{u}F(x_{0}),$ $F(x_{0})\leq^{u}F(x)$ is satisfied.
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3Semicontinuities of Set-Values Maps and Existence
Theorems

To consider existence of solutions of $(\mathrm{S}\mathrm{P})$ for our solutions, some cone semicontinuities
were introduced in $[5, 9]$ .

Definition 3.1 [9] A set-valued map $F$ is said to be $l$-type lower semicontinuous on $S$ if
for any $l$-closed subset $A$ of $Y,$ $\mathcal{L}^{l}(A)=\{x\in S|F(x)\leq^{l}A\}$ is closed.

Definition 3.2 [9] A set-valued map $F$ is said to be $l$-type quasi lower semicontinuous
at $x_{0}\in S$ if for each net $\{x_{\lambda}\}$ converges to $x_{0}$ with $\{F(x_{\lambda})\}$ is $l$-decreasing, that is,
$F(x_{\lambda}’)\leq^{l}F(x_{\lambda})$ for $\lambda<\lambda’,$ $F(X_{0})\leq^{l}$ Lim $\sup_{\lambda}(F(x\lambda)+K)$ is satisfied. A set-valued
map $F$ is said to be $l$ -type quasi lower semicontinuous on $S$ if it is $l$ -type quasi lower
semicontinuous at each point of $S$ .

Definition 3.3 [5] A set-valued map $F$ is said to be upper $IC$-semicontinuous at $x_{0}\in S$ if
for any open set $V$ with $V\leq^{l}F(X_{0})$ , there exists a neighborhood $U$ of $x_{0}$ such that $x\in U$

implies $V\leq^{l}F(x)$ ; A set-valued map $F$ is said to be upper $IC$-semicontinuous on $S$ if it is
upper $IC$-semicontinuous at each point of $S$ .

Now we can see some characterization with respect to these lower semicontinuities.

Proposition 3.1 [9] Let $F$ be a $l$-closed set-valued map. Then we have the following:

(i) upper $K$-semicontinuity on $S$ implies $l$ -type lower semicontinuity on $S$ ;
(ii) $l$ -type lower semicontinuity on $S$ implies $l$ -type quasi lower semicontinuity on $S$ .

Also, if $X$ and $Y$ are finite dimensional and $F$ is locally bounded, then we have

(iv) $l$ -type lower semicontinuity on $S$ implies upper $K$-semicontinuity on $S$ .

Moreover, $Y$ is the real-field, and $F$ is a singleton map, then $l$ -type lower semicontinuity
and upper $K$-semicontinuity are equivalent to to the ordinary lower semicontinuity of real-
valued functions.

Note that quasi lower semicontinuity is more weaker than another semicontinuities.
Now, we investigate $u$-type lower semicontinuities of set-valued maps.

Definition 3.4 [9] A set-valued map $F$ is said to be $u$-type lower semicontinuous on $S$ if
for any $u$-closed subset $A$ of}’, $L^{u}(A)=\{x\in S|F(x)\leq^{u}A\}$ is closed.

Definition 3.5 [9] A set-valued map $F$ is said to be $u$-type quasi lower semicontinuous
at $x_{0}\in S$ if for each net $\{x_{\lambda}\}$ converges to $x_{0}$ with $\{F(x_{\lambda})\}$ is $u$-decreasing, that is,
$F(x_{\lambda}’)\leq^{u}F(x_{\lambda})$ for $\lambda<\lambda’,$ $F(X_{0})\leq^{u}$ Lim $\sup_{\lambda}(F(x\lambda)+IC)$ is satisfied. A set-valued
map $F$ is said to be $u$-type quasi lower sernicontinuous on $S$ if it is $u$-type quasi lower
semicontinuous at each point of $S$ .
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Definition 3.6 [5] A set-valued map $F$ is said to be lower $K$-semicontinuous at $x_{0}\in S$ if
for any open set $V$ with $V\cap F(x_{0})\neq\emptyset$ , there exists a neighborhood $U$ of $x_{0}$ such that $x\in U$

implies $V\cap(F(x)-K)\neq\emptyset$ ; A set-valued map $F$ is said to be lower $I\zeta$-semicontinuous on
$S$ if it is lower $K$-semicontinuous at each point of $S$ .

Now we can see some characterization with respect to these lower semicontinuities.

Proposition 3.2 [9] Let $F$ be a $u$-closed set-valued map. Then we have the following:

(i) $u$-type lower semicontinuity on $S$ implies $u$-type quasi lower semicontinuity on $S$ .

Also, if $X$ and}’ are finite dimensional and $F$ is locally bounded, then we have

(iii) $u$-type lower semicontinuity on $S$ is equivalent to lower $K$-semicontinuity on $S$ .

Moreover, $Y$ is the real-field, and $F$ is a singleton map, then $u$-type lower semicontinuity
and lower $I\zeta$-semicontinuity are equivalent to to the ordinary lower semicontinuity of real-
valued functions.

Now, we consider existence theorems for $l$-type and $u$-type minimal solutions.

Theorem 3.1 [9] Let $X$ be a topological space and}’ an ordered topological vector space.
If $S$ is a nonempty compact subset of $X$ and $F$ : $Sarrow 2^{1’}$ is a $l$-type quasi lower semicon-
tinuous and $l$-closed set-valued map, then there exists a $l$ -type minimal solution of $(\mathrm{S}\mathrm{P})$ .

Theorem 3.2 [9] Let $X$ be a topological space and $Y$ an ordered topological vector space.
If $S$ is a nonempty compact subset of $X$ and $F$ : $Sarrow 2^{1^{r}}$ is a $u$-type quasi lower semi-.
continuous and $u$-closed set-valued map, then there exists a $u$-type minimal solution of
$(\mathrm{S}\mathrm{P})$ .

By using one of the above theorems, we can prove the following:

Corollary 3.1 Let $X$ be a topological space, $S$ a nonempty compact subset of $X$ , and
$f$ : $Sarrow 2^{1’}$ is a lower semicontinuous, then there exists an element $x_{0}\in S$ such that
$f(x_{0})= \inf_{x\in S}f(x)$ .

Let $\}’*\mathrm{b}\mathrm{e}$ the topological dual space of 1 $r,$ $\theta^{*}$ the null vector of $Y^{*}$ . and $I\mathrm{c}’+$ the positive
polar cone of $IC$ , that is, $K^{+}=\{y^{*}\in\}’*|\langle y^{*}, k\rangle\geq 0,$ $\forall k\in K\}$ .

Theorem 3.3 [9] Let $(x_{\text{ノ}}.d)$ be a complete metric space, 1 $r$ an ordered locally convex
space with the cone $I\iota’$ . Also, $F$ be a map from $X$ to $2^{1^{r}}$ satisfying the following conditions:

$\bullet$ there exists $y^{*}\in I\mathrm{i}^{\prime+}\backslash \{\theta^{*}\}$ such that

inf $\langle y^{*}, F(.\mathcal{B})\rangle$ is finite for each $x\in S$

$F(x_{1})\leq^{l}F(x_{2}),$ $X1,$ $X_{2}\in S\Rightarrow \mathrm{i}\mathrm{I}\mathrm{l}\mathrm{f}\langle y^{*}.F(x_{2})\rangle$ –inf $\langle y^{*}, F(x_{1})\rangle\geq d(x_{2,1}x)$
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$\bullet$ $F:Sarrow 2^{Y}$ is $l$ -type lower semicontinuous and l-closed.

Then, there exists a $l$ -type minimal solution of $(\mathrm{S}\mathrm{P})$ .

Theorem 3.4 [9] Let (X, $d$) be a complete metric space, $Y$ an ordered locally convex
space with the cone $K$ . Also, $F$ be a map from $X$ to $2^{Y}$ satisfying the following conditions:

$\bullet$ there exists $y^{*}\in K^{+}\backslash \{\theta^{*}\}$ such that

inf $\langle y^{*}, F(X)\rangle$ is finite for each $x\in S$

$F(x_{1})\leq^{u}F(x_{2})jx_{1},$ $X2 \in S\Rightarrow\sup\langle y^{*}, F(x_{2})\rangle-\sup\langle y^{*}, F(x_{1})\rangle\geq d(x_{21}, x)$

$\bullet$
$F:Sarrow 2^{1^{\gamma}}$ is $u$-type lower semicontinuous and u-closed.

Then, there exists a $u$-type minimal solution of $(\mathrm{S}\mathrm{P})$ .

Using one of the above theorems, we can show Phelps’ theorem, see [1]:

Corollary 3.2 Let $(\mathrm{I}^{\nearrow}, ||\cdot||)$ be a Banach space, $D$ a closed nonempty subset of $Y$ , and $I\zeta$

a convex cone of $Y$ . If there exist $y^{*}\in K^{+}$ and $\alpha>0$ such that

(i) $\langle y^{*}, \cdot\rangle$ is bounded from below on $D$ and

(ii) $I\zeta\subset\{y\in \mathrm{I}’|\langle y^{*}, y\rangle+\alpha||y||\leq 0\}$ .

Then ${\rm Min} D=\mathrm{E}\mathrm{x}\mathrm{t}_{K}D\neq\emptyset$ .

4 Duality of Set-Valued Optimization
In this section, we consider a $l$-type set-valued minimization problem with an inequality

constraint $(\mathrm{S}\mathrm{P})$ and its dual problem $(\mathrm{S}\mathrm{D})$ .

$(\mathrm{S}\mathrm{P})$
$l-\mathrm{I}_{\mathrm{V}}\mathrm{I}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{z}\mathrm{e}$ $F(x)$

subject to $G(x)\leq^{l}\theta$

$(\mathrm{S}\mathrm{D})$
$l-\mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}_{\mathrm{I}}\mathrm{n}\mathrm{i}_{\mathrm{Z}\mathrm{e}}$ $\Phi(T)$

subject to $T\in \mathcal{L}_{+}(1’, Z)$

where, $X$ is a nonempty set, $(Y, \leq_{K}),$ $(Z, \leq_{L})$ ordered vector spaces with ordering cones
$K,$ $L$ , respectively, $F$ : $Xarrow 2^{Z},$ $G$ : $Xarrow 2^{1^{r}},$ $\mathcal{L}(Y, Z)=$ { $T$ : $Yarrow Z|T$ is iinear},
$\mathcal{L}_{+}(1^{r}, Z)=\{T\in \mathcal{L}(]^{\nearrow}, Z)|T(IC)\subset L\},$ $\mathrm{G}\mathrm{r}(G)=\{(x, y)\in X\cross Y|y\in G(x)\}$ and
$\Phi$ : $\mathcal{L}(1’, Z)arrow 2^{Z}$ defined by $\Phi(T)=l-{\rm Min}\{F(X)+T(y)|(x, y)\in \mathrm{G}\mathrm{r}(G)\}$ .

Definition 4.1 (Solutions) $x_{0}$ is said to be

(i) an $l$-feasible solution of $(\mathrm{S}\mathrm{P})$ if $G(x)\leq^{l}\theta$ :
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(ii) an $l$-solution of $(\mathrm{S}\mathrm{P})$ if $x_{0}$ is $l$-feasible and

$x\in X,$ $G(x)\leq^{l}\theta,$ $F(x)\leq^{l}F(X\mathrm{o})$ implies $F(X_{0})\leq^{l}F(x)$ .

$T_{0}$ is said to be

(i) a feasible solution of $(\mathrm{S}\mathrm{D})$ if

$T_{0}\in \mathcal{L}_{+}(Y, Z)$ and $\Phi(T)\neq\emptyset$ ;

(ii) an $l$-solution of $(\mathrm{S}\mathrm{D})$ if $T_{0}$ is feasible and there exists $A_{0}\in\Phi(T_{0})$ such that

$T_{1}\in \mathcal{L}_{+}(Y, Z),$ $A_{1}\in\Phi(T),$ $A_{0}\leq^{l}A_{1}$ implies $A_{1}\leq^{l}A_{0}$

Proposition 4.1 (Weak Duality)
Let $x_{0}$ be an $l$-feasible solution of $(\mathrm{S}\mathrm{P}),$ $T_{1}$ an $l$-feasible solution of $(\mathrm{S}\mathrm{D})$ , and $(x_{1}, y_{1})$ an

element of $\mathrm{G}\mathrm{r}(G)$ satisfying $F(x_{1})+T_{1}(y_{1})\in\Phi(T_{1})$ . Then,

$F(X_{0})\leq^{l}F(x_{1})+T_{1}(y_{1})$ implies $F(x_{1})+T_{1}(y_{1})\leq^{l}F(X\mathrm{o})$

Definition 4.2 (Lagrangian Function) For $x\in X,$ $y\in Y,$ $T\in \mathcal{L}(Y, Z)$ ,

$L(x, y, T)=F(x)+T(y)$ .

In usual, $y$ is an element of $G(x)$ .

.Definition 4.3 (Saddle Point. )
$(x_{0}, y_{0}, T_{0})\in \mathrm{G}\mathrm{r}(G)\cross \mathcal{L}_{+}(Y, Z)$ is said to be an $l$-saddle point of $L$ if

(i) $L(x,$ $y,$ $\tau_{0}\mathrm{I}\leq^{l}L(x_{0}, y_{0}, \tau_{0}),$ $(x, y)\in \mathrm{G}\mathrm{r}(G)\Rightarrow L(x0, y_{0}, \tau_{0})\leq^{l}L(x,$ $y,$ $\tau_{0)}$

(ii) $L(x_{0}, y_{0}, T_{0})\leq^{l}L(X0, y0, T),$ $T\in \mathcal{L}_{+}(Y, Z)\Rightarrow L(x_{0,y_{0},)}T\leq^{l}L(X_{0,y_{0},T_{0})}$

Theorem 4.1 Assume that $I\zeta$ is closed, $L$ is solid, and $F$ satisfies the following bounded
condition: for each $x\in \mathrm{D}\mathrm{o}\mathrm{m}(F)$ there exists $y^{*}\in IC^{+}$ such that

$\bullet$ $\langle y^{*}, y\rangle>0$ for each $y\in I\zeta\backslash \{\theta\}$ ;

$\bullet\inf_{y\in F(x)}\langle y^{*}, y\rangle>-\infty$.

If $(.c_{0,}.y_{0,o} T)\in \mathrm{G}\mathrm{r}(G)\cross \mathcal{L}_{+}(Y, Z)$ is an $l$-saddle point of $L$ , then we have

(i) $y0\leq\theta$ and $T_{0}(y_{0})=\theta$ ;

(ii) $x_{0}$ is an $l$-solution of $(\mathrm{s}\mathrm{P})$ ;

(iii) $T_{0}$ is an $l$-solution of $(\mathrm{S}\mathrm{D})$ .

Theorem 4.2 $(x_{0}, y_{0}, T_{0})\in \mathrm{G}\mathrm{r}(G)\cross \mathcal{L}_{+}(Y, Z)$ is an $l$-saddle point of $L$ if and only if

(i) $L(x, y, \tau_{0})\leq^{l}L(x_{0}, y_{0}, T_{0}),$ $(x, y)\in \mathrm{G}\mathrm{r}(G)\Rightarrow L(x_{0}, y0, \tau 0)\leq^{l}L(x,$ $y,$ $T_{0)}$

(ii) $y_{0}\leq\theta$ and $T_{0}(y_{0})=\theta$ .
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