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Abstract ,

A version of the multiple choice secretary problem called the multlple choice duration
problem, in which the objective is to maximize the time of possession of relatively best
objects, is treated. For the m choice duration problem with a known number of objects, there
exists a sequence of critical numbers (si,s7,...,Sm) such that, whenever there remain k
choices yet to be made, then the optimal strategy immediately selects a relatively best object

if it appears after or on time sk, lsksm. A simple recursive formula for calculating the
critical numbers when the number of objects tends to infinity will be given. It can be shown
that the multiple choice duration problem with a known number of objects is related to the
multiple choice (best-choice) secretary problem with an unknown number of objects having a
uniform prior on the actual number of objects. Extensions to models 1nvolv1ng an acquisition
cost or a replacement cost are made.

1. Introduction and summary

- Though Ferguson, Hardwick and Tamaki[2] considered the various duration models
extensively, they confined themselves to the study of the one choice duration problems. In
this paper, we attempt to extend the one choice problems to the- multiple choice problems.
For the m choice duration problem, we are allowed to choose at most m objects sequentially,
and receive each time a unit payoff as long as either of the chosen objects remains a
candidate(for simplicity we refer to a relatively best object as a candidate). Obviously only
candidates can be chosen, the objective being to maximize the expected payoff.

It can be shown in Section 2 that, for the m choice duration problem, there exists a
sequence of 1integer-valued critical numbers (si,83,...,Sy) such that, whenever there remain
k choices yet to be made, then the optimal strategy immediately selects a candidate if it
appears after or on time sy, 1sksm. Itis also shown that s, is non-increasing in k. sy/n
converges to some definite value s and a recursive formula for calculating sy in terms of

S3, S5,...,5x.; will be given by

s; _ exp{ {1 + /\/ 1- 2 (k—1+2)+(k -i+1)log s; ] (log S=iu)k-i+1 H ' 1)

(k-1+2)!

. m
Itis also shown that, as n—>o, (the maximum expected payoff)/n converges to - » silogs;.

k=1
The best-choice secretary problem is concerned with maximizing the probability of

choosing the best object from among all. We show that the multiple choice duration problem
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with a known number of n objects is equivalent to the multiple choice best-choice secretary
problem with an unknown number of dbjects having a uniform distribution on {1,2,...,n}.

In Sections 3 and 4, the multiple choice duration problem treated in Section 2 is
generalized by introducing cost. In Section 3, we consider a problem in which a constant
acquisition cost is incurred each time an object is ch‘osevn.» Thus far we have assumed that the
objects, once chosen, are possessed until the process terminates. We consider in Section 4 a
problem which allows us to possess only one object ata time. A constant replacement cost 18
incurred each time we replace a previously chosen object with a new one. The objectives
are, in Sections 3 and 4, to maximize the expected net payoff. It can be shown that, under an
appropriate cost condition, the optimal strategies have the same structure as that for the

problem involving no cost.

2. Mulitiple choice duration problem ’

We assume that all that can be observed are the relative ranks of the objects as they are
presented. Thusv if X; denotes the relative rank of the i th object among those observed so far
(i th object is a candidate if X;=1), the sequentially observed random variables are
X1,X2,...,Xn. It is well known, under the assumption that the objects are put in random
order with all n! permutations equally likely, that

(a) the X; are independent random variables and

(b) P{X;=j} = 14, for 1sjs=i, 1si=n.

2.1 The finite horizon problem

We consider the m choice duration problem as a Markovian decision process model.
Since serious decision of either selection or rejection takes place only when a candidate
appears, we describe the state of the process as (i,k), 1sisn, lsk=m if the i th object is a
candidate and there remain k more choices to be made.

Let Wi(k) be the expected additional payoff under an optimal strategy starting from state
(i,k), 1=i=n, lsk=m, and also let Ui(k)(Vi(k)) be the expected additional payoff when we
select(reject) the i th object and then continues search in an optimal manner. Then the

principle of optimality yields, for 1=sk=sm

W® = max{U®, v 1<icn, ?)
where
©_15i T iwkD 3)
U™ = o+ oW
B I el L)

and
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uations (2)-(4), combined with the boundary condition “W-(0)=f0, l=i<n, can be solved
ry i

. . . . (m)
recursively to yield the optimal strategy and the optimal value W]rn .

Theorem 2.1

~For the m choice duration problem, there exists a sequence of integer-valued critical
numbers (sl;sz,...,s@) such that, whenever there remain k choices yet to be made, i.e., we
have already chosen m - k objects, then the optimal strategy immediafely selects a candidate
if it appears after or on time si. Moreover, sy is non-increasing in k and determined by

sc = minfi : G = 0, ®)

It

where Gi(k), l=i=n, 1=<ksm, is defined recursively as

n
® _ GO (k-1)
¢¥=cV+ 3y LgV, ka2 ©)
j=max(i+1, Sk.1) J

starting with

G'=3 -2 A2t | ¢

j=i-’ J=l+1J t=

[

Let qm, m=1, be the expected payoff for the m choice problem, i.e., qm = Wﬁm). Then,
from the property of the optimal strategy, we have '

n

v, (Sm' )i 1 z 1,53 V(ml)
fim = t & J(l iy ’

J—Sm t—J J=8m

where Vi(m'l),mZZ, are calculated recursively as

with the interpretation that Vi(o) = 0.
2.2 Asymptotic results

It is of interest to investigate the asymptotic behaviors of sk, 1sk=m, and qp as n tends to
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infinity. To do this, we here employ an intuitive approach of approximating the infinite sum

By the corresponding integral. When m=1, Gi(l) is a Riemann approximation to the integral

1 1
W) = f d;/ f c;_yf QZZ =_(2+log2x)logx' ” ®
x x y ‘ -

Thus, from (5), ST =lim, _, Fl e2 is obtained as a unique root x€(0, 1) of the equatlon
GDx)=0

Define in general s; = lim Sk Then, in a similar way, we can obtain s; for k=2

successively as a unique root x€(0, s_;) of the equation
6®(x) =0, ©)

if G(k)(x), O<x<1, are defined recursively as

1
G®(x) = GW(x) + f SI;G(k‘l)(y) dy , k=2 (10)
max(x, s; D )

starting with G(I)(x) (note that Gi(k) is a Riemann approximation to G%®(x) if one lets i/n—>x
as n—>w).

From (9) and (10), SE is a root of the equation

1
GW(x) = - f %G(k-n(y) dy,
I

or equivalently, from (8)

sf(:exp{- 1+ﬂ/ 1+2[1 (—}-(l(—;l(y—)dy } , (D

%-1

Lemma 2.1

Define, for a positive integer k=1,

l "
A i= j (log x) Ghkix)dx, Osisk-1
Sk-i

1
a i = j (log ) G dx,  Osisk-l.
%:1 o
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Then Ay ; satisfies the following recursive relation
A =a i+ (L) A i1 - log st A, o], | (12
with the interpretation that Ay g = 0, k=0.

For simplicity, let Ax o be denoted by Ay. Then the repeated use of (12) immediately

gives the following recursive relation of Ay.

Lemma 2.2

Ay, k=1 satisfies the following recursive relation

A ki log ! )k i+l
Ay = - A,
Z (k-i)! (k- 1+1)! i1

Let Ny, k=1 be deﬁﬁed as | :
Ni = -(1+ V1 + 2A.4).
Then, from (11)
s = exp(Ny)
and we have the following lemma.

Lemma 2.3

Ny, k=1 satisfies the following recursive relation

k-1 ’ . : | i
_ {(k-i+2)+(k-i+)N; J(N;k-i+1
Nk—-{n«/ 1-2‘21 )] : (13)

Recursive formula (1) is an immediate consequence from (13). From (1) we successively

have

s] = exp{- 2} = 0.1353

3= expl-(1+1/Z )|~ 0.0799
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)

*_ expl (14 14/ ﬁ)\z

S exp< (1+3 15+ 141/7 | = 0.0493

s* = expl-[1+4/3L 2—15+14 792\ - 0.0311.
4 3]

45
See Table 1 for s and s (c=0).

Concerning the expected payoff, we have the following lemma.

Lemma 2.4
m

Let @& = lim, _Qm for m=1. Then qi=- D sglogsg.
k=1

Numerical values of the first four g, are q} =0.2707, g, =0.4725, q3=0.6208,
qs = 0.7287. See Table 2 for g5 and qj (c=0).
2.3 Mulitiple choice secretary problem with a random number of objects

It can be shown that the multiple choice duration problem with a known number of n
objects is equivalent to the multiple choice (best-choice) secretary problem with an unknown
number of objects having a uniform distribution on {1,2,...,n} in the sense that the optimal

strategies and the expected payoffs are the same.

3. Multiple choice duration problem with an acquisition cost

In this section, the multiple choice duration problem is generalized by imposing a constant
acquisition cost c(>0) each time an object is chosen.
3.1 The finite horizon problem

We treat the m choice duration problem with an acquisition cost c. Let the state of the
process be defined as in Section 2, and let also Wfk), ng) and ka) be defined similarly as the
expected additional net payoff under an optimal strategy starting from state (i,k), 1si=n,
1<k=m. Then the optimality equations (2)-(4) still hold if (3) is replaced by

Ui(k) +lz i1, z J~(—Jl—)W(k D 1<k<m.
i=i =i+l ‘ .

It is easy to see that
(1) —c+ lz 1
is unimodal with mode at the value

K(n) = min/1: i l.sl\
[
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Then, if cis large so as to make Ug()n) < 0, we do not choose a candidate no matter when it

appears. Thus we consider only the case UK( 20, namely,

cs Kfln) z L (14)
=K(n) J

Let b(n) = ma)d{i : Ui(l) = O}. Then it goes without saying that the optimal strategy selects no

object after time b(n), and hence our attention -can be concentrated on the candidates that

appear no later than b(n).

Theorem 3.1 ,

For the m choice duration problem with the cost condition (14), there exists a sequence of
integer-valued critical numbers (s1,S2,...,5y) such that, whenever there remain k choices yet
to be made, then the optimal strategy immediately selects a candidate if it appears after or on

time s, but no later than b(n). Moreover, sk is non-increasing in k and determined by
Sk = min{ i<b(n) : Gfk) = 0},

where Gi(k), 1<i<b(n), 1sk=m, is defined recursively as

k il k-
®_ gD 4 L gkD
G'=c"+ ) o1 k=2
j=max(i+1, sk.1)
starting with
M _ 21 b(zn) 1%
G .
il S W o S b(n)

3.2 Asymptotic results
Lemma 3.1

When csel, s; satisfies the following recursive relation

‘ k-1 [(1c; (T
i = {{1 A (1+10g " - 2y (e DBet. i ‘2‘; DB, i ﬂ .

i=1

Lety=1+logB. Then from Lemma 3.1 we can calculate sy, successively as follows.
51 = exp{-(1 +7))

sZ:exp{-(1+y 1+%y)}
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s§=exp{-{1+y«/1+%y{l+(1+§Ly)3/.2H:}.'

Let g, m=1, be the expected net payoff for the m choice duration problem when n tends
to infinity. Then we have

Lemma 3.2

. m
When cse-l, we have for m=1 g, = - ( > silog sy + mc) :
‘ k=1 v

Table 1

The asymptotic critical number sy, for some values of m and ¢

* * ¥ % * ¥ !
c B S Sp 83 S5 $10 Soo(=5) :

0.0 1.0000  0.1353  0.0799 0.0493  0.0199 0.0024 0.0000
0.1 08942 0.1513  0.0990 0.0698  0.0416 0.0281 - 0.0280
02 07717 0.1754  0.1294 0.1047 ~ 0.0839 . 0.0787 0.0787
03 06130 02208 0.1898 0.1761 0.1690 0.1684 0.1684

Table 2

The asymptotic expected net payoff gy, for some values of m and ¢

c @ o % qs dro d.
0.0 02707 04725  0.6208  0.8066 0.9656 1.0000
0.1 0.1858 03147 04005 = 0.4871 0.5195 0.5197
0.2 0.1053 0.1700 02062  0.2322 0.2363 0.2363
03 00335  0.0489 00547  0.0569 0.0570  0.0570
Lemma 3.3
" ! 2
qm=(l3-ﬁ)( -—C—,)
pB

4. Multiple choice duration problem with a replacement cost
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Thus far we have implicitly assumed that the objects, once chosen, are possessed until the
process terminates. Instead, in this sectioh, we are allowed to possess only one object at a
time and a constant cost d(>0) is incurred each time replacement takes place.

4.1 The finite horizon problem

We treat the m choice duration problem with a replacement cost d (the problem is here
referred to as the m choice problem if we are allowed to make replacement of the objects up
to m-1 times, m=2). Let the state of the process be defined as in Section 2, and let also W(k)
Ui(k) and Vi(k) be defined similarly as the expected additional net payoff under an optimal
strategy starting from state (i,k), 1<i<n, 1sksm. Then the optimality equations (2)-(4) still
hold if (3) is replaced by

Observe that, once the first choice is made, our problem reduces to the m-1 choice problem
with an acquisition cost d. Thus the main concemn of this problem is to determine when to

make the first choice.

n .
Ifd>——+ K(n) z 1, where K(n) is as defined in Section 3, no replacement takes place and

i=K(n)
hence the m choice problem reduces to the one choice problem treated in Section 2. -

In the case

as¥® 5 1 | (15)

i=K(n) J

the optimal strategy can be summarized as follows

Theorem 4.1 .

For the m choice duration problém with the cost condition (15), there exists a sequence of
integer-valued critical numbers (51,52,...,Sm-1,tm) Such that the optimal strategy first selects a
candidate that appears after or on time t,, and then it replaces the previously chosen object
with a new candidate that appears after or no time sk, but no later than c(n) if k more

replacements are available, 1<k<=m-1, where
c(n) = ma:d{i : Ui(l) > 0}.

Moreover, t,<s;_; and s, is non-increasing in k and these values are determined by
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‘tm=m'rn’isc(n):Gi(m)z i _Lil__dn_\

j=c(n)+1

Sk = min{ isc(n) : Gi(k) > O}, l<ks=m-1 ,

where Gi(k), I<i=c(n), I<sk=m, is defined recursively as

: c(n)
k) _ ~M) 1 k-1
GV =G '+ Z j-—l_ Gj , k=2

j=max(i+1, si1)
starting with

oW = il' i dn.
t cn)

j=i J _|=1+1J t=j

[¢]

(n

~

4.2 Asymptotic results

The cost condition (15) is reduced, as n—>, to
d=el : , (16)

Let = limn_,mir?). Then, under the condition (16), & is a unique root xEf[e1, 1) of the
equation —xlogx—d - We have the following result concerning the limiting values
K k=1and t, = lim tm

S = lim w0

n—>00 n’

Lemma 4.1

When d<e'l, t,is expressed in terms of sy, as

= epol +V(1+1og s5P - (2 + log d)log 3.,

where s]t, 1<k=m, satisfies the following recursive relation

Sy = exl{-{l + «/ (1+log 6)2 - Zl(zl (k2B .+(k—i+1)Bk+2’ ] }}

- (k-i+2)!

i=1

where
Bg,i= (log 8] Jei. (log f")k-l

Let A=1+1log 6. Then from Lemma 4.1

oo oy/1257)



85

t§=exp{-{1+ \/1+_—§—x3<1+(1+g—7\)3’2”}.

Let rm, m22, be the expected net payoff for the m choice duration problem when n tends
to infinity. Then we have

Lemma 4.2
(i) When d>e'l, 1y, =2e2

m-1
(i) Whend=el, rfy = —( Z sglog sy + tlog th, + (m - l)d)i '
k=1

Table 3

The asymptotic critical number t;, for some valuesof m andd

d b 5 5 o t
0.1 0.0916  0.0656 0.0397  0.0270  0.0268
0.2 0.1063  0.0885 0.0725 = 0.0684  0.0684
0.3 0.1243 0118 0.1154  0.1151  0.1151

Table 4

The asymptotic expected net payoff rj, for some values of m and d

d Iy I3 Is o r,

0.1 0.4047 0.4934 0.5828 0.6166 0.6168

0.2 0.3435 0.3845 0.4146 0.4198 0.4198

0.3 0.2927 0.3017 0.3056 0.3059 0.3059
Lemma 4.3

Let & be the unique root X€(0, e'1] of the equation - x log x = d for d<e'l. Then

rl:(a-a')(l-!@%)-tllogti ,
56

N ISR P SR

where

e
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