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1. INTRODUCTION

Let $H$ be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $||\cdot||$ . Let $C$ be a subset
of $H$ . Then, a mapping $T$ of $C$ into itself is called nonexpansive if $||Tx-Ty||\leq||x-y||$

for all $x,$ $y\in C$ . We denote by $F(T)$ the set of fixed points of $T$ .

The first nonlinear ergodic theorem for nonexpansive mappings in a Hilbert space was
established by Baillon [2]: Let $C$ be a nonempty closed convex subset of a Hilbert space
and let $T$ be a nonexpansive mapping of $C$ into itself. If for some $x_{0}\in C,$ $\{T^{n}x_{0:n}\in \mathbb{N}\}$

is bounded, then for each $x\in C$ , the Ces\‘aro means

$S_{n}(x)= \frac{1}{n}\sum_{k=0}^{n-1}T^{k}X$

converge weakly to some $y\in F(T)$ . In Baillon’s theorem, putting $y=Px$ for each $x\in C$ ,
$P$ is a nonexpansive retraction of $C$ onto $F(T)$ such that $PT^{n}=T^{n}P=P$ for all positive
integers $n$ and $Px\in\overline{co}\{T^{n_{X:n}}=1,2, \ldots\}$ for each $x\in C,$ where $\overline{Co}A$ is the closure of the
convex hull of $A$ . Takahashi $[22, 23]$ proved the existence of such retractions, (

$‘ \mathrm{e}\mathrm{r}\mathrm{g}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{C}$ re-
tractions”, for noncommutative semigroups of nonexpansive mappings in a Hilbert space.
Rod\’e [19] found a sequence of means on the semigroup, generalizing the Ces\‘aro means on
the positive integers, such that the corresponding sequence of mappings converges to an
ergodic retraction onto the set of common fixed points. Recently Takahashi [25] proved a
nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings without
convexity in a Hilbert space. On the other hand, Miyadera and Kobayasi [17] introduced
the notion of almost-orbits of a one-parameter nonexpansive semigroup on $C$ and stud-
ied wealc and strong convergence theorems of such almost-orbits (see also [6, 7]). Then,
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Rouhani $[20, 21]$ introduced the notion of almost nonexpansive sequences and curves in a
Hilbert space and proved weak and strong convergence theorems for such sequences and
curves. Kada and Takahashi [12] introduced the notion of almost nonexpansive curves
over a commutative semigroup. They studied the asymptotic behavior of such almost
nonexpansive curves over a commutative semigroup.

In this article, we recall the notion of almost nonexpansive sequences and curves over
a commutative semigroup and nonlinear ergodic theorems for such sequences and curves.
Further, we introduce the notion of almost nonexpansive curves over a noncommutative
semigroup and for any almost nonexpansive curve $u$ , consider generalized fixed point set
$F(u)$ . Then, we prove nonlinear ergodic theorems for almost nonexpansive curves over a
right reversible semitopological semigroup.

2. THEOREMS FOR NONEXPANSIVE SEQUENCES AND CURVES

Throughout this article, we assume that $C$ is a nonempty closed convex subset of a
real Hilbert space $H$ . We also assume that $D$ is a subspace of $B(S)$ containing constants

unless other specified. We write $x_{n}arrow x$ (or $w- \lim_{n}x_{n}=x$ ) to indicate that the sequence

$\{x_{n}\}$ of vectors converges weakly to $x$ . Similarly $x_{n}arrow x$ (or $\lim_{narrow\infty}x_{n}=x$ ) and $x_{n}arrow w^{*}x$

(or $w^{*}- \lim_{narrow\infty}X_{n}=x$ ) will symbolize strong convergence and $w^{*}$ -convergence, respectively.

We denote by $\mathbb{R},$
$\mathbb{R}^{+}$ and $\mathbb{N}$ the set of all real numbers, nonnegative real numbers and

nonnegative integer, respectively. For a subset $A$ of $H,$ $coA$ and $\overline{co}A$ mean the convex
hull of $A$ and the closure of convex hull of $A$ , respectively.

The first nonlinear ergodic theorem for nonexpansive mappings in a Hilbert space was
established by Baillon [2]:

Theorem 2.1 ([2]). Let $C$ be a $nonempt8Jclo\mathit{8}ed$ convex subset of a Hilbert space and let
$T$ be a nonexpansive mapping of $C$ into itself. If for some $x_{0}\in C,$ $\{T^{n}x_{0} : n\in \mathrm{N}\}$ is
bounded, then for each $x\in C$ , the Ces\‘aro means

$S_{n}(X)= \frac{1}{n}\sum_{k=0}^{n-1}T^{k}X$

converge weakly to a fixed point of $T$.
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Many mathematicians obtained generalizations of Baillon’s result [2] (for example, see,
[17, 19, 22, 23, 25] $)$ . Among other things, by modifying the method used by $\mathrm{B}.\mathrm{D}$ . Rouhani
and S. Kakutani (” Ergodic theorems for nonexpansive nonlinear operators in a Hilbert
space”, preprint, 1984) and $\mathrm{B}.\mathrm{D}$ . Rouhani (”Ergodic theorems for nonexpansive sequences
in Hilbert spaces and related problems”, Part I, Thesis, Yale University, and ” A new
proof of the weak convergence theorems for nonexpansive sequence and curves in Hilbert
spaces,” preprint, 1984), Rouhani $[20, 21]$ introduced the notion of almost nonexpansive
sequences and curves in a Hilbert space and studied nonlinear ergodic theorems for such
sequences and curves. Let $\{x_{n}\}$ be a sequence in $H$. Then, $\{x_{n}\}$ is called an almost
nonexpansive curve if there exists a nonnegative real-valued function $\epsilon(\cdot, \cdot)$ on $\mathrm{N}\cross \mathrm{N}$ such
that

$||x_{i+k}-x_{j}+k||2\leq||_{X_{i}}-X_{j}||^{2}+\epsilon(i,j)$

for every $i,j$ and $k$ in $\mathrm{N}$ and $\lim_{i,j}\epsilon(i,j)=0$ . In the case when $\epsilon(s, t)=0$ for every $i,j\in$

$\mathrm{N},$ $\{x_{n}\}$ is called a nonexpansive sequence (see [20]).

Remark 2.2. Let $\{x_{n}\}$ be a bounded sequence in $H$ such that

$||_{X-X}i+kj+k||\leq||_{X_{i}}-x_{j}||+\epsilon_{1}(_{S}, t)$

for every $i,j$ and $k$ in $\mathbb{N}$ and $\lim_{i,j}\epsilon_{1}(i,j)=0$ . Then, it is obvious that $\{x_{n}\}$ is an almost
nonexpansive sequence curve with $\epsilon(i,j)=4(\sup_{i\in \mathrm{N}}||X_{i}||)\epsilon_{1}(i,j)+\epsilon_{1}(i,j)^{2}$ (see also [20, 21]).

A sequence $\{x_{n}\}$ in $H$ is called an almost-orbit of $T$ if

$\lim_{k}\sup_{0n\geq}||x_{n+}k-T^{n}xk||=0$

(see [6]).

Example 2.3. Let $T$ be a nonexpansive mapping from a closed convex subset $C$ of $H$

into itself. If $\{x_{n}\}$ is a bounded almost-orbit of $T$ , from Remark 2.2, $\{x_{n}\}$ is an almost
nonexpansive sequence in $H$ . Hence, we also see that for $x\in C,$ $\{T^{n}x\}$ is an almost
nonexpansive curve from $\mathbb{R}^{+}$ to $C$ if $\{T^{n}x\}$ is bounded (see also [20]).

Let $\{x_{n}\}$ be a sequence $H$ . Then, we denote the subsets $F_{1}$ and $F$ of $H$ as follows:
$q\in F_{1}$ if and only if $||x_{i+k}-q||\leq||x_{i}-q||$ for every $i,$ $k\in S$ and $q\in F$ if and only
if $\lim_{n}||x_{n}-q||$ exists. We can prove that $F_{1}$ and $F$ are closed convex subset of $H$ and
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$F_{1}\subset F$ (see [20]). Rouhani [20] obtained the following nonlinear ergodic theorem for an
almost nonexpansive sequence which is a generalization of Baillon’s result [2]:

Theorem 2.4 ([20]). Let $\{x_{n}\}$ be a bounded almost nonexpansive sequence in H. Then,
$\{\frac{1}{n}\sum_{i=}^{n-}0^{1}+X_{i}k\}$ converges weakly to $z_{0}\in F$ as $narrow\infty$ uniformly in $k\in \mathbb{R}^{+}$ . Further, $z_{0}$ is a

$\varlimsup$ -asymptotic center of $\{x_{n}\}$ in $H,$ $i.e.,$ $z_{0} \in\{z\in H:\varlimsup-||x_{n}-Z||=\inf_{y\in H}\varlimsup-||Xn-y||\}$ .

We do not know whether Theorem 2.4 would hold in the case when $H$ is a Banach
space.

A family $\{T(s) : s\in \mathbb{R}^{+}\}$ of mappings of $C$ into itself is called a one-parameter
nonexpansive semigroup on $C$ if it satisfies the following conditions:

(a) $s\mapsto T(S)x$ is continuous for all $x\in C$ ;
(b) $T(s+t)=T(s)T(t)$ for all 8, $t\in S$ ;
(c) $||T(s)X-T(S)y||\leq||x-y||$ for all $x,$ $y\in C$ and $s\in S$ ;
(d) $T(0)=I$ .

Baillon [3] proved a nonlinear ergodic theorem for a one-parameter nonexpansive semi-
group in a Hilbert space:

Theorem 2.5 ([3]). Let $\{T(t) : t\in \mathbb{R}^{+}\}$ be $a$ one-parameter nonexpansive semigroup on
C. If for some $x_{0}\in C,$ $\{T(t)X0:t\in \mathbb{R}^{+}\}$ is bounded, then for any $x\in C,$ $\{\frac{1}{t}\int_{0}^{t}\tau(S)_{Xd\}}\mathit{8}$

converges weakly to a fixed point of $T$ .

Rouhani $[20, 21]$ also introduced the notion of almost nonexpansive curve in a Hilbert
space and studied a nonlinear ergodic theorem for such a curve which is a generalization
of Baillon’s result [3].

Let $u$ be a function from $\mathbb{R}^{+}\mathrm{i}\mathrm{n}\mathrm{t}_{\mathrm{O}}H$ . Then, $u$ is called an almost nonexpansive curve if
there exists a nonnegative real-valued function $\epsilon(\cdot, \cdot)$ on $\mathbb{R}^{+}\cross \mathbb{R}^{+}$ such that $||u(h+s)-$
$u(h+t)||^{2}\leq||u(\mathit{8})-u(t)||^{2}+\epsilon(\mathit{8}, t)$ for every $s,$ $t$ and $h$ in $\mathbb{R}^{+}$ and $\lim_{s,t}\epsilon(s, t)=0$ . In the
case when $\epsilon(s, t)=0$ for every $s,$ $t\in S,$ $u$ is called a nonexpansive curve (see [20]).

Remark 2.6. Let $u$ be a bounded function from $\mathbb{R}^{+}$ into $H$ such that

$||u(h+s)-u(h+t)||\leq||u(S)-u(t)||+\epsilon_{1}(s, t)$
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for every $s,$ $t$ and $h$ in $\mathbb{R}^{+}$ and $\lim_{s,t}\epsilon_{1}(s, t)=0$ . Then, it is obvious that $u$ is an almost

nonexpansive curve with $\epsilon(s, t)=4(\sup_{r\in S}||u(r)||)\epsilon 1(s, t)+\epsilon_{1}(s, t)^{2}$ (see also [20, 21]).

A continuous function $u$ from $\mathbb{R}^{+}$ into $C$ is called an almost-orbit of $\mathfrak{S}=\{T(t):t\in \mathbb{R}^{+}\}$

if

$\lim_{s}\sup_{t}||u(t+s)-\tau(t)u(S)||=0$

(see [17]).

Example 2.7. Let $\{T(s) : s\in \mathbb{R}^{+}\}$ be a one-parameter nonexpansive semigroup on $C$ .

If $u$ is a bounded almost-orbit of $\{T(s) : s\in \mathbb{R}^{+}\}$ , from Remark 2.6, $u$ is an almost

nonexpansive curve from $\mathbb{R}^{+}$ to $C$ . Hence, we also see that for $x\in C,$ $\{T(t)x : t\in \mathbb{R}^{+}\}$

is an almost nonexpansive curve from $\mathbb{R}^{+}$ to $C$ if $\{T(t)x : t\in \mathbb{R}^{+}\}$ is bounded (see also

[20] $)$ .

Let $u$ be a function from $S$ into $H$ . Then, we denote the subsets $F_{1}(u)$ and $F(u)$ of $H$

as follows: $q\in F_{1}(u)$ if and only if $||u(h+s)-q||\leq||u(S)-q||$ for every $h,$ $s\in \mathbb{R}^{+}$ and
$q\in F(u)$ if and only if $\lim_{s}||u(\mathit{8})-q||$ exists. We can prove that $F_{1}(u)$ and $F(u)$ are closed

convex subset of $H$ and $F_{1}(u)\subset F(u)$ (see [20, 21]). Rouhani [20] proved the following

nonlinear ergodic theorem for an almost nonexpansive curve which is a generalization of

Baillon’s result [3]:

Theorem 2.8 ([20]). Let $\{u(s) : s\in \mathbb{R}^{+}\}$ be a bounded continuous almost nonexpansive

curve in H. Then, $\{\frac{1}{t}\int_{0}^{t}u(s+k)ds\}$ converges weakly to $z_{0}\in F(u)$ as $tarrow\infty$ uniformly

in $k\in \mathbb{R}^{+}$ . Further, $z_{0}$ is $a\varlimsup$ -asymptotic center of $u(\cdot)$ in $H,$ $i.e.,$ $z_{0}\in\{z\in H$ :

$\varlimsup-||u(t)-z||=\inf_{y\in C}\varlimsup-||u(t)-Z||\}$ .

We do not lcnow whether Theorem 2.8 would hold in the case when $H$ is a Banach
space.

3. THEOREMS FOR COMMUTATIVE SEMIGROUPS

In this section, we prove nonlinear ergodic theorems for almost nonexpansive curves
over a commutative semigroup. At first, we state some definitions and notations.
Let $S$ be a semitopological semigroup with identity, i.e., a semigroup with a Hausdorff
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topology such that for each $t\in S$ , the mappings $\mathit{8}\mapsto s\cdot t$ and $s\vdasharrow t\cdot s$ from $S$ into
itself are continuous. Then, $S$ is called right reversible if any two closed left ideals of
$S$ have non-void intersection. In this case, $(S, \leq)$ is a directed system when the binary

relation $\zeta‘\leq$
”

$\mathrm{o}\mathrm{n}S$ is defined by $a\leq b$ if and only if $\overline{Sa}\supseteq\overline{Sb},$
$a,$ $b\in S$ . Right reversible

semitopological semigroups include all commutative semigroups (see [11]).

Throughout this section, we assume that $S$ is a right reversible semitopological semi-

group with identity and $D$ is a subspace of $B(S)$ containing constants which is $r_{s}$ and
$l_{s}$-invariant for each $s\in S$ unless other specified. We introduce the notion of almost non-
expansive curves over a noncommutative semigroup. Let $u$ be a function from $S$ into $H$.

Then, $u$ is called an almost nonexpansive curve if there exists a nonnegative real-valued

function $\epsilon(\cdot, \cdot)$ on $S\cross S$ such that

$||u(h_{S})-u(ht)||2\leq||u(\mathit{8})-u(t)||^{2}+\epsilon(s, t)$

for every $s,$ $t$ and $h$ in $S$ and $\lim_{s,t}\epsilon(S, t)=0$ . In the case when $\epsilon(s, t)=0$ for every $s,$ $t\in S,$ $u$

is called a nonexpansive curve (see [1, 12]).

Remark 3.1. Let $u$ be a bounded function from $S$ into $H$ such that

$||u(h_{S})-u(ht)||\leq||u(S)-u(t)||+\epsilon_{1}(s, t)$

for every 8, $t$ and $h$ in $S$ and $\lim_{s,t}\epsilon_{1}(s, t)=0$ . Then, it is obvious that $u$ is an almost

nonexpansive curve with $\epsilon(\mathit{8}, t)=4(\sup_{r\in S}||u(r)||)\epsilon 1(s, t)+\epsilon_{1}(s,t)^{2}$ (see also [1, 12]).

A family $\mathfrak{S}=\{T(s) : s\in S\}$ of mappings of $C$ into itself is called a nonexpansive

semigroup on $C$ if it satisfies the following conditions:

(a) 8 $[]arrow T(S)x$ is continuous for all $x\in C$ ;

(b) $T(\mathit{8}t)=T(s)T(t)$ for all 8, $t\in S$ ;

(c) $||T(s)X-\tau(s)y||\leq||x-y||$ for all $x,$ $y\in C$ and $s\in S$ .

We denote by $F(\mathfrak{S})$ the set of common fixed points of $T(t),t\in S$ , that is, $F(\mathfrak{S})=$

$\bigcap_{t\in S}F(T(t))$
. A continuous function $u$ from $S$ into $C$ is called an almost-orbit of {$T(t)$ :

$t\in S\}$ if

$\lim_{s}\sup_{t}||u(t_{S})-\tau(t)u(.S)||=0$

(see [26, 27]).
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Example 3.2. Let $\mathfrak{S}=\{T(s) : s\in S\}$ be a nonexpansive semigroup on $C$ . If $u$ is a
bounded almost-orbit of $\mathfrak{S}$ , from Remark 3.1, $u$ is an almost nonexpansive curve from $S$

to $C$ . Hence, we also see that for $x\in C,$ $\{T(t)_{X:}t\in S\}$ is an almost nonexpansive curve
from $S$ to $C$ if $\{T(t)x:t\in S\}$ is bounded (see also [12]).

Let $u$ be a function from $S$ into $H$ . Then, we denote the subsets $F_{1}(u)$ and $F(u)$ of
$H$ as follows: $q\in F_{1}(u)$ if and only if $||u(hS)-q||\leq||u(S)-q||$ for every $h,$ $s\in S$ and
$q\in F(u)$ if and only if $\lim_{s}||u(S)-q||$ exists (see [1, 12]).

Let $S$ be a semigroup and let $B(S)$ be the Banach space of all bounded real-valued
functions on $S$ with supremum norm. Then, for each $s\in S$ and $f\in B(S)$ , we can define
elements $r_{s}f\in B(S)$ and $l_{s}f\in B(S)$ by $(r_{s}f)(t)=f(tS)$ and $(l_{s}f)(t)=f(st)$ for all
$t\in S$ , respectively. We also denote by $r_{s}^{*}$ and $l_{s}^{*}$ the conjugate operators of $r_{s}$ and $l_{s}$ ,
respectively. Let $D$ be a subspace of $B(S)$ and let $\mu$ be an element of $D^{*}$ , where $D^{*}$ is the
dual space of $D$ . Then, we denote by $\mu(f)$ the value of $\mu$ at $f\in D$ . Sometimes, $\mu(f)$ will
be denoted by $\mu_{t}(f(t))$ or $\int f(t)d\mu(t)$ . When $D$ contains constants, a linear functional $\mu$

on $D$ is called a mean on $D$ if $||\mu||=\mu(1)=1$ . We also know that $\mu$ is a mean on $D$ if
and only if

$\inf_{s\in S}f(S)\leq\mu(f)\leq\sup_{ss\in}f(s)$

for each $f\in D$ . For $s\in S$ , we can define a point evaluation $\delta_{s}$ by $\delta_{s}(f)=f(s)$ for every
$f\in B(S)$ . A convex combination of point evaluations is called a finite mean on $S$ . A finite
mean $\mu$ on $S$ is also a mean on any subspace $D$ of $B(S)$ containing constants. Further,
let $D$ be a subspace of $B(S)$ containing constants which is $r_{s}$ -invariant i.e., $r_{s}D\subset D$ for
each $s\in S$ . Then, a mean $\mu$ on $D$ is called right invariant if

$\mu(r_{s}f)=\mu(f)$

for all $s\in S$ and $f\in D$ . Similarly, we can define a left invariant mean on an $l_{s}$ -invariant
subspace of $B(S)$ containing constants. A right and left invariant mean is called an
invariant mean. We also denote by $C(S)$ the set of all bounded continuous real-valued
functions on $S$ .

The following definition which was introduced by Talcahashi [22] is crucial in nonlinear
ergodic theory for abstract semigroups. Let $u$ be a bounded function from $S$ into $H$ such
that $\langle u(\cdot), y\rangle\in D$ for every $y\in H$ . Let $\mu$ be an element of $D^{*}$ . Then, there exists a unique
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element $u_{\mu}\in H$ such that $\langle u_{\mu}, y\rangle=\mu_{S}\langle u(S), y\rangle$ for all $y\in H$ . If $\mu$ is a mean on $D$ , then
$u_{\mu}$ is contained in $\overline{co}\{u(t) : t\in S\}$ (for example, see [13, 14, 22]). Sometimes, $u_{\mu}$ will be
denoted by $\int u(t)d\mu(t)$ .

Lemma 3.3. Suppose that $D$ has an invariant mean $\mu$ . Let $u$ be an almost nonexpansive
curve from $S$ to $H$ with $\epsilon(\cdot, \cdot)$ such that $||u(\cdot)-y||^{2}$ and $\epsilon(s, \cdot)$ are in $D$ for all $y\in H$ and
$s\in S.$ Then, (i), (ii) and (iii) hold.

(i) $F(u)$ and $F_{1}(u)$ are closed convex subsets of $H$ ;

(ii) $F_{1}(u)\subset F(u)$ ;

(iii) $u_{\mu}\in F(u)$ .

Let $\{\mu_{\alpha} : \alpha\in I\}$ be a net of means on $D$ . Then, $\{\mu_{\alpha} : \alpha\in I\}$ is said to be asymptotically
invariant if

$\mu_{\alpha}(f)-\mu\alpha(r_{s}f)arrow \mathrm{O}$ and $\mu_{\alpha}(f)-\mu_{\alpha}(l_{s}f)arrow \mathrm{O}$

for every $s\in S$ and $f\in D$ (see [19]). Let $\{\lambda_{\alpha} : \alpha\in I\}$ be a net of continuous linear
functionals on $D$ . Then, $\{\lambda_{\alpha} : \alpha\in I\}$ is said to be left strongly regular if the following
conditions are satisfied:

(a) $\sup||\lambda_{\alpha}||<\infty$ ;
$\alpha$

(b) $\lim_{\alpha}\lambda_{\alpha}(1)=1$ ;

(c) $\lim_{\alpha}||\lambda_{\alpha}-l_{S}*\lambda\alpha||=0$ for every $\mathit{8}\in S$.

Right strong regularity is defined similarly. A strongly regular net is a left and right
strongly regular net (see [10]).

Let $u$ be a bounded function from $S$ into $C$ such that for any $x\in C,$ $||u(\cdot)-x||^{2}\in D$ .
Then, for a mean $\mu$ on $D$ , the set $\mu- AC(u, C)$ defined by

$\mu- AC(u, C)=\{x\in C:\mu_{s}||u(\mathit{8})-X||^{2}=\inf_{y\in C}\mu s||u(S)-y||^{2}\}$

is called the $\mu$-asymptotic center of $u$ in $C$ (see also [9, 12, 15, 18]). Similarly, the set
$\varlimsup_{-}AC(u, C)$ defined by $\varlimsup- AC(u, c)=\{x\in C:\mu_{s}||u(s)-X||^{2}=\inf_{y\in c\mu_{s}}||u(\mathit{8})-y||^{2}\}$

is $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\prime \mathrm{d}$ the $\varlimsup$-asymptotic center of $u$ in $C$ .
Kada and Takahashi [12] proved nonlinear ergodic theorems for almost nonexpansive

curves over a commutative semigroup which are generalizations of Rouhani’s results [20,
21]:
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Theorem 3.4 ([12]). Let $S$ be a commutative semigroup with $a$ identity and let $D$ be a
subspace of $B(S)$ containing $conStant\mathit{8}$ which is $r_{s}$ -invariant for each $\mathit{8}\in S.$ Let $u$ be an
almost nonexpansive curve from $S$ to $H$ with $\epsilon(\cdot, \cdot)$ such that $||u(\cdot)-y||^{2}$ and $\epsilon(s, \cdot)$ are
in $D$ for all $y\in H$ and $s\in S.$ If $\{\mu_{\alpha} : \alpha\in I\}$ is an asymptotically invariant net of means
on $D$ , then $\{\int u(t)d\mu\alpha(t)\}$ converges weakly to $y0 \in F(u)\cap\bigcap_{s\in S}\overline{co}\{u(t):t\geq s\}$

. Further,

$y_{0}=u_{\mu}$ and $\varlimsup- Ac(u, H)=\mu- Ac(u, H)=\{u_{\mu}\}$ for every invariant mean $\mu$ on $D$ .

If $\{\mu_{\alpha} : \alpha\in I\}$ is strongly regular net, the convergence is uniform.

Theorem 3.5 ([12]). Let $S$ be as in Theorem 3.4. Assume that there exists a net { $\lambda_{\beta}$ :
$\beta\in J\}$ of finite means on $SsuCf_{l}$ that $\lim_{\beta}||\lambda_{\beta}-l_{s}^{*}\lambda_{\beta}||=\lim_{\beta}||\lambda_{\beta}-r^{*}\lambda_{\beta}|S|=0$ for every
$s\in S.$ Let $u$ and $D$ be $a\mathit{8}$ in Theorem 3.4. Let $\{\mu_{\alpha} : \alpha\in I\}$ be a strongly regular net of
$continuou\mathit{8}$ linear functionals on D. Then, $\{\int u(th)d\mu_{\alpha}(t)\}$ and $\{\int u(ht)d\mu_{\alpha}(t)\}$ converge
weakly to $/ \mathrm{t}0\in F(u)\cap\bigcap_{s\in S}\overline{co}\{u(t):t\geq s\}$

uniformly in $h\in\Lambda(S)$ . Further, $y0=u_{\mu}$ and

$\varlimsup-AC(u, H)=\mu- Ac(u, H)=\{u_{\mu}\}$ for every invariant mean $\mu$ on $D$ .

By using Theorem 3.5, Theorems 2.4 and 2.8 can be proved (see [12]). We do not know
whether Theorems 3.4 and 3.5 would hold in the case when $H$ is a Banach space.

4. THEOREMS FOR NONCOMMUTATIVE SEMIGROUPS

In this section, we prove nonlinear ergodic theorems for almost nonexpansive curves
over a noncommutative semigroup. Throughout this section, we assume that $S$ is a right
reversible semitopological semigroup with identity and $D$ is a subspace of $B(S)$ containing
constants which is $r_{s}$ and $l_{s}$ -invariant for each $s\in S$ unless other specified. We denote by
$\Lambda(S)$ the algebraic center of $S$ , i.e., all $s\in S$ such that $st=ts$ for all $t\in S$ .

Theorem 4.1 ([1]). Let $u$ be an almost nonexpansive curve from $S$ to $H$ with $\epsilon(\cdot, \cdot)$ such
that $||u(\cdot)-y||^{2}$ and $\epsilon(s, \cdot)$ are in $D$ for all $y\in H$ and $s\in S.$ If $\{\mu_{\alpha} : \alpha\in I\}$ is an
asymptotically invariant net of means on $D$ , then $\{\int u(t)d\mu\alpha(t)\}$ converges weakly to $y_{0}\in$

$F(u)\cap \mathrm{n}\overline{C\mathit{0}}\{u(t)s\in S : t\geq s\}$
. Further, $y_{0}=u_{\mu}$ and $\varlimsup- Ac(u, H)=\mu- AC(u, H)=\{u_{\mu}\}$ for

every invariant mean $\mu$ on $D$ .
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We consider the case when $\{\mu_{\alpha} : \alpha\in I\}$ is strongly regular. Then, we obtain the

following theorem:

Theorem 4.2 ([1]). Assume that there exists a net $\{\lambda_{\beta} : \beta\in J\}$ of finite means on
$S$ such that $\lim_{\beta}||\lambda_{\beta}-l_{S}^{*}\lambda_{\beta}||=\lim_{\beta}||\lambda_{\beta}-r_{s}^{*}\lambda_{\beta}||=0$ for every $s\in S.$ Let $u$ be an al-

most nonexpansive curve from $S$ to $H$ with $\epsilon(\cdot, \cdot)$ such that $||u(\cdot)-y||^{2}$ and $\epsilon(\mathit{8}, \cdot)$ are
in $D$ for all $y\in H$ and $s\in$ S. Let $\{\mu_{\alpha} : \alpha\in I\}$ be a strongly regular net of con-
tinuous linear functionals on D. Then, $\{\int u(th)d\mu_{\alpha}(t)\}$ and $\{\int u(ht)d\mu\alpha(t)\}$ converge
weakly $to/\mathrm{t}0\in F(u)\cap s\in S\cap\overline{CO}\{u(t):t\geq \mathit{8}\}$

uniformly in $h\in\Lambda(S)$ . Further, $y_{0}=u_{\mu}$ and

$\varlimsup-AC(u, H)=\mu- Ac(u, H)=\{u_{\mu}\}$ for every invariant mean $\mu$ on $D$ .

To prove Theorems 4.1 and 4.2, we need the following lemmas and theorem.

The following lemma is a modification of [25] (see also [12]).

Lemma 4.3 ([1]). Assume that $D$ has an invariant mean $\mu$ . Let $u$ be an almost nonex-
pansive curve from $S$ to $H$ with $\epsilon(\cdot, \cdot)$ such that $||u(\cdot)-y||^{2}$ and $\epsilon(\mathit{8}, \cdot)$ are in $D$ for all
$y\in H$ and $\mathit{8}\in S$ . Then,

$\varlimsup-AC(u, H)=\mu- Ac(u, H)=\{u_{\mu}\}$ ,

where $\varlimsup- Ac(u, H)=\{x\in H:\varlimsup_{s}||u(\mathit{8})-X||^{2}=\inf_{y\in H}\overline{\lim S}||u(S)-y||^{2}\}$ . Consequently, if
$\mu$ and $\lambda$ are invariant means o.n $D$ , then $u_{\mu}=\mu_{\lambda}$ .

The following theorem plays an important role in the proofs of Theorems 4.1 and 4.2
(see also [12]).

Theorem 4.4 ([1]). Assume that $D$ has an invariant mean $\mu$ . Let $u$ be an almost non-
expansive curve from $S$ to $H$ with $\epsilon(\cdot, \cdot)$ such that $||u(\cdot)-y||^{2}$ and $\epsilon(s, \cdot)$ are in $D$ for all
$y\in H$ and

$s\in St_{\}}$
. Then, $F(u) \cap\bigcap_{s\in S}\overline{co}\{u(t) : t\geq s\}=\{u_{\mu}\}$ .

The following lemma is essential to prove Theorem 4.2.

Lemma 4.5 ([1]). Let $u$ be a bounded almost nonexpansive curve from $S$ to $H$ with $\epsilon(\cdot, \cdot)$ .

Let $\{\mu_{\alpha} : \alpha\in A\}$ be a net of finite means on $S$ such that

$\lim_{\alpha}||\mu_{\alpha}-l_{S}^{*}\mu\alpha||=\lim_{\alpha}||\mu_{\alpha}-r_{s}^{*}\mu\alpha||=0$ for every $s\in S.$ $(*)$
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Then, $\{\int u(th)d\mu_{\alpha}(t)\}$ converges weakly to $y_{0}\in F(u)\cap s\in S\cap\overline{co}\{u(t):t\geq s\}$ uniformly in

$h\in\Lambda(S)$ . Further, $y_{0}=u_{\mu}$ and $\varlimsup- Ac(u, H)=\mu- AC(u, H)=\{u_{\mu}\}$ for every invariant
mean $\mu$ on $D$ .

Sketch of the proof of Lemma 4.5. Let $\{\mu_{\alpha} : \alpha\in A\}$ and $\{\lambda_{\beta} : \beta\in B\}$ be nets of finite
means on $S$ such that

$\lim_{\alpha}||\mu_{\alpha}-l_{S}^{*}\mu\alpha||=\lim_{\alpha}||\mu_{\alpha}-r_{S}^{*}\mu\alpha||=0$ and $\lim_{\beta}||\lambda_{\beta}-l_{s}*\lambda_{\beta}||=\lim_{\beta}||\lambda_{\beta}-r_{S}\lambda_{\beta}*||=0$

for every $s\in S$ . Define $(\beta_{1}, \gamma_{1})\leq(\beta_{2}, \gamma_{2})$ if and only if $\beta_{1}\leq\beta_{2}$ and $\gamma_{1}\leq\gamma_{2}$ . Let
$\{p_{\beta,\gamma} : (\beta, \gamma)\in B\cross B\}$ be a net in $S$.

We show that $\{[\int u(tp\beta,\gamma q)d\lambda\beta(t)d\lambda_{\gamma}(q)\}$ converges weakly to $y_{0}\in F(u)\cap s\in S\mathrm{n}\overline{co}\{u(t)$
:

$t\geq s\}$ . From Lemma 4.4, it is sufficient to show that all weak limit points of subnets of

the net $\{\iint u(tp_{\beta,\gamma}q)d\lambda\beta(t)d\lambda_{\gamma}(q)\}$ are in
$\bigcap_{s\in S}\overline{CO}\{u(t):t\geq \mathit{8}\}\cap F(u)$

. Put $M= \sup_{t\in S}||u(t)||$ .

Since $\{\iint u(tp_{\beta,\gamma}q)d\lambda\beta(t\lambda f\lambda_{\gamma}(q)\}$ is bounded, there is a subnet $\{[\int u(tp_{\beta}’,\prime q)\gamma d\lambda_{\beta};(t)d\lambda_{\gamma’}(q)\}$

of $\{\iint u(tp_{\beta,\gamma}q)d\lambda\beta(t)\lambda_{\gamma}(q)\}$ such that

$\iint u(tp_{\beta^{l},\gamma^{;}}q)d\lambda\beta’(t)d\lambda_{\gamma’}(q)arrow y0\in H$.

Then, we have that for any $a\in S$ ,

$\iint u(tp_{\beta\gamma}’,\prime qa)d\lambda_{\beta^{\prime(}}t)d\lambda_{\gamma^{i}}(q)arrow y_{0}\in H$ . (1)

We obtain $y_{0}\in F(u)$ . Indeed, let $\epsilon>0$ . Then, there exists $t_{0}\in S$ such that $\epsilon(s, t)<\epsilon$

for all $t\geq t_{0}$ and $s\geq t_{0}$ . Let $s\geq t_{0}$ and $h\in S$ . Then, we can show that

$||u(h_{S})-y0||^{2}-||u(s)-y_{0||^{2}-2}\langle u(hs)-u(S),$ $\iint u(tp\beta^{;_{\gamma}},\prime qt_{0})d\lambda_{\beta}’(t)d\lambda_{\gamma}’(q)-y_{0}\rangle$

$<\epsilon+4M^{2}||\lambda_{\beta^{;-}}l^{*}h\lambda\beta’||\cdot||\lambda_{\gamma}’||$ .

So, it follows from (1) that $\lim_{s}||u(S)-y0||$ exists. This implies $y_{0}\in F(u)$ .

From the separation theorem, we obtain $/\mathrm{t}0\in s\in S\mathrm{n}\overline{co}\{u(t) : t\geq s\}$
and hence $y0\in$

$s\in S\mathrm{n}\overline{co}\{u(\iota):i\geq s\}\cap F(u)$
. This implies that all weak limit points of subnets of the net

$\{\iint u(tp\beta,\gamma q)d\lambda\beta(t)d\lambda_{\gamma}(q)\}$ are in $\bigcap_{s\in S}\overline{co}\{u(t):t\geq s\}\cap F(u)$
.
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Next, we prove that $\{\int u(\mathit{8}h)d\mu_{\alpha}(s)\}$ converges weakly to $y_{0}$ uniformly in $h\in\Lambda(S)$ .
Since $\{p_{\beta,\gamma} : (\beta, \gamma)\in B\cross B\}$ is arbitrary, we see that $\{\iint u(thp\beta,\gamma q)d\lambda\beta(t)d\lambda_{\gamma}(q)\}$ con-
verges weakly to $y_{0}$ uniformly in $h\in S$ . Then, there exists $(\beta_{0\gamma 1},)\in B\cross B$ such that

$| \iint\langle u(thp_{\beta,\gamma}q), X\rangle d\lambda_{\beta}(t)d\lambda_{\gamma}(q)-\langle y_{0}, x\rangle|<\frac{\epsilon}{3}$ (2)

for every $\beta\geq\beta_{0},$ $\gamma\geq\gamma_{1}$ and $h\in S$ . So, since $\{\mu_{\alpha}\}$ satisfies $(*)$ , we can show that
$\{\int u(sh)d\mu_{\alpha}(\mathit{8})\}$ converges weakly to $y0 \in F(u)\cap\bigcap_{s\in S}\overline{co}\{u(t) : t\geq s\}$

uniformly in $h\in$

$\Lambda(S)$ . From Theorem 4.4 and Lemma 4.3, $y_{0}=u_{\mu}$ and $\varlimsup-AC(u, H)=\mu- Ac(u, H)=$

$\{u_{\mu}\}$ for every invariant mean $\mu$ on D. $\square$

We can prove the following lemma as in the proof of Lemma 4.5.

Lemma 4.6 ([1]). Let $S,$ $D,$ $u$ and $\{\mu_{\alpha} : \alpha\in A\}$ be as in Lemma 4.5. Then, $\{[u(ht)d\mu\alpha(t)\}$

converges $weakl\mathrm{c}/$ to $y_{0} \in F(u)\cap\bigcap_{s\in S}\overline{co}\{u(t):t\geq s\}$
uniformly in $h\in\Lambda(S)$ . Further,

$y_{0}=u_{\mu}$ and $\varlimsup- Ac(u, H)=\mu- Ac(u, H)=\{u_{\mu}\}$ for every invariant mean $\mu$ on $D$ .

Now, we can prove the nonlinear ergodic theorems (Theorems 4.1 and 4.2).

Sketch of the proof of Theorem 4.1. Let $\{\mu_{\alpha}\}$ be an asymptotically invariant net of means
on $D$ . Since $\{\int u(t)d\mu\alpha(\iota)\}$ is bounded, $\{\int u(t)d\mu_{\alpha}(t)\}$ must contain a subnet which
converges weakly to a point in $H$ . So, let $\{\int u(t)d\mu\alpha\beta(t)\}$ be a subnet of $\{\int u(t)d\mu_{\alpha}(t)\}$

such that

$\int u(t)d\mu_{\alpha}\beta(t)arrow z_{0}$ . (3)

Let $B_{1}(D^{*})$ be the closed unit ball of $D^{*}$ . Since $\{\mu_{\alpha_{\beta}}\}\subset B_{1}(D^{*})$ , there exists a subnet
$\{\mu_{\alpha_{\beta_{\gamma}}}\}$ of $\{\mu_{\alpha_{\beta}}\}$ such that

$\mu_{\alpha_{\beta_{\gamma}}}arrow\mu w^{*}$ .

Then, we can show that $\mu$ is an invariant mean on $D$ . Since $\mu_{\alpha_{\beta_{\gamma}}}arrow\mu w^{*}$ , for any $x\in H$ ,

$\int\langle u(t), X\rangle d\mu_{\alpha}\beta\gamma(t)arrow\int\langle u(t), X\rangle d\mu(t)=\langle u_{\mu}, x\rangle$ .

Then, from (3), we have that $\int u(t)d\mu\alpha_{\beta}(t)arrow z_{0}$ and $z_{0}=u_{\mu}$ . From Lemma 4.3, if $\lambda$ and
$\mu$ are invariant means on $D$ , then $u_{\mu}=u_{\lambda}$ . Therefore, since $\{\int u(t)d\mu_{\alpha}\beta(t)\}$ is arbitrary,
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$\{\int u(t)d\mu_{\alpha}(t)\}$ converges weakly to $u_{\mu}$ . Furthermore,
$\{u_{\mu}\}=F(u)\cap\bigcap_{ss\in}\overline{CO}\{u(t) : t\geq s\}=$

$\mu- Ac(u, H)=\varlimsup-AC(u, H)$ . $\square$

Sketch of the proof of Theorem 4.2. Let $\mu$ be an invariant mean on $D$ and let { $p_{\beta,\gamma}$ :
$(\beta, \gamma)\in J\cross J\}$ be a net in $S$ . From Lemma 4.5, we have that $\{\iint u(thp_{\beta},\gamma q)d\lambda\beta(t)d\lambda_{\gamma}(q)\}$

converges weakly to $u_{\mu}$ uniformly in $h\in S$ . We also know $F(u) \cap\bigcap_{s\in S}\overline{co}\{u(t) : t\geq s\}=$

$\varlimsup-AC(u, H)=\mu- Ac(u, H)=\{u_{\mu}\}$ for every invariant mean $\mu$ on $D$ . Let $x\in H,$ $\epsilon>0$ .
Then, there exists $(\beta_{0}, \gamma 1)\in J\cross J$ such that

$| \langle\iint u(thp\beta,\gamma q)d\lambda_{\beta}(t)d\lambda_{\gamma}(q),$
$x \rangle-\langle u_{\mu}, x\rangle|<\frac{\epsilon}{\sup_{\alpha}||\mu_{\alpha}||}$

for every $\beta\geq\beta_{0},$ $\gamma\geq\gamma_{1}$ and $h\in S$ . Put $\lambda_{0}=\lambda_{\beta_{0},p_{0}}=p_{\beta 0,\gamma_{1}}$ and $\lambda_{1}=\lambda_{\gamma_{1}}$ . So, since
$\{\mu_{\alpha}\}$ is strongly regular, from

$| \int\langle u(sh), x\rangle d\mu\alpha(S)-\langle u_{\mu}, x\rangle|$

$\leq|\int\langle u(sh), X\rangle d\mu\alpha(s)-\iint\langle u(t\mathit{8}h), X\rangle d\lambda 0(t)d\mu_{\alpha}(s)|$

$+| \iint\langle u(tsh), X\rangle d\lambda_{\mathrm{o}(}t)d\mu_{\alpha}(\mathit{8})-\iiint\langle u(tshp0q), X\rangle d\lambda_{0}(t)d\lambda_{1}(q)d\mu_{\alpha}(s)|$

$+| \int\langle\iint u(tShp_{0}q\mathrm{I}d\lambda \mathrm{o}(t)d\lambda_{1}(q)-uX\rangle\mu’ d\mu_{\alpha}(s)|+|\int\langle u_{\mu}, x\rangle d\mu_{\alpha}(s)-\langle u_{\mu}, x\rangle|$ ,

we can prove that $\{\int u(sh)d\mu_{\alpha}(s)\}$ converges weakly to $u_{\mu}\in F(u)\cap s\in S\cap\overline{co}\{u(t):t\geq s\}$

uniformly in $h\in\Lambda(S)$ .

As in the above argument, we obtain that $\{\int u(h\mathit{8})d\mu\alpha(\mathit{8})\}$ converges weakly to $u_{\mu}\in$

$F(u)\cap s\in S\mathrm{n}\overline{co}\{u(t) : t\geq \mathit{8}\}$
uniformly in $h\in\Lambda(S)$ . $\square$

We do not know whether Theorems in this section would hold in the case when $H$ is a
Banach space.
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