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Abstract

Set optimization problems with objective set-valued maps are considered, and
some criteria of solutions are defined. Also, cone lower semicontinuities of set-valued
maps are introduced, and existence theorems of solutions of such problems are es-

tablished. Moreover, some duality results of these problems are investigated.

1 Introduction

We observe a set-valued optimization problem (SP) as follows:
(SP) Minimize  F(z)
subject to z €S

where X is a set, (Y, <) an ordered vector space, F' a map from X to 2¥, and S a
nonempty subset of Dom(F) = {z € X | F'(z) # 0}. This type of set-valued optimization
problem has been developed as a generalization of vector-valued optimization problems for
around twenty years. In many paper concerned with set-valued optimization(for example
[2, 5, 4, 6, 7, 11]), we can see that a minimal solution z € S is defined such as:

F(zo)NMin | J F(z) #0
zeS
and this problem are often called ‘vector optimization with set-valued maps.” However
the criterion of solutions is sometimes not suitable for set-valued optimization because it
is only based on simple comparisons between vectors though our problem is set-valued
optimization.
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- QOur aim of this paper is to introduce some natural, suitable, and proper criteria based on
- comparisons between values of the (set-valued) objective map for set-valued optimization,
and investigate some properties concerned with the problem. In this paper, we call such
criteria based on the idea above natural criteria for set-valued optimization, see [9].

The organization of this paper is as follows: in Section 2, we formulate our set-valued op-
timization problem and define two types of notions of solutions. In Section 3, we introduce
(natural) lower semicontinuities for set-valued maps, characterize such continuities, and
derive some existence theorems of solutions by using the lower semicontinuities. Finally,
we show some duality theorems for our set-valued optimization in Section 4.

2 Natural Criteria of Set-Valued Optimization

First, we redefine our set-valued minimization problem (SP). Let X be a topological
space, (Y, <k) an ordered topological space with an ordering convex cone K, F a map
from X to 2¥, and S C Dom(F)(= {z € X | F(z) # 0}). Our set-valued minimization
problem is the following: ‘

(SP) Minimize  F(x)
' subject to x € S.

To define notions of solutions for our problem, we introduce some relations between
two nonempty sets which like the order relation in topological vector spaces; though the
number types of such relations is six, we treat two important relations of them, see [8].

In this paper, we define o ’

A<'B & A+ Ko B,

A<*B &L AcCB-K,
for nonempty subsets A, B of Y. In these cases, A is said to be smaller than B with
Linequality (resp. w-inequality) if A <' B(resp. A <* B). |

In the above notations, [ means lower and u means upper. Note that A <' B is equivalent
to Min A = Min B and A <" B is equivalent to Max A = Max B.

By using the set relations above, we introduce two types criteria of minimal solutions
in the following definition. In this paper, when we consider - minimal solution, we assume
that F is l-closed map, that is F'(z) is l-closed for each x € X for simple consideration. Also
we assume similar assumption, u-closedness of F'; when we consider u-minimal solution.

Definition 2.1 [9] An element 7, € S is said to be

(i) I-minimal solution of (SP) if

for any z € S with F(z) <! F(zo), F(zo) <' F(z) is satisfied;
(i) u-minimal solution of (SP) if _

for any z € S with F(z) <" F(zg), F(zo) <" F(x) is satisfied.
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3 Semicontinuities of Set-Values Maps and Existence
- Theorems |

To consider existence of solutions of (SP) for our solutions, some cone semicontinuities
were introduced in [5, 9].

Definition 3.1 [9] A set-valued map F' is said to be I-type lower semicontinuous on S if
for any lclosed subset A of Y, L}(A) = {z € S|F(z) <' A} is closed.

Definition 3.2 [9] A set-valued map F is said to be l-type quasi lower semicontinuous
at o € S if for each net {z,} converges to xy with {F(z,)} is l-decreasing, that is,
F(zy) < F(zy) for A < X, F(zy) <! Limsup,(F(z,) + K) is satisfied. A set-valued
map F' is said to be [-type quasi lower semicontinuous on S if it is I-type quasi lower
semicontinuous at each point of S.

Definition 3.3 [5] A set-valued map F' is said to be upper K-semicontinuous at zo € S if
for any open set V with V' <! F(xg), there exists a neighborhood U of x4 such that z € U
implies V' <! F(z); A set-valued map F is said to be upper K-semicontinuous on S if it is
upper K-semicontinuous at each point of S.

Now we can see some chéracterization with respect to these lower semicontinuities.
Proposition 3.1 [9] Let F' be a l-closed set-valued map. Then we have the following:
(i) upper K-semicoﬁfinuity on S implies I-type lower semicontinuity on S;
(ii) I-type lower semicontinuity on S implies [-type quasi lower semicontinuity on S.
Also, if X and Y are finite dimensional and F'is locally bounded, then we have

(iv) {-type lower semicontinuity on S implies upper K-semicontinuity on S.

Moreover, Y is the real-field, and F is a singleton map, then [-type lower semicontinuity
and upper K-semicontinuity are equivalent to to the ordinary lower semicontinuity of real-
valued functions.

Note that quasi lower semicontinuity is more weaker than another semicontinuities.
Now, we investigate u-type lower semicontinuities of set-valued maps.

Definition 3.4 [9] A set-valued map F is said to be u-type lower semicontinuous on S if
for any u-closed subset A of Y, L*(A) = {x € S|F(z) <* A} is closed.

Definition 3.5 [9] A set-valued map F is said to be u-type quasi lower semicontinuous
at kg € S if for each net {z,} converges to xy with {F(z))} is u-decreasing, that is,
F(xy) <" F(zy) for A < XN, F(zo) <" Limsup,(F(z)) + K) is satisfied. A set-valued
map F is said to be u-type quasi lower semicontinuous on S if it is u-type quasi lower
semicontinuous at each point of S.
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Definition 3.6 [5] A set-valued map F is said to be lower K-semicontinuous at z, € S if
for any open set V' with VN F(zy) # 0, there exists a neighborhood U of z, such that z € U
implies V' N (F(z) — K) # 0; A set-valued map F is said to be lower K-semicontinuous on
S if it is lower K-semicontinuous at each point of S.

Now we can see some characterization with respect to these lower semicontinuities.

Proposition 3.2 [9] Let F' be a u-closed set-valued map. Then we have the following:
(i) u-type lower semicontinuity on S implies u-type quasi lower semicontinuity on S.

Also, if X and Y are finite dimensional and F is locally bounded, then we have

(iii) u-type lower semicontinuity on S is equi\falent to lower K -semicontinuity on S.

Moreover, Y is the real-field, and F' is a singleton map, then u-type lower semicontinuity
and lower K-semicontinuity are equivalent to to the ordinary lower semicontinuity of real-
valued functions.

Now, we consider existence theorems for I-type and w-type minimal solutions.

Theorem 3.1 [9] Let X be a topological space and Y an ordered topological vector space.
If S is a nonempty compact subset of X and F : S — 2Y is a [-type quasi lower semicon-
tinuous and kclosed set-valued map, then there exists a [-type minimal solution of (SP).

Theorem 3.2 [9] Let X be a topological space and Y an ordered topological vector space.
If S is a nonempty compact subset of X and F : S — 2? i1s a u-type quasi lower semi-
continuous and wu-closed set-valued map, then there exists a u-type minimal solution of

(SP).
By using one of the above theorems, we can prove the following:

Corollary 3.1 Let X be a topological space, S a nonempty compact subset of X, and
f:8—=2isa lower semicontinuous, then there exists an element z, € S such that

f($0> = infavES f(T)

Let Y be the topological dual space of ¥, #* the null vector of Y*, and K+ the positive
polar cone of K, that is, K™ = {y* € Y*|(y*, k) > 0,Vk € K}.

Theorem 3.3 [9] Let (X,d) be a complete metric space, Y an ordered locally convex
space with the cone K. Also, F be a map from X to 2¥ satisfying the following conditions:

- o there exists y* € KT\ {#*} such that

- inf (y*, F'(z)) is finite for each x € S
- F(z1) <" F(as), 1,25 € S = inf (y*, F(z9)) — inf (y*, F(21)) > d(2, )
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o F:S — 2 is l-type lower semicontinuous and I-closed.

Then, there exists a I-type minimal solution of (SP).

Theorem 3.4 [9] Let (X,d) be a complete metric space, ¥ an ordered locally convex
space with the cone K. Also, F be a map from X to 2 satisfying the following conditions:

e there exists y* € K1\ {6*} such that

- inf (y*, F(z)) is finite for each z € S
. F(z)) <% F(x9), 71,22 € S = sup (y*, F(x2)) — sup (y*,F(zQ) > d(xq,21)

e F:S — 2Y is u-type lower semicontinuous and u-closed.

Then, there exists a u-type minimal solution of (SP).

Using one of the above theorems, we can show Phelps’ theorem, see [1]:

Corollary 3.2 Let (Y,]|-]|) be a Banach space, D a closed nonempty subset of ¥, and K
a convex cone of Y. If there exist y* € K and « > 0 such that

(i) (y*,-) is bounded from below on D and
(i) K C {y € Y [ (") + ellyll <0}
Then Min D = Extg D # 0.

4 Duality of Set-Valued Optimization

In this section, we consider a l-type set-valued minimization problem with an inequality
constraint (SP) and its dual problem (SD).

(SP) FMinimize F(x)
subject to  G(z) <' 0

(SD) - Maxirmize o(T)
subject to T € L (Y,Z)
where, X is a nonempty set, (Y, <g), (Z, <p) ordered vector spaces with ordering cones
K, L, respectively, F : X — 22 G : X — 2V, L(Y,Z) ={T : Y — Z | T is linear},
L,(Y,Z2) ={T € L(Y,Z) | T(K) C L}, Gr(G) = {(z,y) € X xY |y € G(z)} and
®: L(Y,Z) — 27 defined by ®(T) = I-Min{F (z) + T(y) | (z,y) € Gr(G)}.

Definition 4.1 (Solutions) z, is said to be

(i) an Lfeasible solution of (SP) if G(z) <' 6;
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(ii) an Fsolution of (SP) if z, is Feasible and
z € X,G(z) <' 0, F(z) <' F(z) implies F(z,) <' F(z).
Ty is said tQ’ be |
(i) a feasible solution of (SD) if
To € L.(Y,Z) and ®(T) # 0;
(ii) an l-solution of (SD) if T} is feasible and there exists Aq € ®(7Tp) such that
Ty e L.(Y,Z),A, € ®(T), Ay <' A implies 4, <" Ay

Proposition 4.1 (Weal.chuality)
Let z be an Ifeasible solution of (SP), T} an [-feasible solution of (SD), and (1, y;) an
element of Gr(G) satisfying F(z,) + Ti(y,) € ®(Ty). Then,

F(z) <' F(1) + Ti(y1) implies F(z1) + T2 (y1) <' F(zo)
Definition 4.2 (Lagrangian Function) Forz € X,y €Y, T € L(Y, Z),

L(z,y,T) = F(z) + T(y). | - |
In usual, y is an element of G(z).

Definition 4.3 (Saddle Point) o
(20,50, To) € Gr(G) x L (Y, Z) is said to be an l-saddle point of L if

(1) L(Z’,:%T()) Sl L(anyO;TO)) (xay) € Gf(G) = L(anyO7TO) Sl L(:I:ayaTO)

(H) L(x07y07T0) Sl L(x07y07T)7T € £+(}/7 Z): L(ZUO;?JO,T) Sl L(l'()? yO-;TO)

Theorem 4.1 Assume that K is closed, L is solid, and F' satisfies the following bounded
condition: for each z € Dom(F') there exists y* € KT such that

o (y*,y) > 0 for each y € K \ {6};
e infyep) (¥* y) > —o0.
If (20, %0, T0) € Gr(G) x L1(Y, Z) is an [-saddle point of L, then we have
(i) yo < 0 and Ty(yo) = 6;

(ii) 2o is an Fsolution of (SP);
(iii) Ty is an Fsolution of (SD).
Theorem 4.2 (zg,y0,7y) € Gr(G) x L, (Y, Z) is an lsaddle point of L if and only if

(1) L(‘T:y7T0) Sl L(I()?y())TO)a (xay) € GT(G) = L(:EO?ymTO) Sl L(Iay:TO)
(11) Yo < f and To(yo) =4.
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