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STRONG CONVERGENCE TO FIXED POINTS OF
NON-LIPSCHITZIAN MAPPINGS IN BANACH SPACES

GANG-EuN KM

ABsTRACT. In this paper, we study the strong convergence of the modified Ishikawa and Das-
Debata iteration process of non-Lipschitzian mappings which satisfies the property (K) type
in a Banach spaces.

1. INTRODUCTION

Let C be a nonempty bounded closed convex subset of a Banach space E and let T be
a mapping of C into itself. Then T is said to be asymptotically nonezpansive [5] if there
exists a sequence {k,} of real numbers with lim,_,o k, = 1 such that

1Tz = T"y|| < knllz -yl

for z,y € C and n = 1,2,---. In particular, if k, = 1 for all n > 1, T is said to be
nonerpansive. The weaker definition (cf., Kirk [10]) requires that

limsup sup(||T"z — T"y|| — |lz —y||) <O
c

n—oo Y&

for each z € C, and that T be continuous for some N > 1. Consider a definition some-
where between these two: T is said to be weakly asymptotically nonexpansive provided T
is continuous and .
limsup sup (|T"z — T™y|| - |lz — y[|) < 0.
n—oo gz,yeC

Compare with the definition of asymptotically nonexpansive mappings in the intermediate
sense initiated by Bruck et al. [1]. For two mappings S,T of C into itself, we consider the
following modified Das-Debata iteration scheme (cf. Das-Debata [3]): z1 € C,

Tn+1 = anSn[ﬂnTnmn + (1 - /Bn)xn} + (1 - an)xn (*)

for all n > 1, where {a,,} and {8,} in [0,1]. In this case of S = T, such an iteration scheme
was considered by Tan-Xu [17]; see also Ishikawa [7], Mann [11], Schu [14]. Reich [12],
using Mann iteration procedure in a uniformly convex Banach space whose norm is Fréchet
differentiable, proved that the iterates {z, } defined by

Tnt1 = (1 — an)zn + @nTzp,
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for all n > 1, converge weakly to a fixed point of nonexpansive mappings T : C — C
under Y o7, a,(l — ap) = 0o0. Tan-Xu [16] improved a result of Reich [12] to the case of
the Ishikawa type iteration. On the other hand, Takahashi-Tamura [15] studied the weak
convergence of iterates {z,} defined by :

Tptl = anS[BnTxn + (1 - 571)1"71] + (1 - an)xn

for all n > 1, in a uniformly convex Banach space which satisfies Opial’s condition or whose
norm is Fréchet differentiable. Recently Verma [18] proved the following interesting result
using modified iterative algorithm: Let H be a real Hilbert space and C be a nonempty
closed convex subset of H. Let T : C — C be a relaxed Lipschitz (see Definition below)
and Lipschitz continuous operator on C. Let r > 0 and s > 1 be constants for relaxed
Lipschitzity and Lipschitz continuity of T', respectively. Let F' = {z € C : Tz = z} be
nonempty, and let {e,} be a sequence in [0,1] such that > >° /@, = co. Then for any zg
in C the sequence {z,} defined by

Znt1 = (1 — an)zn + an[(1 = t)z, + tTz,]

forn>0,0<k=((1-1t)2—-2t(1—t)r+t2s2)2 < 1 for all t such that 0 < t < (—12;(-21—%
and r < s, converges to a fixed point of T

In this paper, we first show how to construct (in a uniformly convex Banach space which
neither satisfies the Opial property nor has a Fréchet differentiable norm) a unique fixed
point of a non-Lipschitzian mapping T : C — C which satisfies the property (K) type (see
Definition 2.2 below) as the strong limt of a sequence {z,} defined by a modified Ishikawa
iteration of the form

Tniy1 = T [B Tz, + (1 — Brn)zn] + (1 — an)zn,

where {a,} and {8,} in [0,1] are chosen so that 3 > a,(1 —a,) =0 and 0 < B, < b
for some b with 0 < b < 1. Next, we consider the sequence {z,} defined by (x) converges
strongly to a common fixed point of T' and S under another conditions, that is, in cases when
{on} and {B,} are chosen so that a, € [a,b] and 3, € [0,b] or o, € [a,1] and 3, € [a,b]
for some a,b with 0 < a < b < 1. Finally, we consider the sequence {z,} defined by (x)
converges strongly to a common fixed point of 7" and S under another parameter conditions,
that is, in cases when {ay} is a sequence in [0,1] such that e, — 0, > o2 @, = 00 and
0<gB,<1lforalln>1.

2. PRELIMINARIES AND SOME EXAMPLES

Let H be a real Hilbert space. We denote by (z,y) and ||z|| the inner product and
the norm on H for z,y € H, respectively. An operator T : H — H is said to be relazed
Lipschitz [18] if, for all z,y € H, there exists a constant 7 > 0 such that

(Tz — Ty,z —y) < —r|z — y|%

Throughout this paper, let E be a Banach space. Recall that E is said to be uniformly
convez if the modulus of convexity g = dg(€), 0 < € < 2, of E defined by

50 = int(1 - XU oy € B ol < 1wl < 1, le -l 2 0
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satisfies the inequality g (€) > 0 for every € € (0,2]. With each z € E, we associate the set
J(@) ={z* € E*: (z,z") = ||z||* = ||=*]|*},

where (z,z*) denotes the value of z* at z. Then J is said to be the duality mapping of E.

Let C be a nonempty closed convex subset of E' and let T' be a mapping from C into itself.
Then we denote by F(T) the set of all fixed points of T, i.e., F(T) = {x € C : Tz = z}.
When {z,} is a sequence in E, then z,, — z (z, — z) will denote strong (weak) convergence
of the sequence {z,} to z. We denote by R the set of all real numbers.

Let C be a nonempty closed convex subset of E. If F(T) # 0, the mapping T : C — E
is said to be strictly hemicontractive [2] if there exists t > 1 such that for all z € C and
y € F(T) there exists j € J(z — y) such that

. 1 :
Re(Tz —y,j) < <llz - yll?.

Definition 2.1 [8]. Let C be a nonempty subset of E. Let T be a mappings of C into
itself with F(T) # 0. Then T is said to be of (H) type if there exists ¢ > 1 such that for
each z € C and y € F(T), there exists j € J(z —y) such that '

1 Y
limsupRe(T"z — y,j) < —||lz — Z/“2-

n—oo t
Here we need the following stronger concept than (H) type for constructing an approxi-
mating fixed point of a non-Lipschitzian self-mapping in a Banach space.

Definition 2.2. Let C be a nonempty subset of E. Let T be a mappings of C' into itself
with F(T) # 0. Then T is said to be of (K) type if, for each z € C and y € F(T), there
exists j € J(z — y) such that

limsupRe(T"z — y,j) < 0.

n—oo

It is obvious that if T : C — C is mapping with F(T) = {y} and T"z — y asn — 00
for each z € C, then T is of (K) type. Every relaxed Lipschitz mappings are obviously of
(K) type.

Example 2.1 [2]. Take E = C = R with the usual norm | -|. Let T : C' — C be defined
by

Tz = 3T COST
for all x € C. Clearly F(T) = {0} and, since T"z — 0 for each z € C, T is of (K) type.

Example 2.2. Take E = C' = R with the usual norm |-} andlet 0 <k < 1. Let T : C — C
be defined by
Tz =kzx

for all z € C. Clearly F(T) = {0}. Since T"z — 0 for each z € C, T is also of (K) type.
Example 2.3. Take E = R with the usual norm |-| and let C = (0,2]. Let T : C' — C be

defined by
Tz =+/z

V z € C. Clearly F(T) = {1} and, since T"z — 1 as n — oo for each z € C, T is weakly
asymptotically nonexpansive which is of (K) type but not Lipschitz mapping.
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3. STRONG CONVERGENCE THEOREMS
We first begin with the following:

Lemma 3.1 [1]. Suppose {v,} is a bounded sequence of real numbers and {anm} is a
doubly-indexed sequence of real numbers which satisfy lim SUD;, - 00 M SUP,, o Gnm < 0,
Unt+m < Un +an,m for eachn,m > 1. Then {v,} converges to an v € R; an,m can be taken
to be independent of n, an ym = am, then v < v, for each n.

Lemma 3.2 [6]. For any z,y € E and j € J(z + y), we obtain
lz + yl? < l|z]|* + 2Re(y, 7).

From the proof of Lemma 3 of [16], we note

Lemma 3.3. Let ap, by, > 0 forn> 1. IfY 2 a, = co and Yo L anbn < 00, then
liminf, o b, = 0.

Using Lemma 3.1-3.3, we obtain the following Theorem 3.1.

Theorem 3.1 [9]. Let E be a uniformly convex Banach space and let C be a nonempty
bounded closed convex subset of E. Suppose that T : C — C is both weakly asymptotically
nonexpansive and of (K) type. Put

cn = sup (|[T"z —T"y|| - ||z — y||) V0,
z,yeC

so that 37 | ¢, < 00. Then for any z; in C, the sequence {z,} defined by
Tntl = anTnyn + (1 - an)xn; Yn = ﬁnTnIn + (1 - /Bn)xna

which {an} and {B,} are chosen so that an, € [0,1] and 322 an(1 — an) = oo and
0<Bn <b<1foralln>1, converge strongly to the unique fixed point of T.

Remark. If {a,} is a sequence in [0, 1] which is bounded away from 0 and 1, i.e., a <
an < b for some a,b with 0 <a < b <1, then Y oo an(l — a,) = co.

As a direct consequence of Theorem 3.1 with 3, = 0, we have the following result.

Corollary 3.1. Let E be a uniformly convex Banach space and C be a nonempty bounded
closed convex subset of E. Let T : C — C be both weakly asymptotically nonexpansive
and of (K) type. Put

tn = sup (|T"z — Ty - ||z - y]) v 0,
z,yeC

so that Zf;l ¢n < 00. Then for any z; in C, the sequence {x,} defined by
Tnt1 = (1 — an)zpn + Tz,

which {a,} is chosen so that o, € [0,1] and Yoo 1an(l—ay,) = oo for alln > 1, converge
strongly to the unique fixed point of T.
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Lemma 3.4 [13]. Let E be a uniformly convex Banach space, 0 < b < t, < ¢ <1
for alln > 1, a > 0. Suppose that {z,}52; and {y,}32, are sequences of E such that
limsup,,_,, |z=ll < @, limsup,_,o llynl] < @, and lim,—oo [|tnZn + (1 = tn)ynll = a. Then
limy, oo ||Zn — Ynl| = 0.

By using Lemma 3.4, we obtain the following Theorem 3.2.

Theorem 3.2. Let E be a uniformly convex Banach space and C' be a nonempty bounded
closed convex subset of E. Let T,S : C — C be both weakly asymptotically nonexpansive
and of (K) type with F(T)(F(S) # 0. Put

cn = max(0, sup (|T"z — T"y|| — ||z — yl|), sup (||S"z — S™y| = llz —yl})),
z,yeC z,yeC

so that Y o> | ¢, < 0o. Then for any z1 in C, the sequence {z,} defined by (*), which {a,}
and (3, are chosen so that a, € [a,b] and 3, € [0,b] or oy, € [a,1] and 3, € [a,b] for some
a,b with 0 < a < b < 1, converge strongly to a common fixed point of T and S.

The following lemma, is very useful to prove the convergence of a sequence to 0. Compare
with Lemma 1 due to Dunn [4].

Lemma 3.5 [19]. Let (3, be a nonnegative sequence satisfying

16n+1 S (1 - 5n)ﬁn +on

with 8, € [0,1], >°2, 6; = 00, and 0, = 0(6,,). Then lim,_o0 By = 0.

Theorem 3.3. Let C be a nonempty bounded closed convex subset of a Banach space
E. Let T,S : C — C be both weakly asymptotically nonexpansive and of (K) type with
F(TYNF(S)#0. Put

cn = max(0, sup (|T"z —T"y[| — llz — yll), sup (|S"z — S™y|| - llz —yl)),
z,yeC z,yeC

so that Y - | ¢, < co. Then for any x; in C, the sequence {z} defined by (x), which {ay}
is a sequence in [0,1] such that a, — 0 and > .2 j o, =00 and 0 < 8, <1 for alln > 1,
converge strongly to a common fixed point of T and S.

As a direct consequence of Theorem 3.3 with 8, = 0, we have the following result.

Corollary 3.2. Let C be a nonempty bounded closed convex subset of a Banach space
E. Let T,S : C — C be both weakly asymptotically nonexpansive and of (K) type with
F(TYNF(S)#0. Put

¢n = max(0, sup (|T"z —T"y|| — |z — yl)), sup (|S"z - S"y|| - [z —yl)),
z,yeC z,yeC

so that Y o | ¢, < oo. Then for any z, in C, the sequence {z,} defined by
Tnt1 = (1 — an)xn + Tz,

which {ay} is a sequence in [0,1] such that a, — 0 and 3 .o, &, = oo for all n > 1,
converge strongly to a common fixed point of T and S.
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