STRONG CONVERGENCE TO FIXED POINTS OF NON-LIPSCHITZIAN MAPPINGS IN BANACH SPACES

GANG-EUN KIM

ABSTRACT. In this paper, we study the strong convergence of the modified Ishikawa and Das-Debata iteration process of non-Lipschitzian mappings which satisfies the property (K) type in a Banach spaces.

1. Introduction

Let C be a nonempty bounded closed convex subset of a Banach space E and let T be a mapping of C into itself. Then T is said to be asymptotically nonexpansive [5] if there exists a sequence $\{k_n\}$ of real numbers with $\lim_{n\to\infty} k_n = 1$ such that

$$||T^n x - T^n y|| \le k_n ||x - y||$$

for $x, y \in C$ and $n = 1, 2, \cdots$. In particular, if $k_n = 1$ for all $n \geq 1$, T is said to be nonexpansive. The weaker definition (cf., Kirk [10]) requires that

$$\limsup_{n \to \infty} \sup_{y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0$$

for each $x \in C$, and that T^N be continuous for some $N \ge 1$. Consider a definition somewhere between these two: T is said to be weakly asymptotically nonexpansive provided T is continuous and

$$\limsup_{n \to \infty} \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0.$$

Compare with the definition of asymptotically nonexpansive mappings in the intermediate sense initiated by Bruck et al. [1]. For two mappings S, T of C into itself, we consider the following modified Das-Debata iteration scheme (cf. Das-Debata [3]): $x_1 \in C$,

$$x_{n+1} = \alpha_n S^n [\beta_n T^n x_n + (1 - \beta_n) x_n] + (1 - \alpha_n) x_n \tag{*}$$

for all $n \ge 1$, where $\{\alpha_n\}$ and $\{\beta_n\}$ in [0,1]. In this case of S = T, such an iteration scheme was considered by Tan-Xu [17]; see also Ishikawa [7], Mann [11], Schu [14]. Reich [12], using Mann iteration procedure in a uniformly convex Banach space whose norm is Fréchet differentiable, proved that the iterates $\{x_n\}$ defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n,$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B20; Secondary 47H10.

Key words and phrases. relaxed Lipschitz, strictly hemi-contractive, (K) type, strong convergence, approximating fixed points, weakly asymptotically nonexpansive mappings.

for all $n \geq 1$, converge weakly to a fixed point of nonexpansive mappings $T: C \to C$ under $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$. Tan-Xu [16] improved a result of Reich [12] to the case of the Ishikawa type iteration. On the other hand, Takahashi-Tamura [15] studied the weak convergence of iterates $\{x_n\}$ defined by

$$x_{n+1} = \alpha_n S[\beta_n T x_n + (1 - \beta_n) x_n] + (1 - \alpha_n) x_n$$

for all $n \geq 1$, in a uniformly convex Banach space which satisfies Opial's condition or whose norm is Fréchet differentiable. Recently Verma [18] proved the following interesting result using modified iterative algorithm: Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let $T:C\to C$ be a relaxed Lipschitz (see Definition below) and Lipschitz continuous operator on C. Let $r\geq 0$ and $s\geq 1$ be constants for relaxed Lipschitzity and Lipschitz continuity of T, respectively. Let $F=\{x\in C:Tx=x\}$ be nonempty, and let $\{\alpha_n\}$ be a sequence in [0,1] such that $\sum_{n=0}^{\infty}\alpha_n=\infty$. Then for any x_0 in C the sequence $\{x_n\}$ defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n[(1 - t)x_n + tTx_n]$$

for $n \ge 0$, $0 < k = ((1-t)^2 - 2t(1-t)r + t^2s^2)^{\frac{1}{2}} < 1$ for all t such that $0 < t < \frac{2(1+r)}{(1+2r+s^2)}$ and $t \le s$, converges to a fixed point of T.

In this paper, we first show how to construct (in a uniformly convex Banach space which neither satisfies the Opial property nor has a Fréchet differentiable norm) a unique fixed point of a non-Lipschitzian mapping $T:C\to C$ which satisfies the property (K) type (see Definition 2.2 below) as the strong limt of a sequence $\{x_n\}$ defined by a modified Ishikawa iteration of the form

$$x_{n+1} = \alpha_n T^n [\beta_n T^n x_n + (1 - \beta_n) x_n] + (1 - \alpha_n) x_n,$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ in [0,1] are chosen so that $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$ and $0 \leq \beta_n < b$ for some b with 0 < b < 1. Next, we consider the sequence $\{x_n\}$ defined by (*) converges strongly to a common fixed point of T and S under another conditions, that is, in cases when $\{\alpha_n\}$ and $\{\beta_n\}$ are chosen so that $\alpha_n \in [a,b]$ and $\beta_n \in [0,b]$ or $\alpha_n \in [a,1]$ and $\beta_n \in [a,b]$ for some a,b with $0 < a \leq b < 1$. Finally, we consider the sequence $\{x_n\}$ defined by (*) converges strongly to a common fixed point of T and S under another parameter conditions, that is, in cases when $\{\alpha_n\}$ is a sequence in [0,1] such that $\alpha_n \to 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $0 \leq \beta_n \leq 1$ for all $n \geq 1$.

2. Preliminaries and some examples

Let H be a real Hilbert space. We denote by $\langle x,y\rangle$ and ||x|| the inner product and the norm on H for $x,y\in H$, respectively. An operator $T:H\to H$ is said to be relaxed Lipschitz [18] if, for all $x,y\in H$, there exists a constant r>0 such that

$$\langle Tx - Ty, x - y \rangle \le -r ||x - y||^2.$$

Throughout this paper, let E be a Banach space. Recall that E is said to be uniformly convex if the modulus of convexity $\delta_E = \delta_E(\epsilon)$, $0 < \epsilon \le 2$, of E defined by

$$\delta_E(\epsilon) = \inf\{1 - \frac{\|x + y\|}{2} : x, y \in E, \|x\| \le 1, \|y\| \le 1, \|x - y\| \ge \epsilon\}$$

STRONG CONVERGENCE TO FIXED POINTS

satisfies the inequality $\delta_E(\epsilon) > 0$ for every $\epsilon \in (0,2]$. With each $x \in E$, we associate the set

$$J(x) = \{x^* \in E^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\},\$$

where $\langle x, x^* \rangle$ denotes the value of x^* at x. Then J is said to be the duality mapping of E. Let C be a nonempty closed convex subset of E and let T be a mapping from C into itself. Then we denote by F(T) the set of all fixed points of T, i.e., $F(T) = \{x \in C : Tx = x\}$. When $\{x_n\}$ is a sequence in E, then $x_n \to x$ ($x_n \to x$) will denote strong (weak) convergence of the sequence $\{x_n\}$ to x. We denote by $\mathbb R$ the set of all real numbers.

Let C be a nonempty closed convex subset of E. If $F(T) \neq \emptyset$, the mapping $T: C \to E$ is said to be *strictly hemicontractive* [2] if there exists t > 1 such that for all $x \in C$ and $y \in F(T)$ there exists $j \in J(x-y)$ such that

$$\operatorname{Re}\langle Tx - y, j \rangle \le \frac{1}{t} ||x - y||^2.$$

Definition 2.1 [8]. Let C be a nonempty subset of E. Let T be a mappings of C into itself with $F(T) \neq \emptyset$. Then T is said to be of (H) type if there exists t > 1 such that for each $x \in C$ and $y \in F(T)$, there exists $j \in J(x-y)$ such that

$$\limsup_{n\to\infty} \operatorname{Re}\langle T^n x - y, j \rangle \le \frac{1}{t} \|x - y\|^2.$$

Here we need the following stronger concept than (H) type for constructing an approximating fixed point of a non-Lipschitzian self-mapping in a Banach space.

Definition 2.2. Let C be a nonempty subset of E. Let T be a mappings of C into itself with $F(T) \neq \emptyset$. Then T is said to be of (K) type if, for each $x \in C$ and $y \in F(T)$, there exists $j \in J(x-y)$ such that

$$\limsup_{n\to\infty} \operatorname{Re}\langle T^n x - y, j\rangle \le 0.$$

It is obvious that if $T: C \to C$ is mapping with $F(T) = \{y\}$ and $T^n x \to y$ as $n \to \infty$ for each $x \in C$, then T is of (K) type. Every relaxed Lipschitz mappings are obviously of (K) type.

Example 2.1 [2]. Take $E = C = \mathbb{R}$ with the usual norm $|\cdot|$. Let $T: C \to C$ be defined by

$$Tx = \frac{2}{3}x\cos x$$

for all $x \in C$. Clearly $F(T) = \{0\}$ and, since $T^n x \to 0$ for each $x \in C$, T is of (K) type.

Example 2.2. Take $E = C = \mathbb{R}$ with the usual norm $|\cdot|$ and let 0 < k < 1. Let $T : C \to C$ be defined by

$$Tx = kx$$

for all $x \in C$. Clearly $F(T) = \{0\}$. Since $T^n x \to 0$ for each $x \in C$, T is also of (K) type.

Example 2.3. Take $E = \mathbb{R}$ with the usual norm $|\cdot|$ and let C = (0,2]. Let $T: C \to C$ be defined by

$$Tx = \sqrt{x}$$

 $\forall x \in C$. Clearly $F(T) = \{1\}$ and, since $T^n x \to 1$ as $n \to \infty$ for each $x \in C$, T is weakly asymptotically nonexpansive which is of (K) type but not Lipschitz mapping.

3. Strong convergence theorems

We first begin with the following:

Lemma 3.1 [1]. Suppose $\{v_n\}$ is a bounded sequence of real numbers and $\{a_{n,m}\}$ is a doubly-indexed sequence of real numbers which satisfy $\limsup_{n\to\infty}\lim\sup_{m\to\infty}a_{n,m}\leq 0$, $v_{n+m}\leq v_n+a_{n,m}$ for each $n,m\geq 1$. Then $\{v_n\}$ converges to an $v\in\mathbb{R}$; $a_{n,m}$ can be taken to be independent of n, $a_{n,m}=a_m$, then $v\leq v_n$ for each n.

Lemma 3.2 [6]. For any $x, y \in E$ and $j \in J(x + y)$, we obtain

$$||x+y||^2 \le ||x||^2 + 2Re\langle y, j \rangle.$$

From the proof of Lemma 3 of [16], we note

Lemma 3.3. Let a_n , $b_n > 0$ for $n \ge 1$. If $\sum_{n=1}^{\infty} a_n = \infty$ and $\sum_{n=1}^{\infty} a_n b_n < \infty$, then $\lim \inf_{n \to \infty} b_n = 0$.

Using Lemma 3.1-3.3, we obtain the following Theorem 3.1.

Theorem 3.1 [9]. Let E be a uniformly convex Banach space and let C be a nonempty bounded closed convex subset of E. Suppose that $T:C\to C$ is both weakly asymptotically nonexpansive and of (K) type. Put

$$c_n = \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|) \vee 0,$$

so that $\sum_{n=1}^{\infty} c_n < \infty$. Then for any x_1 in C, the sequence $\{x_n\}$ defined by

$$x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n, \qquad y_n = \beta_n T^n x_n + (1 - \beta_n) x_n,$$

which $\{\alpha_n\}$ and $\{\beta_n\}$ are chosen so that $\alpha_n \in [0,1]$ and $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$ and $0 \le \beta_n < b < 1$ for all $n \ge 1$, converge strongly to the unique fixed point of T.

Remark. If $\{\alpha_n\}$ is a sequence in [0,1] which is bounded away from 0 and 1, i.e., $a \le \alpha_n \le b$ for some a, b with $0 < a \le b < 1$, then $\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) = \infty$.

As a direct consequence of Theorem 3.1 with $\beta_n = 0$, we have the following result.

Corollary 3.1. Let E be a uniformly convex Banach space and C be a nonempty bounded closed convex subset of E. Let $T:C\to C$ be both weakly asymptotically nonexpansive and of (K) type. Put

$$c_n = \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|) \vee 0,$$

so that $\sum_{n=1}^{\infty} c_n < \infty$. Then for any x_1 in C, the sequence $\{x_n\}$ defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n,$$

which $\{\alpha_n\}$ is chosen so that $\alpha_n \in [0,1]$ and $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$ for all $n \geq 1$, converge strongly to the unique fixed point of T.

STRONG CONVERGENCE TO FIXED POINTS

Lemma 3.4 [13]. Let E be a uniformly convex Banach space, $0 < b \le t_n \le c < 1$ for all $n \ge 1$, $a \ge 0$. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are sequences of E such that $\limsup_{n\to\infty} \|x_n\| \le a$, $\limsup_{n\to\infty} \|y_n\| \le a$, and $\limsup_{n\to\infty} \|t_nx_n + (1-t_n)y_n\| = a$. Then $\lim_{n\to\infty} \|x_n - y_n\| = 0$.

By using Lemma 3.4, we obtain the following Theorem 3.2.

Theorem 3.2. Let E be a uniformly convex Banach space and C be a nonempty bounded closed convex subset of E. Let $T, S : C \to C$ be both weakly asymptotically nonexpansive and of (K) type with $F(T) \cap F(S) \neq \emptyset$. Put

$$c_n = \max(0, \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|), \sup_{x,y \in C} (\|S^n x - S^n y\| - \|x - y\|)),$$

so that $\sum_{n=1}^{\infty} c_n < \infty$. Then for any x_1 in C, the sequence $\{x_n\}$ defined by (*), which $\{\alpha_n\}$ and β_n are chosen so that $\alpha_n \in [a,b]$ and $\beta_n \in [0,b]$ or $\alpha_n \in [a,1]$ and $\beta_n \in [a,b]$ for some a,b with $0 < a \le b < 1$, converge strongly to a common fixed point of T and S.

The following lemma is very useful to prove the convergence of a sequence to 0. Compare with Lemma 1 due to Dunn [4].

Lemma 3.5 [19]. Let β_n be a nonnegative sequence satisfying

$$\beta_{n+1} \le (1 - \delta_n)\beta_n + \sigma_n$$

with $\delta_n \in [0,1]$, $\sum_{i=1}^{\infty} \delta_i = \infty$, and $\sigma_n = o(\delta_n)$. Then $\lim_{n \to \infty} \beta_n = 0$.

Theorem 3.3. Let C be a nonempty bounded closed convex subset of a Banach space E. Let $T, S : C \to C$ be both weakly asymptotically nonexpansive and of (K) type with $F(T) \cap F(S) \neq \emptyset$. Put

$$c_n = \max(0, \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|), \sup_{x,y \in C} (\|S^n x - S^n y\| - \|x - y\|)),$$

so that $\sum_{n=1}^{\infty} c_n < \infty$. Then for any x_1 in C, the sequence $\{x_n\}$ defined by (*), which $\{\alpha_n\}$ is a sequence in [0,1] such that $\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $0 \le \beta_n \le 1$ for all $n \ge 1$, converge strongly to a common fixed point of T and S.

As a direct consequence of Theorem 3.3 with $\beta_n = 0$, we have the following result.

Corollary 3.2. Let C be a nonempty bounded closed convex subset of a Banach space E. Let $T, S : C \to C$ be both weakly asymptotically nonexpansive and of (K) type with $F(T) \cap F(S) \neq \emptyset$. Put

$$c_n = \max(0, \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|), \sup_{x,y \in C} (\|S^n x - S^n y\| - \|x - y\|)),$$

so that $\sum_{n=1}^{\infty} c_n < \infty$. Then for any x_1 in C, the sequence $\{x_n\}$ defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n,$$

which $\{\alpha_n\}$ is a sequence in [0,1] such that $\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$ for all $n \ge 1$, converge strongly to a common fixed point of T and S.

G.E. KIM

REFERENCES

- 1. R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), 169-179.
- 2. C. E. Chidume and M. O. Osilike, Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces, Numer. Funct. Anal. & Optimiz. 15(7&8) (1994), 779-790.
- 3. G. Das and J. P. Debata, Fixed points of quasi-nonexpansive mappings, Indian J. Pure Appl. Math. 17 (1986), 1263-1269.
- 4. J. C. Dunn, Iterative construction of fixed points for multivalued operators of the monotone type, J. Funct. Anal. 27 (1978), 38-50.
- 5. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- 6. Z. Haiyun and J. Yuting, Approximation of fixed points of strictly pseudocontractive maps without Lipschitz assumption, Proc. Amer. Math. Soc. 125 (1997), 1705-1709.
- 7. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- 8. T. H. Kim and E. S. Kim, Remarks on approximation of fixed points of strictly pseudocontractive mappings, submitted.
- 9. G. E. Kim and T. H. Kim, Approximating fixed points of non-Lipschitzian mappings in Banach spaces, submitted.
- 10. W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346.
- 11. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- 12. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276.
- 13. J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153–159.
- 14. J. Schu, Iterative contraction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407–413.
- 15. W. Takahashi and T. Tamura, Convergence theorems for a pair of nonexpansive mappings, J. Convex Analysis, 2(4) (1997), 1-12.
- 16. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa Iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.
- 17. K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 733–739.
- 18. R. U. Verma, An iterative algorithm on fixed points of relaxed Lipschitz operators, J. Appl. Math. Stoc. Anal. 10 (1997), 187-189.
- 19. X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc. 113 (1991), 727-731.

PUKYONG NATIONAL UNIVERSITY, DEPARTMENT OF APPLIED MATHEMATICS, PUSAN 608-737, KOREA