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\S 1. Introduction

In this article, we discuss basic properties of rigid geometry from the viewpoint
of M. Raynaud [Ray 2], giving the formal flattening theorem and the comparison
theorem of rigid-\’etale cohomology, as applications to algebraic geometry.

The estimate of cohomological dimension of Riemann space is included. We
have also included conjectures on ramification of \’etale sheaves on schemes. In
the appendix, a rigorous proof of the flattening theorem, which is valid over any
valuation rings and noetherian formal schemes, is included. This appendix will be
published separately.

There are two other approaches to the \’etale cohomology of rigid analytic spaces:
V. Berkovich approach, R. Huber approach by adic spaces. We hope that the reader
understands the freedom in the choice, and takes the shortest one according to the
problems one has in the mind.
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Basic properties
To define the rigid analytic spaces, J. Tate regards rigid analytic spaces as an
analogue of complex analytic spaces. On the other hand, M. Raynaud regards it as
a formal schemes tensored with Q. The last approach is not only very beautiful,
but much more convinient in the application to algebraic geometry. We take the
Raynaud approach in the sequel.

By technical reasons, we consider coherent ( $=\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}$-compact and quasi-separated)
formal schemes which subject to one of the following conditions:

type n) $X$ is a noetherian formal scheme.
type v) $X$ is finitely generated over a complete valuation ring $V$ with $a$-adic topology

for some $\alpha\in V$ .
Those two assumptions ensure necessary Artin-Rees type theorems.
By $C$ we denote the category of coherent (quasi-compact and quasi-separated)

formal schemes, with coherent (quasi-compact and quasi-separated) morphisms.
We define the class of proper modification, called admissible blowing $\mathrm{u}\mathrm{p}\mathrm{s}$ , as

follows:
Let $\mathcal{I}$ be an ideal which contains an ideal of definition. When $X=\mathrm{S}\mathrm{p}\mathrm{f}$ $A$ is affine,
$\mathcal{I}=I\cdot \mathcal{O}_{X}$ , the blowing up $X’$ of $X$ along $\mathcal{I}$ is just the formal completion of the
blowing up of $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{C}$ $A$ along $I$ . In general $X’$ is defined by patching. When $X$ is
the $p$-adic completion of some $p$-adic scheme $Y$ , admissible blowing up means the
(formal completion of) blowing up with a center whose support is concentrated in
$p=0$ . So the following definition, due to Raynaud, will be suited for our purpose:

Definition (Raynaud [Ray 2]). The category $\mathcal{R}$ of coherent rigid-analytic spaces
is the quotient category of $C$ by making all admissible blowing $ups$ into isomor-
phisms, $i.e.$ ,

$\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{R}}(x, Y)=,\lim_{X\in}\mathrm{H}\mathrm{o}\mathrm{m}(x’XBarrow’ Y)$
.

For $X\in C,$ $X$ viewed as an object of $\mathcal{R}$ is denoted by $X$rig or $X^{\mathrm{a}\mathrm{n}}$ . $X$ is called a
formal model of $X^{\mathrm{a}\mathrm{n}}$ .

Note that we can fix a base if necessary. For example, in case of type v), it might
be natural to work over the valuation ring $V$ . Though the definition of rigid spaces
seems to be a global one, i.e., there are no a priori patching properties, but it indeed
does. The equivalence with the classical Tate rigid-spaces is shown in [BL].

Riemann space associated with a rigid space. Let $\mathcal{X}=X^{\mathrm{a}\mathrm{n}}$ is a coherent
rigid space. Then the projective limit

$<\mathcal{X}>=$
$\lim_{arrow,\mathrm{x}’\in B_{X}}x$

’

in the category of local ringed spaces exists. The topological space is quasi-compact.
We call it the (Zariski-) Riemann space associated to $\mathcal{X}$ . The projection $<\mathcal{X}>arrow X$

is called the specialization map, and written as $\mathrm{s}\mathrm{p}=\mathrm{s}\mathrm{p}_{X}$ . The structural sheaf $\tilde{O}_{\mathcal{X}}$

yields

$O \chi=\lim_{arrow,n}\mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{I}n\tilde{\mathcal{O}}_{\mathcal{X}},\tilde{O}_{\mathcal{X}})$
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which is also (.’) local ringed. This $\mathcal{O}_{\mathcal{X}}$ is the structural sheaf in rigid geometry
($(class\dot{i}cal)$ rigid geometry is a $\mathrm{Q}$ -theory, $\dot{i}.e.$ , invert $\mathcal{I}$) $.\tilde{\mathcal{O}}_{\mathcal{X}}$ is the (canonical)
model of $\mathcal{O}_{\mathcal{X}}$ .

In the following we sometimes call the topology, or rather the Grothendieck
topology associated to the topological space, admissible, to make it compatible
with the classical terminology. The category $\mathcal{R}$ , with the admissible topology, is
called large admissible site.

Note that the model sheaf $\tilde{O}_{\mathcal{X}}$ itself gives a local ringed space structure.

Why do we need such a topological space?
The typical example is $A=V\{\{X\}\}$ , the ring of $a$-adic convergent power series

( $V=\mathrm{Z}_{p},$ $a=p$ or $V=\mathrm{C}[[t]],$ $a=t$), which should correspond to the unit disk over
V. Put $K=\mathrm{t}\mathrm{h}\mathrm{e}$ fraction field of $V,$ $\mathrm{C}_{K}=\mathrm{t}\mathrm{h}\mathrm{e}$ completion of the algebraic closure of
$\overline{K}$ . $D(\mathrm{C}_{K})=\{\beta\in \mathrm{C} , |\beta|\leq 1\}$ . In any $a$-adic analytic geometry, we expect $A_{\mathrm{C}_{K}}$

to be the ring of analytic functions to the closed unit disk $D(\mathrm{C}_{K})$ . Since the ring
$A_{\mathrm{C}_{K}}$ is integral, the unit disk should be connected, but for the natural topology of
$D(\mathrm{C}_{K})$ this is false. The Riemann space of the unit disc is shown to be connected.

As in the Zariski case, each point $x$ of $<\mathcal{X}>$ corresponds to a valuation
ring $V_{x}$ which is henselian along $I=$ the inverse image of $\mathcal{I}$, i.e., $x$ is consid-
ered as the image of the closed point of Spf $\hat{V}_{x}$ . The local ring $A=\tilde{O}_{\mathcal{X},x}$

has the following property: $B=O_{\mathcal{X},x}=\mathrm{A}[1/a]$ is a noetherian henselian local
ring, whose residue field $K_{x}$ is the quotient field of $V_{x}$ (a is a generator of $I$ )
$A=$ the inverse image of $V_{x}$ by the reduction map $Barrow K_{x}$ .

Conversely, any morphism Spf $Varrow X$ from an adically complete valuation ring
lifts uniquely to any admissible blowing ups by the valuative criterion, so the image
of the closed point of $V$ define a point $x$ .

To define more general rigid spaces, which is inevitable if one treats the GAGA-
functor, the following lemma is necessary:

Lemma. For a coherent rigid space X, the presheaf $\mathcal{Y}arrow Hom_{R}(\mathcal{Y}, \mathcal{X})$ on the
large admissible site $\mathcal{R}$ , is a sheaf.
Definition. A sheaf $\mathcal{F}$ on the big admissible site $\mathcal{R}$ is called a rigid space if the
following conditions are satisfied:
$a)$ There is a morphism $\mathcal{Y}=\square _{i\in I}Y_{i}arrow \mathcal{F}(Y_{i}$ are coherent representable sheaves

$)$ which is surjective.
$b)$ Both projections $\mathrm{p}\mathrm{r}_{i}$ : $\mathcal{Y}\cross_{\mathcal{F}}\mathcal{Y}arrow \mathcal{Y}(i=1,2)$ are represented by open immersions.
$c)\mathcal{F}$ is quasi-compact if one can take quasi-compact $\mathcal{Y}$ in $b$).
$d)\mathcal{F}$ is quasi-separated if the diagonal $\mathcal{F}arrow \mathcal{F}\cross \mathcal{F}$ is quasi-compact.

We can show that if a rigid space in the above sense is quasi-compact and quasi-
separated, then it is a representable sheaf, so the terminology ” coherent rigid
space ” is compatible. Assume $F$ is a quasi-separated rigid space. Then it is
written as $\mathcal{F}=\lim_{Jarrow j\in}\mathcal{X}_{j}$ where $\mathcal{X}_{j}$ is coherent, $J$ is directed and all transition

maps $\mathcal{X}_{j}arrow \mathcal{X}_{j’}$ are open immersions. The definition has been used for a long time.
For the construction of GAGA-functor for non-separated schemes quasi-separated
spaces are not sufficient.
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As an application of rigid-geometric idea, let me mention the following elemen-
tary example:

formal flattening theorem. Let $\hat{f}:\hat{X}arrow\hat{S}$ be a finitely presented morphism of
formal schemes, with $\hat{S}$ coherent and of type $v$) or $n$). Assume $\hat{f}^{\mathrm{a}\mathrm{n}}$ is flat over $\hat{S}^{\mathrm{a}\mathrm{n}}$

(see the appendix for the definition of $flatnesS$)
$\Lambda^{\cdot}$

Then there is an admissible blow
up $\hat{S}’arrow\hat{S}$ such that the strict transform of $f$ (kill torsions after taking the fiber
product) is flat and finitely presented.

The rigorous proof can be seen in the appendix. Another proof in case of noe-
therian formal schemes is found in [BL]. I explain the idea in case of flattening in
the algebraic case [GR], i.e., when the morphism is obtained as the formal comple-
tion of a morohism of schemes $f$ : $Xarrow S$ . There is a principle to prove this kind
of statement:

Principle. Assume we have a canonical global procedure, an element of a cofinal
subset $A_{S}$ of all admissible blowing $ups$ of $S$ to achieve a property P. Assume the
following properties are satisfied:
$a)P$ is of finite presentation.
$b)$ The truth of $P(S’)$ for $S’\in A_{S}$ implies the truth of $P(S”)$ for all $S”\in A_{S}$

dominating $S’$ .
$c)P$ is satisfied at all stalks $\tilde{\mathcal{O}}_{\mathcal{X},x}$ of the model sheaf.

Then $P$ is satisfied afler some blowing up in $A$ .
Let $S\backslash U=V(\mathcal{I})$ with $\mathcal{I}$ finitely generated. $A_{S}$ is the set of $\mathcal{I}$-admissible blowing

$\mathrm{u}\mathrm{p}\mathrm{s}$ , for which the total transform of $\mathcal{I}$ is invertible. $P(S’)$ is: The strict transform
of $X\cross sS’$ is flat and finitely presented over $S’$ .
a) follows from the finite presentation $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}_{\mathrm{P}^{\mathrm{t}}}$.ion of the strict transform. b) is
clear. For c), take a point of the Zariski-Riemann space $<\mathcal{X}>$ . Then the local
ring $A=\tilde{\mathcal{O}}_{\mathcal{X},x}$ has the property mentioned before. To prove the flattening in this
case, using the flatness of $X\mathrm{X}_{S}\mathrm{s}_{\mathrm{p}\mathrm{e}}\mathrm{C}$ $A$ over $A[1/a](I=(a))$ , we are reduced to
the valuation ring case. i.e., prove the claim restricted to “curves” passing $V(\mathcal{I})$ .
In the valuation ring case (“curve case”) there is no need for blowing up, and the
strict transform just means that killing torsions. But note that we need to check
the finite presentation of the result, i.e.,

Lemma. For a finitely generated ideal I of $V[X]V$ a valuation ring, the saturation
$\tilde{I}=$ {$f\in V[X];af\in I$ for some $a\in V\backslash \{0\}$} is finitely generated.

The proof of this lemma is not so easy, but I leave it as an exercise.
So the claim is true locally on $<\mathcal{X}>$ , since we have the finite presentation

property. The quasi-compactness of $<\mathcal{X}>$ implies the existence of a finite cov-
ering, which admit models with the desired flattening property. The patching is
unnecessary, i.e., it is automatically satisfied since we have a canonical global pro-
cedure to achieve the flattening, and once the flattening is achieved, we have it for
all admissible blow up in $B_{S}$ dominating the model.

Sometimes we want to use just “usual curves ” i.e., $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{C}$ of a discrete valuation
ring rather than general valuations. Sometimes it is possible. This is plausible,
since the general valuation rings does not have any good finiteness conditions. (The
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value group such as $\mathrm{Z}^{n}$ with the lexicographic order is good, but even these are not
enough sometimes.)

Another ”toy model ” is given by Gabber’s extension theorem of locally free
sheaves, which played an important role in Vieweg’s semipositivity of the direct
image of the dualizing sheaves. The structure of locally free module with respect
to $\tilde{\mathcal{O}}$ is used: it can be proved that such a module come from some formal model.

Separation: Relation with Berkovich space

Here we give the explanation of a notion which was unclear in the classical theory.
Let $\mathcal{X}$ be a coherent rigid space. For a point $x\in<\mathcal{X}>\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ associated valuation
ring $V_{x}$ , the point of X which corresponds to the height one valuation of $K_{x}$ is
denoted by $y=\mathrm{s}\mathrm{e}\mathrm{p}(x)$ and called the maximal generalization of $x(y$ corresponds
to the minimal prime ideal containing an ideal of definition). Let $[\mathcal{X}]$ be the subset
of $<\mathcal{X}>$ consisting of height one points. Then we give $[\mathcal{X}]$ the quotient topology
by surjection $\mathrm{s}\mathrm{e}\mathrm{p}:<\mathcal{X}>arrow[\mathcal{X}]$ (caution: the section corresponding to the natural
inclusion $[\mathcal{X}]arrow<\mathcal{X}>\mathrm{i}\mathrm{s}$ not continuous). This space $[\mathcal{X}]$ has an advantage that it
is much nearer to our topological intuition. For example

Proposition. $[\mathcal{X}]$ is a compact Hausdorff space. Basis of closed sets is $\{\mathrm{s}\mathrm{e}\mathrm{p}(\mathcal{U})\}$ ,
$\mathcal{U}$ a quasi-compact open subset ($\mathrm{s}\mathrm{e}\mathrm{p}^{-1}(\mathrm{S}\mathrm{e}_{\mathrm{P}()}\mathcal{U})=\overline{\mathcal{U}},$ where $-denoteS$ the closure).

holds. Especially there is ample supply of $\mathrm{R}$-valued functions on $[\mathcal{X}]$ . Dually, a
basis of open sets is obtained as follows : First we define the notion of tubes. For
a model $X’$ of X and a closed set $C$ of $X’T_{C}=(\mathrm{s}\mathrm{p}^{-1}(c))^{\mathrm{i}\mathrm{n}\mathrm{t}}$ (int denotes the
interior), is called the tube of $C$ . In fact, tube of $C$ is defined as $\lim_{arrow n}\mathrm{s}\mathrm{p}-1(U_{n})$ ,
where $U_{n}$ is the open set of the blowing up by $(\mathcal{I}_{C})^{n}+\mathcal{I}$ where the inverse image
of $\mathcal{I}$ generates the exceptional divisor. $T_{C}$ is the complement of $\overline{\mathrm{s}_{\mathrm{P}^{-1}}(X’\backslash C)}$ . For
a tube $T=T_{C},$ $\mathrm{s}\mathrm{e}\mathrm{p}^{-1_{\mathrm{S}}}\mathrm{e}\mathrm{P}(\tau)=T$ holds, and hence $\mathrm{s}\mathrm{e}\mathrm{p}(T)$ is an open set of $[\mathcal{X}]$ ,
which is not compact in general. Images of tubes form a basis of open sets in [X].
For most cohomological questions both topological space give the same answer:

Proposition.
For a sheaf $\mathcal{F}$ $on<\mathcal{X}>,$ $R^{q}\mathrm{s}\mathrm{e}\mathrm{p}*\mathcal{F}=0$ if $q>0$ . For a sheaf $\mathcal{G}$ on $[\mathcal{X}]$ ,

$\mathrm{s}\mathrm{e}\mathrm{p}_{*}\mathrm{s}\mathrm{e}\mathrm{P}^{-}\mathcal{G}1\mathcal{G}=$ .

We check the claim fiberwise, and reduce to to the valuation ring case.
The proposition includes $H^{q}(\overline{\mathcal{U}}, \mathcal{F})=H^{q}(\mathcal{U}, \mathcal{F}|_{\mathcal{U}})(=H^{q}([\mathcal{U}], \mathcal{G}))$ for a sheaf

$\mathcal{F}=\mathrm{s}\mathrm{e}\mathrm{p}^{-}(1\mathcal{G})$ on $\overline{\mathcal{U}}$ . Note that this does not apply to coherent sheaves. This is
quite important in the theory of overconvergent isocrystals of Berthelot.
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The estimate of cohomological dimension
Here we give the estimate of cohomological dimension of the Riemann space of a
coherent rigid space. The result can be applied to the estimate of the cohomological
dimension of \’etale topos of a rigid space.

In the noetherian case or the height one case, the proof is rather easy, and follows
from the limit argument in SGA4 [Fu]. We have treated rigid spaces over valuation
rings which may not be of height one. The estimate of cohomological dimension in
this case is not so evident, so the necessary tools are included.

Theorem. Let X be a coherent rigid space over an a-adically complete valuation
ring $R,$ $R’$ be the a-adically complete height one valuation ring associated to V. Let
$d$ be the relative dimension of X (which is equal to the dimension of X $\cross_{R}R’$).
Then the cohomological dimension of the Riemann space $<\mathcal{X}\geq is$ at most $d$ .
Claim. Assume $V$ is a valuation ring with fraction field $K$ , and $X$ is a finitely
presented scheme over V. Then $H^{i}(X_{ZR}, \mathcal{F})=0$ for $\dot{i}>d$, where $d$ is the dimen-
sion of $X\cross_{V}K$ , and $X_{ZR}$ is the Zariski-Riemann spac.e of $X$ in the classical sense
(as a scheme).

Assuming the claim, one gets the estimate in the theorem: We write

$\mathcal{X}_{ZR}=\lim_{i\in I}x_{i}arrow$
’

where $X_{i}$ are flat model of X. We put $V=R/\sqrt{\alpha}$ . Then

$\mathcal{X}_{ZR}=\lim_{arrow,i\in I}(X_{i}\cross_{R}V)_{ZR}$

holds. Since $X_{i}\cross_{R}V$ is just a scheme over $V$ , we can consider the Riemann space
in the classical sense. Then we apply the claim.

First step: Reduction to finite height case
$V$ is written as

$V= \lim_{Ii\in}A_{i}arrow$ ’

where $A_{i}$ is a subring of $V$ which is finitely generated over Z. Consider the Riemann
space $Z_{i}$ of $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{C}A_{i}$ in the classical sense. $V$ determines a point $x_{i}$ in $Z_{i}$ , i.e., a
valuation ring $V_{i}\subset V$ which dominate $A_{i}$ . Since $A_{i}$ is finitely generated over $\mathrm{Z},$ $V_{i}$

has a finite height. Then we have

$V= \lim_{i\in x}Varrow i$
,

$V_{i}$ is a valuation ring with finite height.
Since $X$ is finitely presented over $V$ , by the standard limit argument in EGA,

there are $\dot{i}_{0}\in I$ and a finitely presented scheme $X_{0}$ over $V_{i_{0}}$ such that $X=X_{0}\cross_{V_{i_{\mathrm{O}}}}$

$V$ , and

$X= \lim_{i\geq i0}X_{i}arrow$
’
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where $X_{i}=X_{0}\mathrm{X}_{V_{i_{0}}}V_{i}$ . By the usual argument, $X_{ZR} \simeq\lim_{arrow i\geq i_{\mathrm{O}}}(X_{i})_{ZR}$, and it

suffices to prove the claim for each $X_{i}$ . So we are reduced to the finite height case.
Second step: Reduction to valuation ring case
We may assume that the height of $V$ is finite. We prove the claim by induction

on the height. When the base is a field, you get the estimate as you do in your
thesis. So the height $0$ case is $\mathrm{O}\mathrm{K}$ .

Since the height is finite, there is some $a\in V\backslash \{0\}$ such that $K=V[1/a]$ .
$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}Karrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}V$ is a finitely presented open immersion. Let $j$ : $X\cross_{V}Karrow V$

be the induced open immersion. Take a sheaf $\mathcal{F}$ on $X_{ZR}$ . Let $\mathcal{G}$ be the kernel of
$\mathcal{F}arrow j_{*}j^{*}\mathcal{F}$ , and $\mathcal{H}=\mathcal{F}/\mathcal{G}\cdot \mathcal{H}arrow j_{*}j^{*}\mathcal{H}$ .

Consider the exact sequence

$..arrow H^{i}(X, \mathcal{G})arrow H^{i}(X, \mathcal{F})arrow H^{i}(X, \mathcal{H})arrow.$ .

The support of $\mathcal{G}$ is in $X_{ZR}\backslash (X\cross_{V}K)_{ZR}$ . We write $X_{ZR}= \lim_{arrow j\in J}X_{j},$
$X_{j}$ is flat

over $V$ , and dominates $X$ . Then

$x_{zR\backslash (x\chi K)_{zR}=}VjJ \lim_{\in}(X_{j}arrow\cross_{V}V/\sqrt{a})_{zR}$

holds (check it). The height of $V/\sqrt{a}$ is strictly smaller than that of $V$ . By our
induction hypothesis $H^{i}(X_{ZR}, \mathcal{G})=0$ for $\dot{i}>d$ . So we are reduced to the case of
$F,$ $\mathcal{F}arrow j_{*}j^{*}\mathcal{F}$. Similarly, we can reduce to the case of $\mathcal{F}=j_{*}j^{*}\mathcal{F}$ .

Consider the higher direct image $R^{s}j*j^{*}\mathcal{F}$ . We calculate the fiber at $x\in X_{ZR}$ .
Since $j$ induces quasi-compact and quasi-separated map on the Zariski-Riemann
spaces ($j$ is finitely presented), it is easy, and it is equal to $H^{s}(\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{c}}}A[1/a], \mathcal{F}|_{\mathrm{s}_{\mathrm{P}}}\mathrm{e}\mathrm{C}A[1/a])$ .
Here $A$ is the valuation ring corresponding to $x$ . Assume this vanishes for $s>0$ at
this moment. Then

$H^{i}(x_{zR},j*j*\mathcal{F})=H^{i}(X_{z}R, Rj*j^{*}\mathcal{F})=H^{i}((X\cross_{V}K)_{zR},j^{*}\mathcal{F})$ .

We know the claim in the height $0$ case. So we will finish the proof if we show the
claim in the following case: $X=\mathrm{S}_{\mathrm{P}^{\mathrm{e}\mathrm{C}}}V,$ $V$ is a valuation ring with finite height.

Final step
Assume $X=\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{c}}}$ V. $H^{i}(X, \mathcal{F})=0$ for $i>0$ , since any open covering is refined

by the total space $X$ . The claim is proved.
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\S 2. Comparison Theorems in rigid \’etale cohomology

Here fundamental theorems for rigid-\’etale cohomology are discussed. The origin
for the study of rigid-\’etale theory is Drinfeld’s work on p–adic upper half plane [D].
Most results here have applications in the study of modular varieties. The results,
with many overlaps, are obtained by Berkovich for his analytic spaces (not rigid
analytic one) over height one valuation fields. R. Huber has also obtained similar
results for his adic spaces. The relation between these approaches will be discussed
elsewhere.

We want to discuss \’etale cohomologies of rigid-analytic spaces. It is sometimes
more convenient to use a variant of rigid-geometry, defined for henselian schemes
instead of formal schemes.

In the affine case it is defined as follows. We take an affine henselian couple
$(S, D)=(\mathrm{S}_{\mathrm{P}^{\mathrm{e}}}\mathrm{c}A,\tilde{I}):D\subset S$ is a closed subscheme with $\pi_{0}(S’\cross_{S}D)=\pi_{0}(s’)$ for
any finite $S$-scheme $S’$ (hensel lemma). As an example, if $S$ is $\mathcal{I}_{D}$ -adically complete,
$(S, D)$ is a henselian couple. Then to each open set $D\cap D(f)=\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{c}}}A[1/f]/I[1/f]$ ,
$f\in A$ , we attach the henselization of $A[1/f]$ with respect to $I[1/f]$ . This defines
a presheaf of rings on $D$ . This is in fact a sheaf, and defines a local ringed space
Sph $A$ , called the henselian spectrum of $A$ (as a topological space it is $D$ , like a
formal spectrum). General henselian schemes are defined by patching. See [Cox],
[Gre], [KRP] for the details. We fix an affine henselian (or formal) couple $(S, D)$ .
Put $U=S\backslash D$ . We consider rigid geometry over $S$ , i.e., rigid geometry over
the henselian scheme attached to $S$ . Of course we can work with formal schemes.
Note on GAGA-functors: For a locally of finite type scheme $X_{U}$ over $U$ , there is
a GAGA-functor which associates a general rigid space $X_{U}^{rig}$ to $X_{U}(X$rig is not
necessarily quasi-compact, nor quasi-separated): Here are examples:
a) For $X_{U}$ proper over $U,$ $X_{U}^{\mathrm{r}\mathrm{i}\mathrm{g}}=(X^{h})^{\mathrm{r}\mathrm{i}\mathrm{g}}$ (resp. $(\hat{X})^{\Gamma \mathrm{i}\mathrm{g}}$ ). Here $X$ is a relative

compactification of $X_{U}$ over $S$ , the existence assured by Nagata. Especially the
associated rigid space is quasi-compact (and separated) in this case.

b) In general $X_{U}^{\mathrm{r}\mathrm{i}\mathrm{g}}$ is not quasi-compact, as in the complex analytic case. $(\mathrm{A}_{U}^{1})^{\mathrm{r}\mathrm{i}\mathrm{g}}$

is an example. It is the complement of $\infty_{U}^{\mathrm{r}\mathrm{i}\mathrm{g}}$ in $(\mathrm{P}_{U}^{1})^{\mathrm{r}\mathrm{i}\mathrm{g}}$ . This is associated with
a locally of finite type formal (or henselian) scheme over $S$ .

c) The GAGA-functor is generalized to the case of relative schemes of locally of
finite presentation over a rigid space.
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Rigid-\’etale topos
For simplicity I restrict to coherent spaces.

Definition.
$a)$ A morphism $f$ : $\mathcal{X}arrow \mathcal{Y}$ is rigid-\’etale if it is flat (see the appendix for the

definition of the flatness) and neat $(\Omega_{\mathcal{X}/\mathcal{Y}}^{1}=0)$ .
$b)$ For a rigid space $\mathcal{X}$ we define the rigid \’etale site of $\mathcal{X}$ the category of \’etale spaces

$\mathcal{X}_{\mathrm{e}\mathrm{t}}ove.r\mathcal{X}$

, where covering is \’etale surjective. The associated topos is denoted by

For a coherent rigid space $\mathcal{X}$ the rigid-\’etale topos is coherent.

The reason for introducing the henselian version of the rigid analytic geometry
in the study of \’etale topology lies in the following fact:

Categorical equivalence. Let $X$ be a henselian scheme which is good. Then
consider the rigid henselian space $\mathcal{X}=X^{\mathrm{r}\mathrm{i}\mathrm{g}}$ . At the same time one can complete
a henselian scheme, so we have a rigid-analytic space $\mathcal{X}^{\mathrm{a}\mathrm{n}}=(\hat{X})^{\mathrm{r}\mathrm{i}\mathrm{g}}$ . There is a
natural geometric morphism

$\mathcal{X}_{\mathrm{e}\mathrm{t}}^{\mathrm{a}\mathrm{n}}arrow \mathcal{X}_{\mathrm{e}\mathrm{t}}$

since the completion of \’etale morphism is again \’etale, and surjections are pre-
served. Then the above geometric morphism gives a categorical equivalence.

The essential point here is the Artin Rees lemma, which assures the validity of
Elkik’s theorems on algebraization.

To prove the claim, we may restrict to coherent spaces. To show the fully-
faithfulness one uses Elkik’s approximation theorem [E1] and some deformation
theoretical argument to show morphisms are discrete. (The rigidity implies that an
approximating morphism is actually the desired one.) For the essential surjectivity
one can use Elkik’s theorem in the affine case, since the patching the local pieces
together is OK by the fully-faithfulness.

It is important to note the following consequence:

Corollary. Let $(A_{i}, I_{i})_{i\in I}$ be an inductive system of good rings, $A_{i}I_{i}$ -adically com-
plete. Then $\lim_{arrow i\in I}($ Spf $A_{i})_{\mathrm{e}\mathrm{t}}^{\mathrm{a}\mathrm{n}}$ is equivalent to $($ Sph $A)_{\mathrm{e}\mathrm{t}}^{\mathrm{r}\mathrm{i}\mathrm{g}}$ , where $A= \lim$ $A_{i}$ , which
is henselian along $I= \lim_{arrow}I_{i}$ . Here the projective limit is the $\mathit{2}- projeCt^{I}\dot{i}arrow i\in ve$ limit of
toposes defined in $SGA\mathit{4}$ .

Since the above ring $A$ is not $I$-adically complete in general (completion does
not commute with inductive limit), the above equivalence gives the only way to
calculate the limit of cohomology groups, especially calculation of fibers. This is
the technical advantage of the introduction of henselian schemes. Moreover if we
regard an affine formal scheme $X=\mathrm{S}\mathrm{p}\mathrm{f}$ $A$ as a henselian scheme, i.e., $\tilde{X}=\mathrm{S}\mathrm{p}\mathrm{h}A$

with natural morphism $Xarrow\tilde{X}$ as ringed spaces, the induced geometric morphism
$X_{\mathrm{e}\mathrm{t}}^{\mathrm{r}\mathrm{i}\mathrm{g}}arrow\tilde{X}_{\mathrm{e}\mathrm{t}}^{\mathrm{r}\mathrm{i}\mathrm{g}}$ is a categorical equivalence so the “local” cohomological property of
rigid analytic spaces is deduced from that of hensel schemes.
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GAGA and comparison for cohomology
Let $(S, D)$ be an affine henselian couple, $X_{U}$ a finite type scheme over $U$ . Then

one has a geometric morphism

$\epsilon:(X_{U}^{\mathrm{r}\mathrm{i}}\mathrm{g})\mathrm{e}\mathrm{t}arrow X_{\mathrm{e}\mathrm{t}}$

defined as follows: For an \’etale scheme $Y$ over $X_{U}$ , one associates $Y^{\mathrm{r}\mathrm{i}\mathrm{g}}$ . Since
GAGA-functor is left exact, and surjections are preserved, a morphism of sites is
defined and gives $\epsilon$ . By the definition, $\epsilon^{*}F=F$ rig for a representable sheaf $F$ on
$X$ (we have used that $F^{\mathrm{r}\mathrm{i}\mathrm{g}}$ is a sheaf on $(X_{U}^{\mathrm{r}\mathrm{i}\mathrm{g}})_{\mathrm{e}\mathrm{t}}$ ). By abuse of notation we write
$F^{\mathrm{r}\mathrm{i}\mathrm{g}}=\epsilon^{*}F$ for a sheaf $F$ on $(X_{U})_{\mathrm{e}\mathrm{t}}$ . Note that the morphism $\epsilon$ is not coherent,
i.e., some quasi-compact object (such as an open set of $X_{U}$ ) is pulled back to a
non-quasi compact object.

Theorem. For a torsion abelian sheaf $F$ on $(X_{U})_{\mathrm{e}\mathrm{t}}$ , the canonical map

$H_{\mathrm{e}\mathrm{t}}^{q}(X_{U}, \mathcal{F})\simeq H_{\mathrm{e}\mathrm{t}}^{q}$ (XrUig, $\mathcal{F}^{\mathrm{r}\mathrm{i}\mathrm{g}}$)

is an $\dot{i}somorph\dot{i}sm$ . The equivalence also holds in the non-abelian coefficient case,
$i.e.,\dot{i}nd$-finite stacks.

This especially includes Gabber’s formal vs algebraic comparison theorem. The
above theorem itself was claimed by Gabber in early $80’ \mathrm{s}$ .

To deduce this form of comparison from the following form, Gabber’s affine
analogue of proper base change theorem [Ga] is used (if $(S, D)$ is local, we do
not have to use it). For the application to \’etale cohomology of schemes, see [Fu].
Especially the regular base change theorem, conjectured in SGA 4, is proved there
(this is also a consequence of $\mathrm{P}_{0}\mathrm{P}^{\mathrm{e}\mathrm{s}}\mathrm{C}\mathrm{u}-\mathrm{O}\mathrm{g}\mathrm{o}\mathrm{m}\mathrm{a}- \mathrm{S}\mathrm{p}\mathrm{i}\mathrm{V}\mathrm{a}\mathrm{k}_{\mathrm{o}\mathrm{V}}\mathrm{S}\mathrm{k}\mathrm{y}$ smoothing theorem).

Corollary (comparison theorem in proper case). For $f$ : $Xarrow Y$ , proper
morphism between finite type schemes over $U$ , and a torsion abelian sheaf $\mathcal{F}$ on $X$ ,
the comparison morphism

$(R^{q}f_{*}\mathcal{F})^{\mathrm{r}\mathrm{i}\mathrm{g}}arrow R^{q}f_{*}^{\mathrm{r}\mathrm{i}}\mathrm{g}\mathcal{F}^{\mathrm{r}}\mathrm{i}\mathrm{g}$

is an isomorphism. Especially, for $\mathcal{F}$ constructible , $R^{q}f_{*}^{\mathrm{r}\mathrm{i}\mathrm{g}}\mathcal{F}^{\mathrm{r}\mathrm{i}}\mathrm{g}$ is again (alge-
braically) constructible (non-abelian version is also true, with a similar argument).

There is another (more primitive) version which includes nearby cycles. We will
state the claim, with a brief indication of the proof. $X$ a scheme, $\dot{i}$ : $Yarrow X$ a
closed subscheme with $U=X\backslash Y$ . $j$ : $Uarrow X$ . Let $T_{Y/X}=\mathcal{X}_{\mathrm{e}\mathrm{t}},$ $\mathcal{X}=(X^{h}|_{Y})^{\mathrm{r}}\mathrm{i}\mathrm{g}$ .
(It is the analogue of (deleted) tubular neighborhood of $Y$ in $X$ ). For any \’etale
sheaf $\mathcal{F}$ on $U$ one associates, by a patching argument, an object of $T_{Y/X}$ which we
write as $\mathcal{F}^{\mathrm{r}\mathrm{i}\mathrm{g}}$ (“restriction of $\mathcal{F}$ to the tubular neighborhood”). Note that there is
a geometric morphism $\alpha_{X}$ : $T_{Y/X}arrow Y_{\mathrm{e}\mathrm{t}}$ (“fibration over $Y$”).

Theorem. For a torsion abelian sheaf $\mathcal{F}$ on $U$ , there is an isomorphism

$\dot{i}^{*}Rj_{*}\mathcal{F}\simeq R(\alpha_{X})_{*}\mathcal{F}^{\mathrm{r}\mathrm{i}}\mathrm{g}$.
If we apply this claim to a finite type scheme over a trait (or the integral closure

of it in a geometric generic point), one knows that rigid-\’etale cohomology in the
quasi compact case is just the hypercohomology of the nearby cycles:
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Corollary. Let $V$ be a height one valuation ring, with separably closed quotient

field $K=V[1/a]$ . Let $X$ be a finitely presented scheme over $V$ , or $X=\mathrm{S}\mathrm{p}\mathrm{f}A,$ $A$ a
good ring of type $v$) which is finitely presented over V. Let $\mathcal{F}$ be a torsion sheaf on
$X_{K}$ , or a torsion sheaf on $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A[1/a]$ . Then

$R\Gamma((\hat{X})\mathrm{r}\mathrm{i}\mathrm{g}, \mathcal{F}^{\mathrm{r}\mathrm{i}\mathrm{g}})=R\mathrm{r}(x_{S},\dot{i}^{*}Rj_{*}\mathcal{F})$

holds. Here $\dot{i}$ : $X_{s}=X\cross_{V}\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{c}}}V/\sqrt{a}arrow X$ (or $\dot{i}$ : $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A\cross_{V}\mathrm{S}_{\mathrm{P}}\mathrm{e}\mathrm{C}V/\sqrt{a}arrow$

$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{C}$ $A$ in the affine formal case) and $j$ : $X_{K}arrow X$ (or $j$ : $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A_{K}arrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}$ A $in$

the affine formal case).

The above mentioned comparison theorem follows from this theorem, using the
Gabber’s affine analogue of proper base change theorem. Let me give a brief outline
of the proof. The underlying idea is quite topological. Put

$Z=, \lim_{BX\in X}X_{\mathrm{e}\mathrm{t}}arrow$

’

( $B_{X}$ is the set of admissible blowing ups (in the scheme sense),

$T_{Y/\mathrm{x}^{=}}^{\mathrm{u}\mathrm{n}} \mathrm{r}\lim_{x’\in \mathrm{t};}arrow X(xl\cross \mathrm{x}^{Y)_{\mathrm{e}\mathrm{t}}}$

( $T_{Y/^{\mathrm{r}}\mathrm{x}}^{\mathrm{u}\mathrm{n}}$ is the analogue of tubular neighborhood of $Y$). The limit is taken as toposes.

Then $U_{\mathrm{e}\mathrm{t}}j_{arrow}^{\mathrm{u}\mathrm{n}\mathrm{r}}Z^{i^{\mathrm{u}\mathrm{n}\mathrm{r}}}arrow T_{Y/\mathrm{x}}^{\mathrm{u}\mathrm{n}\mathrm{r}}$ is a localization diagram ( $U$ is an “open set” and $T^{\mathrm{u}\mathrm{n}\mathrm{r}}$

is a “closed set” of $Z.$ ) Using the proper base change for usual schemes (here the
assumption that $\mathcal{F}$ is torsion is used), one shows that

$R\beta_{*}(\dot{i}^{\mathrm{u}}\mathrm{n}\mathrm{r}*Rj_{*}\mathrm{u}\mathrm{n}\mathrm{r}\mathcal{F})=\dot{i}*Rj*\mathcal{F}$

$(\beta:T^{\mathrm{u}\mathrm{n}\mathrm{r}}arrow Y_{\mathrm{e}\mathrm{t}})$ . So we want to do a comparison on $T_{Y/X}^{\mathrm{u}\mathrm{n}\mathrm{r}}$ .
In fact, there is a morphism $\pi$ : $T_{Y/X}arrow T_{Y/x}^{\mathrm{u}\mathrm{n}\mathrm{r}}$ (“$\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$ of deleted tubular

neighborhood”) such that $R\pi_{*}\mathcal{F}^{\mathrm{r}\mathrm{i}\mathrm{g}}=\dot{i}^{\mathfrak{U}\mathrm{n}\mathrm{r}*}Rj^{\mathrm{u}}*F\mathrm{n}\mathrm{r}$ (this formula is valid for any
sheaf!). The construction is canonical. To calculate the fibers, one needs to treat a
limit argument, so we take here an advantage of henselian version, not formal one.

In the non-proper case, i.e., $f$ is of finite type but not assumed proper, the
comparison is not true unless we restrict to constructible coefficients, torsion prime
to residual characteristic of S. (Since the analytic topos involved is not coherent
in this case, one can not use limit argument to deduce general torsion coefficient
case. This is the same as $\mathrm{C}$-case.) Though the author thinks that comparison
is always true for finite type morphism between quasi-excellent schemes, the only
known result, which is free from resolution of singularities, is the following height
one case (a corresponding result for Berkovich type analytic spaces is obtained
earlier in [Be] $)$ .
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Theorem (comparison theorem in the non-proper case). Let $V$ be a height
one valuation ring, with separably closed quotient field K. $f$ : $Xarrow Y$ morphism
between finite type schemes over K. Then

$(R^{q}f_{*}\mathcal{F})^{\mathrm{r}\mathrm{i}\mathrm{g}}arrow R^{q}f_{*}^{\mathrm{r}\mathrm{i}\mathrm{g}}\mathcal{F}^{\mathrm{r}}\mathrm{i}\mathrm{g}$

is an isomorphism for $\mathcal{F}$ constructible sheaf, torsion prime to residual characteris-
tics of $V$ .

This is proved in [Fu] by a new variant of Deligne’s technique in [De], without
establishing the Poincar\’e duality. This geometric argument, more direct, reduces
the claim for open immersions (evidently the most difficult case) to a special case,
i.e., to $0$ an open immersion of relative smooth curves over a smooth base. Moreover
one can impose good conditions, such as smoothness and tameness of $\mathcal{F}$ . In this
case one can make an explicit calculation. Of course the comparison in the proper
case, which is already stated, is used.

Using the comparison theorems, it is easy to see the comparison $\mathrm{f}\mathrm{o}\mathrm{r}\otimes^{\mathrm{L}}$ , RHom,
$f^{*},$ $f_{*},$ $f_{!}$ . The claim for $f^{!}$ follows from the smooth case. For the Poincar\’e duality
in this case, using all the results I mentioned already, there are no serious difficulties
except various compatibility of trace maps. Berkovich and Huber have announced
such results already for their analytic spaces.

\S 4. Geometric ramification conjecture
In the following we discuss a geometric version of the upper numbering filtration
on the absolute Galois group of a complete discrete valuation field.

Grothendieck has conjectured the following: $X=\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{c}}}R,$ $R$ a strictly hensel
regular local ring, $D=V(f)\subset X$ a regular divisor. Then for $n$ invertible on $X$

$H_{\mathrm{e}\mathrm{t}}^{i}(X\backslash D, \Lambda)=0$

if $\dot{i}>1,$ $\Lambda=\mathrm{Z}/n\mathrm{Z}$ . (For $\dot{i}=0,1$ the group is easy to calculate.) Note that the
conjecture is quite essential in the construction of cycle classes on general regular
schemes. Moreover this conjecture implies the following: Assume the dimension of
$X$ is greater than 1. Then $\mathrm{B}\mathrm{r}(X\backslash \{s\})_{\ell}=0$ . Here $s$ denotes the closed point, Br
means the Brauer group (we can take cohomological Brauer group) and $\ell$ is a prime
invertible on $X$ .

Gabber has announced that he can prove the absolute purity conjecture [Ga 4]
(there is a note by the author of Gabber’s lecture).

We try to explain how this conjecture is related to the birational geometry of $X$ .
In fact, our approach is similar to Hironaka’s proof of “non-singular implies rational
” in the continuous coefficient case. In his proof a stronger form of resolution of
singularities was used, and we will try to do the same thing in the discrete coefficient
case. But it turns out that the spectral sequence involved are bit complicated in
the naive approach, so we will use $\log$-structures of Fontaine-Illusie-Kato to avoid
the difficulty.

The form of embedded resolution we want to use is the following:
For a pair (X, $Y$) , where $X$ is a quasi-excellent regular scheme and $Y$ is a reduced
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normal crossing divisor, we define a good blowing up (X’, $Y’$ ) by $X’$ is the blowing
up of $X$ along $D$ , where $D$ is a regular closed subscheme of $X$ which cross normally
with Y. (The last condition implies that \’etale locally we can find a regular param-
eter system $\{f_{j}\},$ $1\leq j\leq n$ such that $Y$ is defined by $\prod_{i=1}^{m}f_{i}=0$ and $D$ is defined
by $\{f_{j}=0, j\in J\}$ for a subset $J$ of $\{1, , \ldots n\}$ . ) $Y’=$ total transform of $Y_{red}$ .

We say $\pi$ : (X’, $Y’$ ) $arrow(X, Y)$ is a good modification if $\pi$ is a composition of
good blowing $\mathrm{u}\mathrm{p}\mathrm{s}$ . The point is we can control normal crossing divisors.

Conjecture (Theorem of Hironaka in characteristic $0[\mathrm{H}]$ ).
Let $C_{X,Y}$ be the category of all good modifications of (X, $Y$), and $\beta_{X,Y}$ the cate-

gory of proper modifications of $X$ which becomes isomorphic outside $Y$ .
Then $C_{X,Y}$ is cofinal in $B_{X,Y}$ .

Note that it is even not clear that $C_{X,Y}$ is directed. Since any element in $B_{X,Y}$ is
dominated by admissible blowing $\mathrm{u}\mathrm{p}\mathrm{s}$ , this conjecture is equivalent to the existence
of a good modification which makes a given admissible ideal invertible.

So the conjecture is a strong form of simplification of coherent ideals, which is
shown by Hironaka in characteristic zero. It is easy to see the validity of conjecture
in dimension 2, but I do not know if it is true in dimension 3.

The implication of the conjecture in rigid geometry is the following: We define
the tame part $T_{Y/^{\mathrm{m}}}^{\mathrm{t}\mathrm{a}_{X}}\mathrm{e}$ of $TY/X=\mathcal{X}igr$-et by

$T_{Y/X} \mathrm{t}\mathrm{a}\mathrm{m}\mathrm{e}=(X’, Y’)\in\lim_{g_{x}}arrow,$

$Y$

$Y_{log}’$

Here we give $X’$ the direct image $\log$-structure from $x’\backslash Y’$ , and $Y’$ the pullback log-
structure. The limit is taken in the category of toposes. Since $Y’$ is normal crossing,
the behavior is very good. By the conjecture, we can determine the points of this
tame tubular neighborhood (note that the topos has enough points by Deligne’s
theorem on coherent toposes in [SGA 4] $)$ .

Lemma. Let $\epsilon$ : $T_{Y/}^{\mathrm{t}\mathrm{a}}\mathrm{m}\mathrm{e}Xarrow T_{Y/X}^{\mathrm{u}\mathrm{n}\mathrm{r}}$ be the canonical projection (defined assuming the
conjecture). Then for a point $x$ of $T_{Y/X}^{\mathrm{u}\mathrm{n}\mathrm{r}}$ , which corresponds to strictly hensel
valuation ring $V=V_{x}^{sh}$ , the fiber product $T_{Y}^{\mathrm{t}\mathrm{m}}\mathrm{a}/\mathrm{x}^{\mathrm{e}}\cross_{T_{Y/X}^{\mathrm{u}\mathrm{n}}}\mathrm{r}$

$($ Sph $V)^{\mathrm{u}\mathrm{n}\mathrm{r}}$ is equivalent to
$($ Sph $V)^{\mathrm{t}\mathrm{a}\mathrm{m}\mathrm{e}}$ .

So the points above $x$ is unique up to non-canonical isomorphisms, which corre-
sponds to the integral closure of $V$ in the maximal tame extension of the fraction
field of $V$ . Using this structure of points we have

Proposition. For any torsion abelian sheaf $F$ on $T_{Y/^{\mathrm{m}}}^{\mathrm{t}\mathrm{a}_{X}}\mathrm{e}$ order prime to residual
characteristics, we have

$R\alpha_{*}\alpha^{*}\mathcal{F}=\mathcal{F}^{\cdot}$.

Here $\alpha$ denotes the projection from $T_{Y/X}$ .

This isjust the fiberwise calculation ( $\alpha$ is cohomologically proper), using that the
Galois cohomology of henselian valuation fields without any non-trivial Kummer
extension. (This part is completely the same as one dimensional cases.) Then our
theorem is the following:
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Theorem. The conjecture implies Grothendieck’s absolute purity conjecture.
To see this, we use comparison theorem first.

$R\Gamma(X\backslash Y, \Lambda)=R\Gamma(\tau_{Y/\mathrm{x}}, \Lambda)$

By the proposition, this is equal to $R\Gamma(T^{\mathrm{t}\mathrm{a}\mathrm{m}}Y/x\mathrm{e}, \Lambda)$ . So we want to calculate this
cohomology. Since the topos $T^{\mathrm{t}\mathrm{a}\mathrm{m}\mathrm{e}}$ is defined as a 2-projective limit, we have

$H^{q}(T_{Y/X}^{\mathrm{t}\mathrm{m}} \mathrm{a}\mathrm{e}, \Lambda)=(X’, Y’)\lim_{x}arrow\in C,YH^{q}(Y_{l}\prime og-et’\Lambda)$

So we conclude by the following lemma:
$\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}$ . For a good modification $\pi:(X’, Y’)arrow(\tilde{X},\tilde{Y})$

$R\pi_{*}’\Lambda=\Lambda$ ,

where $\pi’$ : $Y_{lo}’g-etarrow\tilde{Y}_{log-et}$ .
In fact, this is a consequence of the absolute purity conjecture. To prove the

lemma, we may assume that $\pi$ is a good blowing up. In this case we use proper
base change theorem in $\log$-etale theory, and reduce the claim to equicharacteristic
cases. Especially to the relative purity theorem over a prime field.

Geometric Ramification Conjecture: Wild case
We end with a heuristic discussion on ramifications in the wild case, with the hope
that the rigid-geometric method might be effective in dealing with the problem.

The ringed topos $T_{Y/}^{\mathrm{t}\mathrm{a}}\mathrm{m}\mathrm{e}X$ should be the tame part of the full tubular neighbourhood
$T_{Y/X}$ , with the canonical projection $T_{Y/X}arrow T_{Y/}^{\mathrm{t}\mathrm{a}}\mathrm{m}\mathrm{e}X^{\cdot}$ Even in the general case, we
expect to have a filtration which generalizes the upper numbering filtration of the
absolute Galois group of a complete discrete valuation field: $T_{Y/X}$ has a (enormously
huge) $\log$-structure with the following monoid:

$M_{Y/X\chi}=\tilde{O}\cap \mathcal{O}_{\chi}^{\cross}$ .

Here $\mathcal{X}=(\hat{X}|_{Y})^{\mathrm{r}\mathrm{i}\mathrm{g}}$ is the associated rigid space, and $\tilde{O}_{\mathcal{X}}$ is the integral model of
the structure sheaf $\mathcal{O}_{\mathcal{X}}$ . $M^{\mathrm{g}\mathrm{r}}=M/\tilde{\mathcal{O}}_{\mathcal{X}}^{\mathrm{X}}$ is the associated sheaf of groups. The stalk
of $M^{\mathrm{g}\mathrm{r}}$ at a point $x$ is $K_{x}^{\cross}/V_{x}^{\cross}$ .

Let $\mathcal{I}$ be the defining sheaf of ideals of $Y$ in $X$ . This choice of $\mathcal{I}$ determines a real
valued map $\mathrm{o}\mathrm{r}\mathrm{d}_{\mathcal{I}}$ : $M^{\mathrm{g}\mathrm{r}} arrow\prod_{x\in \mathcal{X}}\mathrm{R}$ , sending the local section $m$ to $(\mathrm{o}\mathrm{r}\mathrm{d}_{\tilde{x}}m)_{x}\in x$ .
Here $\tilde{x}$ is the maximal generalization of $x$ , i.e., the point corresponding to the
height one valuation associated to $x$ , and $\mathrm{o}\mathrm{r}\mathrm{d}_{\tilde{x}}$ is the $\mathrm{R}$-valued additive valuation
normalized as $\mathrm{o}\mathrm{r}\mathrm{d}_{\tilde{x}}(a)=1,$ $(a)=\mathcal{I}_{x}$ .

The kernel $\mathrm{K}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{r}\mathrm{d}_{\mathcal{I}}$ is independent of any choice of $\mathcal{I}$ (or formal models), and
we denote it by $[M^{\mathrm{g}\mathrm{r}}]$ .

We put $N_{\mathrm{R}}=[M^{\mathrm{g}\mathrm{r}}]\otimes_{\mathrm{Z}}$ R.
Then $N_{\mathrm{R}}$ has the following filtration $\{N_{\mathrm{R}}^{\geq s}\}_{S\in \mathrm{R}}\geq 0$ indexed by $\mathrm{R}_{\geq 0}$ :

$N_{\mathrm{R}}\geq s=\mathrm{o}\mathrm{r}\mathrm{d}^{-}1\mathcal{I}(\mathrm{R}\geq s)$ .

Here we embed $\mathrm{R}$ diagonally in $\prod_{x\in \mathcal{X}}$ R.
We can define $N_{\mathrm{R}}^{>s}$ in the same way.
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Problem. For each submonoid $N$ of $N_{\mathrm{R}}$ containing $N_{\mathrm{R}}^{>s}$ for some $s>0$ , find a
topos $T^{N}$ with a projection $pN:TY/\mathrm{x}arrow T^{N}$ with the following properties:

1. $T^{N_{\mathrm{R}}^{>0}}=T_{Y/X}^{\mathrm{t}\mathrm{a}\mathrm{m}}\mathrm{e}$ . $p_{N}^{*}$ : $T^{N}arrow T_{Y/X}$ is fully-faithful. Moreover the filtration is

exhaustive, $\dot{i}.e.,$ $\bigcup_{s}p_{N()}^{*}T^{N}\mathrm{R}>s=T_{Y/X}$ . $\mathrm{R}pN*p_{N^{\mathcal{F}}}^{*}\simeq \mathcal{F}$ for a torsion “over-
convergent” sheaf (in the sense of P. Schneider, the notion equivalent to \’etale

sheaves in the sense of Berkovich) $F\in T^{N}$ with order prime to residual charac-
teristics.

2. Assume $X$ is regular, and $Y$ is a $no7mal$ crossing divisor. The “\’etale homotopy
type” of $T^{N}$ depends only on logarithmic scheme $X_{n}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{C}O_{X}/\mathcal{I}^{n}$ with the
induced $log$-structure if $N_{\mathrm{R}}^{>n}\subset T^{N}.\dot{i}.e.$ , for two $(Y, X)$ and $(Y’, X’)$ with $X_{n}\simeq$

$X_{n}’w\dot{i}thlog$-structure, there is a correspondence between finite \’etale coverings $\mathcal{F}$ ,

$F’$ in $\tau_{Y/\mathrm{x}}^{N_{\mathrm{R}}^{>}}n,$ $T_{Y}^{N_{\mathrm{R}}^{>n}},/x$

’ with order prime to residual characteristics, and

$R\Gamma(\tau_{Y}^{N_{\mathrm{R}}}/>nX’ \mathcal{F})\simeq R\Gamma(T_{Y}N^{>n},\mathrm{R}/X" \mathcal{F}’)$

holds.

For classical complete discrete valuation rings (with perfect residue fields) the
invariance in Problem 2 was found by Krasner in the naive form (the precise version
is found in [De 2] $)$ . Except this case, the problem of defining the upper numbering
filtration is quite non-trivial (the imperfectness of the residue field causes a dif-
ficulty). There is a very precise conjecture by T. Saito on the upper numbering
filtration in this case. There is an attempt using the notion of “

$s$ -\’etaleness’’ which
generalizes logarithmic \’etaleness, though the full detail will not be available so soon.

The more appropriate candidate than $N_{\mathrm{R}}$ , including non-overconvergent sheaves,
seems to be $M^{\mathrm{g}\mathrm{r}}\otimes_{\mathrm{Z}}\mathrm{Q}$ , i.e., “before $\mathrm{R}$”, and expect filtration indexed by $\mathrm{Q}_{\geq 0}$ .

Appendix: A Proof of Flattening Theorem in the Formal Case

\S 0. Introduction
In the following a proof of the flattening theorem in the formal case is given. The
flattening theorem in the algebraic case was proved by L. Gruson and M. Raynaud
[GR]. The corresponding theorem in the formal case is proved by M. Raynaud [R]
for formal schemes over discrete valuation rings. F. Mehlmann [M] has given a
detailed proof for formal schemes over height one valuation rings. S. Bosch and W.
L\"utkebohmert [BL2] treated both noetherian formal schemes and formal schemes
over height one valuation rings. The proofs of [R], [M] and [BL2] are similar to the
algebraic case in [GR].

We treat noetherian formal schemes and formal schemes over a valuation ring
of arbitrary height. Our approach here is different from [R], [M], and [BL2], and
analogous to O. Zariski’s proof of resolution of singularities of algebraic surfaces.
First we prove the theorem locally on the Zariski-Riemann space associated to
the rigid space defined by the formal scheme. Using the quasi-compactness of the
Zariski-Riemann space, we get the claim globally. The principle is quite general,
and many problems can be treated in this way.
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\S l.Rigid Geometry
In this paper we consider adic rings which are good, i.e., a couple $(A, I)$ which is
either of the following:

type n) $A$ is noetherian and $I$ is arbitrary.
type v) $A$ is topologically finitely generated over an $a$-adically complete valuation

ring $V$ and $I=(a)$ .
Then we know that for any finitely presented algebra $B$ over $A$ and a finitely

generated $B$-module $M$ the Artin-Rees lemma is valid, $\hat{M}=M\otimes_{B}\hat{B}$ , and $\hat{B}$ is flat
over $B$ (see [Fu] in case of type $\mathrm{v}$) $)$ .

We say a coherent (quasi-compact and quasi-separated) formal scheme $S$ is good
of type n) (resp. type $\mathrm{v}$) $)$ if it is noetherian (resp. it is finitely generated over $V$).

This is compatible with the above definition for adic rings. When $S$ is good of
some type, we just say $S$ is good.

Later we need some ideas from rigid geometry, so we review it here briefly. Let
$S$ be a coherent formal scheme with the ideal of definition $\mathcal{I}$. Then we define a
local ringed space $<S>,$ the Zariski-Riemann space of $S$ , by

$<S>=$
$\lim_{arrow,s’arrow S}S’$

,

where $S’$ runs over all admissible blowing ups [Fu, 4.1.3]. The structural sheaf
obtained as the limit is denoted by $\tilde{\mathcal{O}}_{S}$ . Call the canonical projection $<S>arrow S$

the specialization map, and denote it by $\mathrm{s}\mathrm{p}_{S}$ . This map is surjective if some ideal of
definition is invertible. It is easy to see that $<S>\mathrm{i}\mathrm{s}$ quasi-compact as a topological
space.

We denote by $<S>^{\mathrm{c}1}$ the points of $<S>$ which define locally closed analytic
subspaces of $S$ , and call an element a classical point of $S$ .

When $S$ is defined by a good formal scheme we say $S$ is good. In this case we
have the following:

a) The rigid-analytic structural sheaf $\mathcal{O}_{S}=\lim_{arrow n}\mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{I}^{n},\tilde{o}_{s})$ is coherent.
b) For an affine formal scheme $S=\mathrm{S}\mathrm{p}\mathrm{f}$ $A$ with an ideal of definition $\mathcal{I}=(\alpha)$ , the

coherent $\mathcal{O}_{S}$-module $\mathcal{F}$ associated with an $A[1/a]$ -module $M$ satisfies $\Gamma(S, \mathcal{F})=M$ .
$(S=S^{\mathrm{r}}\mathrm{i}\mathrm{g}.)$

In case of type v), let $V’$ be the height one valuation ring $V$ localized at $\sqrt{a}$ . $V’$

is $aV’$-adically complete.
A coherent rigid space $\mathcal{X}=X^{\mathrm{r}\mathrm{i}\mathrm{g}}$ over $V$ defines $\mathcal{X}_{V’}=\mathcal{X}\cross_{V}V’$ by base change.

Let $j$ : $\mathcal{X}_{V’}arrow \mathcal{X}$ be the canoncal morphism. Then $<\mathcal{X}_{V’}>\mathrm{i}\mathrm{s}$ a subspace of $<\mathcal{X}>$ ,
and $O_{\mathcal{X}}=j_{*}\mathcal{O}_{\mathcal{X}_{V}}$ , holds. The properties a) and b) are reduced to the height one
case, where the claim is well known.

For $s\in S$ the local ring $A=\tilde{\mathcal{O}}_{S,s}$ at $s$ with $I=(\mathcal{I}\tilde{\mathcal{O}}_{S})_{s}$ has the following
property:

$I$ is finitely generated and any finitely generated ideal containing a power of $I$ is
invertible.

We call such rings $I$-valuative [Fu, \S 3].
The notion of flatness in rigid geometry is defined as follows:
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Definition 1.1. Let $f$ : $\mathcal{X}arrow \mathcal{Y}$ be a finite type morphism of rigid spaces and $\mathcal{F}$

a finite type $O_{\mathcal{X}}$ -module. $\mathcal{F}$ is called (rigid-analytically) $f$ -flat iff all fibers $\mathcal{F}_{x}$ are
flat $\mathcal{O}_{\mathcal{Y},f(x)}$ -modules for all $x\in<\mathcal{X}>$ .
Proposition 1.2. Assume $\mathcal{X},$ $\mathcal{Y},$ $\mathcal{F}$ are defined by good adic rings $B,$ $A$ , a finitely
generated $B$ -module $M,$ I is generated by a regular element a, and fibers of $F$ are
flat at all classical points. Then $M[1/a]$ is a flat $A[1/a]$ -module.

proof. Take a finitely generated $A[1/a]$ -module $N$ and take a resolution

. . . $arrow L_{1}arrow L_{0}arrow Narrow 0$

with $L_{i}$ finite free. Then the induced

. . . $arrow \mathcal{L}_{1}arrow \mathcal{L}_{0}arrow \mathcal{G}arrow 0$

is exact. Then consider

(1.3) . $..arrow \mathcal{F}\otimes \mathcal{L}_{i}arrow \mathcal{F}\otimes \mathcal{L}_{i-1}arrow..arrow \mathcal{F}\otimes \mathcal{L}_{0}arrow \mathcal{F}\otimes \mathcal{G}arrow 0$.

We see that the sequence 1.3 is exact since the coherence of the cohomology sheaves
implies that they are zero iff their fibers at all classical points are zero. By the
assumption that $\mathcal{F}_{x}$ is flat for all classical point $x$ , cohomology sheaves vanish and
hence the exactness follows.

Applying the global section functor $\Gamma$ to 1.3 and using $\Gamma$ is exact on coherent
sheaves defined by $B[1/a]$ -modules we know that

$arrow M\otimes L_{i}arrow M\otimes L_{i-1}arrow..arrow M\otimes Narrow \mathrm{O}$

is exact, i.e., $M[1/a]$ is flat.

Corollary 1.4. Assume $\mathcal{Y}$ is good. Then $\mathcal{F}$ is $f$ -flat $iff\mathcal{F}_{x}$ are flat $\mathcal{O}_{\mathcal{Y},f(x)}$ -modules
for all $x\in<\mathcal{X}>^{\mathrm{c}1}$ .
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\S 2 Fibers
Let $S=S^{\mathrm{r}\mathrm{i}\mathrm{g}}$ be a coherent rigid space, $s\in S$ . Then we say a formal scheme $T$ is
a formal neighborhood of $s$ if and only if $T$ is an open subformal scheme of some
admissible blowing up $S’$ of $S$ with $s\in T^{\mathrm{r}\mathrm{i}\mathrm{g}}$ .
Theorem 2.1. Let $B$ be a topologically finitely generated algebra over $A,$ $A$ a good
$I$ -adic ring and assume I is generated by a regular element a. Take $y\in \mathcal{Y}$ and
put $V=V_{y}= \lim_{arrow A},$ $A’/J_{A}’,$ $D=D_{y}= \lim_{arrow A},$

$B^{\wedge}\otimes_{A}AJ/J_{A’}$ , where Spf $A’$ runs over
formal neighborhoods $ofy$ , and $J_{A’}$ is the defining ideal of the closure $of\eta’\in \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{C}A$

’

( $\eta’$ is the image of the generic point of $V_{y}$ ). Then for a finitely generated D-module
$P$ the strict transform of $P$ is finitely presented.

proof. We may assume $B=A\{\{X\}\}=A\{\{X_{1}, \ldots, X_{n}\}\}$ . Take a surjection from
$D^{m}$ to the strict transform of $P$ . Let $N$ be the kernel. $N$ is a-saturated, i.e.,
{ $x\in D^{m},$ $\alpha^{s}x\in N$ for some $s\in \mathrm{N}$} $=N$. We prove any $a$-saturated submodule $N$

of $D^{m}$ is finitely generated.
First we prove the case $m=1$ , i.e., $N=I$ is an ideal of $D$ .

We prove 2.1 using a formal version of the Groebner basis. Since our situa-
tion is different from the known cases, we establish a division lemma of Hironaka-
Weierstrass type.

Put $L=\mathrm{N}^{n}$ , with the standard monoid structure and the following total order
(homogeneous lexicographic order):
For $\mu=(m_{1}, \ldots, m_{n})$ and $\mu’=(m_{1}’, \ldots, m_{n}’)$ ,

$\mu>\mu’\Leftrightarrow$ $( \sum_{i=1}^{n}m_{i}, m_{1}, \ldots , m_{n})$ is bigger than $( \sum_{i=1}^{n}mm_{1}i’,’, \ldots, m_{n}’)$

in the lexicographic order.

We say a submonoid $E\subset L$ is an ideal of $L$ iff $E+L=E$. Then Dickson’s
lemma claims that any ideal of $L$ are finitely generated, i.e., there exists a finite
subset $J$ of $E$ such that

$E= \bigcup_{j\in J(j+L})$ .
(Consider the sub $\mathrm{Z}[X]$ -module of $\mathrm{Z}[X]$ generated by $X^{e},$ $e\in E$ , and use the
noetherian property.)

We define the notion of coefficients for an element in D. $V= \lim_{arrow A},$ $A’/J_{A}$ ; dom-
inates $A’/J_{A’}$ with $A’/J_{A’}$ integral. By this assumption transition maps $A’/J_{A’}arrow$

$A”/J_{A’’},$ $B\otimes_{A}A’\wedge/J_{A’}arrow B\otimes_{A}A^{J\prime}\wedge/J_{A’’}$ are injective. We take a model $A’$ where $f$

is represented by $F\in A’\{\{X\}\}.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}$ for $\mu\in L$ , the $\mu$-coefficient in $V$ of expansion

$F= \sum_{L\nu\in}a\nu X^{\mathcal{U}}$

of $F$ is independent of a choice of $A’$ . We call this element in $V\mu$-coefficient of $f$ .
Next we claim the ideal

$C_{F}=$ ( $a_{\mu},$ $\mu\in L,$ $a_{\mu}$ is the $\mu$-coefficient of $F$)
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of $V$ generated by the coefficients of $f$ is finitely generated, and hence generated
by one element since $V$ is a valuation ring.

Take $A’$ such that $f$ comes from an element $F\in B\otimes_{A}A’\wedge$ . Since $F$ is a-adically
convergent series, there exists some $s$ such that some coefficient is not in $I^{S}+J_{A’}$ .
The ideal $I’$ generated by coefficients of $F$ and $I^{s}$ is a finitely generated admissible
ideal. $I’$ gives $C_{F}$ .

If we denote a generator of $C_{F}$ by cont $(f)$ ,

cont $(fg)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}(f)$ cont $(g)$

holds modulo units (Gauss’s lemma).
Define $\nu(f)\in L$ by

$\nu(f)=$ { $\sup\nu,$ $a_{\nu}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}(f)$ is a unit $(a_{U}$ is the $\nu$-coefficient of $f)$ }.

It is easy to see $\nu$ satisfies
$\nu(fg)=\nu(f)+\nu(g)$

for $f,$ $g\in D\backslash \{0\}$ , and $\nu$ defines a valuation on $D$ . The initial term of $f$ is defined
as

in$(f)=a_{\nu}(f)X^{\nu(}f)$ .

For any ideal $I\subset D$ ,

$\nu(I)=\mathrm{t}\mathrm{h}\mathrm{e}$ ideal of $L$ generated by $\{\nu(f), f\in I\}$ .

Lemma 2.5 (division lemma). For $f,$ $g\in D$ , assume cont $(g)=1$ . Then there
is unique $\beta\in D$ such that $f-\beta\cdot g$ has no exponents in $\nu(g)+L$ .

proof. Take a polynomial $b$ in $V[X]$ , and $C\in\sqrt{a}$ such that all $\nu$-coefficients of
f–bg, $g,$ $\nu>\nu(g)$ , and $\nu(g)$ -coefficient of f–bg are divisible by $C$ .

Take a formal neighborhood $A’$ of $y$ such that f–bg, $g$ are represented by
$F,$ $G,$ $\in A’/J’\{A\{X\}\},$ $b,$ $C$ by $\tilde{b},\tilde{C}\in IA’/J_{A}’$ .

Then, by induction on $\ell$ , we prove the existence of polynomials $\beta_{l}\in A’/J_{A’}[X]$

such that $\nu$-coefficient of $G\ell=F-\beta\ell G$ for $\nu\in\nu(g)+L$ , and $\beta_{\ell+1}-\beta\ell$ are divisible
by $\tilde{C}^{\ell}$ in $A’/J_{A’}$ .

For $\ell=0$ this is true with $\beta_{0}=0$ . For an element $H$ of $A’/J_{A’}\{\{X\}\}$ , let $\mu\ell(H)$

be the maximal exponent of $H$ in $\nu(G)+L$ whose coefficient $A_{\mu_{f}(H)}$ is not divisible

by $\tilde{C}^{\ell+1}$ in $A’/J_{A’}$ .
Put $H’=H-A_{\mu_{\ell(}}H$ )

$X^{\mu_{l}(H}$ ) $-\nu(c)G$ . $\mu_{\ell}(H’)$ is strictly less than $\mu_{l}(H)$ . Contin-
uing this process finite times from $H=G_{l}$ , we have such $\beta_{\ell+1}$ .

The sequence $\{\tilde{b}+\beta_{l}\}$ is $\overline{C}$-adically convergent in $A’/J_{A’}\{\{X\}\}$ , and the existence
of $\beta$ is proved. Uniqueness is clear from the additivity of $\nu$ .

Sublemma 2.6. There is a unique upper-triangular matrix $\Gamma$ with entries in $D$

and the diagonal component 1 such that $(\tilde{n}_{i})=\Gamma\cdot(n_{i})$ satisfy the following: $\tilde{n}_{i}$ has

no exponent in $F_{i+1}$ .

We prove this by a descending induction on $j$ starting from $j=\ell$ . Assume we
have constructed $\tilde{n}_{j},$ $j>\alpha$ . Applying division lemma to $f=n_{t}$ and $g=n\ell=\tilde{n}\ell$ ,
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there is $\alpha_{\ell}$ such that $n_{t}^{1}=n_{t}-\alpha\ell\cdot n_{f}$ has no exponent in $F_{\ell}$ . Since $n_{t}^{1}$ and $\tilde{n}_{l-1}$

have no exponents in $F_{\ell}$ , any $D$-linear combination of them has no exponent in
$F_{\ell}\backslash F_{\ell}-1$ . By division lemma again for $f=n_{t}^{1}$ and $g=\tilde{n}_{l-1}$ , we can find $\alpha_{\ell-1}$ such
that $n_{t}^{2}=n_{t-}^{1}-\alpha_{l}-1^{\cdot}\tilde{n}l1$ has no exponents in $\nu_{l-1}+L$ and hence $F_{l-1}$ . Continuing
this process, we have $\tilde{n}_{t}$ with the desired property.

Put $E(N)=\mathrm{t}\mathrm{h}\mathrm{e}$ ideal of $L$ generated by $\{\nu(f);f\in N\}$ .
Take generators $\nu_{i}(\dot{i}\leq\dot{i}\leq\ell)$ of $E(N)$ such that $F_{j}=\mathrm{t}\mathrm{h}\mathrm{e}$ ideal generated by $\nu_{s}$ ,

$s\geq j$ , satisfies $F_{l}\not\subset F_{l-1}\not\subset\ldots\not\subset F_{1}$ .
For each $\nu_{i}$ we take $n_{i}\in N$ satisfying $\nu(n_{i})=\nu_{i}$ and cont$(.n_{i})=1$ using the
saturation hypothesis.

To prove claim, it suffices to show the following:

Claim 2.4. $\{n_{i}\}_{1\leq i\leq}\ell$ generates $N$ .

For $n\in N$ there is unique $\tilde{\beta}_{\ell}\in D$ such that $m_{\ell}=n-\tilde{\beta}_{l}\cdot\tilde{n}_{\ell}$ has no exponent
in $F_{l}$ by division lemma applied to $f=n$ and $g=\tilde{n}_{l}$ . Continuing this for $m_{l}$ and
$\tilde{n}_{\ell-1},..$ , we have $\tilde{\beta}_{i}$ such that $n= \sum_{i=1}^{\ell}\tilde{\beta}i^{\prime\tilde{n}_{i}}$ , and the existence of $\beta_{i}$ follows from
sublemma. This $\{\tilde{\beta}_{i}\}$ has the property that $\sum_{i\leq j}\tilde{\beta}_{i}\cdot\tilde{n}_{i}$ has no exponents in $F_{j+1}$ .
For the uniqueness, if we have a presentation $0= \sum\tilde{\beta}_{i}\cdot\tilde{n}_{i}$ we may assume $\tilde{\beta}_{j}=1$

and $\tilde{\beta}_{i}=0$ for some $\dot{i}>j$ . Then the exponent $\nu_{j}$ should appear in $\sum_{1\leq i\leq j-1}\tilde{\beta}_{i}\cdot\tilde{n}_{i}$

which is contradiction.
Now we prove the general case by Nagata’s trick, assuming $B=A\{\{X\}\}$ . Take

an $a$-saturated submodule $N$ of $D^{m}$ . Rom the ideal case we have just proved,
$D[1/a]$ is a noetherian ring since any ideal $I$ of $D[1/a]$ admits an $a$-saturated ex-
tension $\tilde{I}$ to $D$ , which is finitely generated. Then we can find a finitely generated
submodule $\tilde{N}$ of $N$ such that $\tilde{N}[1/a]$ generates $N[1/a]$ . This $\tilde{N}$ comes from a finitely
generated submodule $N’$ of $A’\{\{X\}\}$ by a standard limit argument, where Spf $A’$

is a formal open neighborhood of $y$ . We may assume $\mathrm{A}=A’$ by replacing $A$ , i.e.,
there is a finitely generated $B$-submodule $N$ of $B^{m}$ such that $N$ gives $\tilde{N}$ . Since
$N/\tilde{N}$ is $a$-torsion it suffices to prove $a$-torsions in $M\otimes_{B}D$ is finitely generated as
a $D$-module, where $M=B^{m}/N$ .

For $M$ , we put $B_{*}M=B\oplus M$ , the split algebra extension of $B$ by $M$ . So the
multiplication rule is $(b_{1}, m_{1})\cdot(b_{2}, m_{2})=(b_{1}\cdot b_{2}, b_{1}m_{2}+b2m_{1})$ . Since $M$ is a finitely
presented $B$-module, $\hat{M}=M\otimes_{B}\hat{B}=M$ , and hence $B_{*}M$ is $a$-adically complete.
Moreover $D_{B_{*}M}=D\oplus M\otimes_{B}D$ holds. Applying the ideal case to $D_{B_{*}M}$ , we get
that the $a$-torsions in $M\otimes_{B}D$ form a finitely generated D-module.

Remark. We have a canonical way to choose $\beta_{i}$ in $n= \sum\beta_{i}\cdot n_{i}$ .

Corollary 2.7. $\hat{D}$ is faithfully flat over $D$ .
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\S 3 Flattening

Continuity lemma 3.1 (cf. EGA chap IV lemme 11.2.5). Assume we are
given a projective system $\{A_{j}\}_{j\in J}$ of good adic rings. Assume there is a minimal
element $j_{0}\in J$ , and I is an ideal of definition of $A_{0}=A_{j_{0}}$ . $B_{0}$ is a topologically
finitely presented $A_{0}$ -algebra, and $M_{0}$ is a finitely presented $B_{0}$ -module. Put $B_{j}=$

$B\otimes_{A}A_{j}\wedge,$ $M_{j}=M\otimes_{B_{0}}B_{i},$ $A= \lim_{Jarrow j\in}A_{i},$ $B= \lim_{Jarrow j\in}B_{j}$ and $M= \lim_{Jarrow i\in}M_{j}=$

$M_{0}\otimes_{B_{0}}$ B. Assume $M/IM$ is a flat $A/I$-module and $\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A}(M, A/I)=0$ . Then
$M_{j’}$ is $A_{j’}$ -flat for some $j’\geq j_{0}\in J$ .

proof. Since $M/IM= \lim$ $M_{j}/IM_{j}$ is flat over $A/I$ , by [ $\mathrm{G}\mathrm{D}$ , corollaire 11.2.6.1]
$arrow j\in J$

there is $j_{1}\geq j_{0}\in J$ such that $M_{j}/IM_{j}$ is flat over $A_{j}/IA_{j}$ for $j\geq j_{1}$ . Since
$\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A}j_{1}(M_{j_{1}}, A_{j_{1}}/IA_{j_{1}})$ is a finitely generated $B_{j_{1}}$ -module, the vanishing of $\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A}(M, A/IA)$

means that there exists $j’\in J,$ $j’\geq j_{1}$ such that the image of $\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A}j_{1}(M_{j_{1}}, A_{j_{1}}/IA_{j_{1}})$

in $\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A}j’(M_{j’}, A_{j}’/IAj’)$ is zero. We apply the following lemma.

Sublemma 3.2. Let $A$ be a good $I$ -adic ring, $A’$ a good $IA’$ -adic $A$ algebra, $B$ a
topologically finitely presented algebra over $A$ , and $M$ a finitely presented B-module.
$B’=B\otimes_{A}A^{;}\wedge,$ $M’=M\otimes_{B}B’$ . Then the canonical map

$\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A}(M, A/IA)\otimes_{A}\mathrm{A}’arrow \mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A’}(M’, A’/IA’)$

is surjective $\dot{i}fM/IM$ is a flat $A/I$-module.

proof. We may assume $B=A\{\{X\}\}$ . We take $\mathrm{O}arrow Narrow Larrow Marrow \mathrm{O},$ $L$ : a finite
free $B$-module, $N$ : a finitely generated $B$-module. Since $A’$ is a good adic ring, we
have the exactness of $\mathrm{O}arrow N’arrow L_{0}\otimes_{B}B\wedge’arrow M’arrow 0,$ $N’=N\otimes_{B}B’\wedge$ . Since $L\otimes_{B}B’\wedge$

are $A’$-flat,

$0arrow \mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A^{;}}(M’, W)arrow N’\otimes_{A’}Warrow L\otimes_{B}B^{;}\wedge\otimes_{A’}Warrow M’\otimes_{A’}Warrow \mathrm{O}$

for any $A’$-module $W$ . Especially, $\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A’}(M’, A’/IA’)=\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A’}(M\otimes_{A}A’, A’/IA’)$.
Then the claim follows from [ $\mathrm{G}\mathrm{D}$ , lemme 11.2.4].

By the sublemma $\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{A_{j}}(M_{j}, A_{j}/IA_{j})$ vanishes. Note that local criterion for the
flatness is true for good adic rings using the Artin-Rees lemma, so $M_{j}$ is flat over
$A_{j}$ .
Theorem 3.3 (Flattening theorem). Let $Y$ be a good coherent formal scheme,
$f$ : $Xarrow Y$ a finitely generated morphism and $\mathcal{F}$ a finitely generated module which
is rigid-analytically $f$ -flat. Then there exists an admissible blowing up $Y’arrow Y$ such
that the strict transform of $\mathcal{F}$ is flat and finitely presented.

proof. We may assume that $X=\mathrm{S}\mathrm{p}\mathrm{f}B$ , $Y=\mathrm{S}\mathrm{p}\mathrm{f}$ $A$ are affine, the defining ideal
$I$ of $A$ is generated by a regular element $a$ , and $\mathcal{F}$ is defined by a $B$-module $M$ .

Take $y\in \mathcal{Y}$ and put $\tilde{A}=\tilde{O}_{\mathcal{Y},y},\tilde{B}=\lim_{arrow}B\otimes_{A}A^{J}\wedge$ , where Spf $A’$ runs over affine
formal neighborhoods of $y$ . Then $\overline{A}$ is $a\tilde{A}$-valuative, $\tilde{A}[1/a]$ is a local ring with
residue field $K,$ $J= \bigcap_{n}a^{n}\tilde{A}$ is the maximal ideal of $\tilde{A}[1/a]$ , and $\tilde{A}/J$ is a valuation
ring separated for $a\tilde{A}/J$-adic topology.

First we prove the claim locally on the Zariski-Riemann space of $Y^{\mathrm{r}\mathrm{i}\mathrm{g}}$ .
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Lemma 3.4. The strict transform of $M\otimes_{B}\tilde{B}$ is a finitely presented $\tilde{B}$ -module.

By our assumption of rigid-flatness $M\otimes_{\tilde{B}}\tilde{B}[1/a]$ is flat (proposition 1.3). Then
$\mathrm{T}_{\mathrm{o}\mathrm{r}_{1}^{\tilde{A}}}(M\otimes\tilde{B}[1/a], K)=0$. Rom

$0arrow Jarrow\tilde{A}arrow\tilde{A}/J$
ハゾ

$arrow 0$

we have
$0arrow \mathrm{T}\mathrm{o}\mathrm{r}_{1}^{\tilde{A}}(M,\tilde{A}/J\tilde{A})arrow J\otimes_{\tilde{A}}Marrow Marrow M/JMarrow 0$

Since $J\otimes_{\tilde{A}}M$ is $a$-torsion free, $\mathrm{T}\mathrm{o}\mathrm{r}_{1}^{\tilde{A}}(M,\tilde{A}/J)=0$ by our assumption that this
module is $a$-torsion and $JM=J\otimes_{\tilde{A}}M$ is $a$-torsion free. We show that $(M\otimes_{B}$

$\tilde{B})_{a-\mathrm{t}\circ}\mathrm{r}\mathrm{s}arrow(M/JM)_{a-\mathrm{t}\circ}\mathrm{r}\mathrm{s}$ is bijective. The injectivity is clear since $JM$ has no
non-zero $a$-torsions. For the surjectivity, take an element $m\in M$ which is mapped
to an $a$-torsion element in $M/JM$ . $am\in JM$ , thus there exists $n\in JM$ such that
$an=am$, and $m-n$ have the same image as $m$ in $M/JM$.

$(M\otimes_{B}\tilde{B})a-\mathrm{t}\circ \mathrm{r}\mathrm{S}=(M/JM)_{a-\mathrm{t}}\circ \mathrm{r}\mathrm{s}$ is finitely generated as a $\tilde{B}$-module by 2.1.

We globalize the local result using the quasi-compactness of the Zariski-Riemann
space.

We take $B$ as the category of the admissible blowing up $Y’$ for which $\mathcal{I}\mathcal{O}_{Y’}$ is
invertible. For an admissible blowing up $Y’\in B$ , let $C_{Y’}$ be the subset of $Y’$ defined
as

$C_{Y’}=$ {$y’\in Y’$ , the strict transform of $\mathcal{F}_{Y’}$ is not flat over $\mathcal{O}_{Y^{;_{y}\prime}},$ }.

Then $C_{Y’}$ is closed. This follows from the continuity lemma 3.1. When there
is a morphism $Y”arrow Y’$ in $B,$ $C_{Y’’}$ is mapped to $C_{Y’}$ . We prove $C_{Y’}=\emptyset$ for
some $Y’\in B$ . If not, $\mathrm{s}\mathrm{p}_{Y}^{-1},C_{Y’}\subset<\mathcal{Y}>$ are non-empty, using the surjectivity of
specialization map. For a finite set $I$ and $Y_{i}\in B,\dot{i}\in I$ there is $\tilde{Y}\in B$ dominating
all $Y_{i},\dot{i}\in I$ . This means that $\{\mathrm{s}\mathrm{p}_{Y}^{-1},CY;\}Y’\in B$ has finite intersection property.
Since $<\mathcal{Y}>\mathrm{i}\mathrm{s}$ quasi-compact, the intersection is non-empty, and we have a point
$y$ of $<\mathcal{Y}>\mathrm{w}\mathrm{h}\mathrm{i}_{\mathrm{C}}\mathrm{h}$ is mapped to $C_{Y’}$ by the specialization map for any $Y’\in B$ .

Over the local ring $\tilde{A}=\tilde{O}_{\mathcal{Y},y}$ the strict transform of $M\otimes_{B}\tilde{B}$ is finitely pre-
sented. Writing $\tilde{A}$ as the limit of affine formal neighborhoods Spf $A’$ of $y$ , by the
standard limit argument, there exists an affine formal neighborhood Spf $A’$ of $y$

such that there exists a finitely presented $B\otimes_{A}A’\wedge$ module $N$ with $M\otimes_{A}A’\wedgearrow\lambda N$

which gives the strict transform of $M\otimes_{B}\tilde{B}$ over $\tilde{A}$ . Both $\mathrm{K}\mathrm{e}\mathrm{r}\lambda$ and $\mathrm{C}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}\lambda$ are
finitely generated since $N$ is finitely presented. Since the limit of $N\otimes_{A’}A\wedge\prime\prime$ , where
Spf $A”$ runs over formal neighborhoods of $y$ dominating Spf $A’$ , is a flat $\tilde{A}$-module
by our construction, by continuity lemma 3.1 $N\otimes_{A}\prime A\wedge\prime\prime$ is flat for some $A”$ . Replac-
ing $A”$ further, we may assume $\mathrm{K}\mathrm{e}\mathrm{r}\lambda_{A}’$ ; is an $a$-torsion module and $\mathrm{C}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}\lambda_{A^{J}}$ , is
zero using the finite generation. So there exists some affine open neighborhood $U_{y}$

of $y$ in $Y”\in B$ , on which $\mathcal{F}_{U_{y}}/\mathcal{F}_{U_{y}}a-\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}$ is $f_{U_{y}}$ -flat and finitely presented. This
is a contradiction, and the strict transform of $\mathcal{F}_{Y’}$ is $f_{Y’}$ -flat for some $Y’\in B$ , and
hence for all $Y”\in B$ dominating $Y’$ .

For the finite presentation, note that we have find an affine open neighborhood
$U_{y}\subset W_{y},$ $W_{y}\in B$ for any $y\in<\mathcal{Y}>\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ the strict transform is finitely presented.
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We take a finite subset $I\subset<\mathcal{Y}>\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that $U_{i}^{\mathrm{r}\mathrm{l}}\mathrm{g},\dot{i}\in I$ covers $<\mathcal{Y}>\mathrm{b}\mathrm{y}$ the quasi-
compactness. By blowing up $Y’$ further, we may assume $Y’$ dominates all $W_{i},\dot{i}\in I$ .
Let $\pi_{i}$ : $Y’arrow W_{i}$ be the projection. Then $\pi_{i}^{-1}(U_{i})$ covers $Y’$ by the surjectivity
$\mathrm{s}\mathrm{p}_{Y}$” and the strict transform of $\mathcal{F}_{Y’}$ is finitely presented.

Corollary 3.5.
Assumptions are as in 3.3, and assume moreover that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{P}^{\mathcal{F}}=\mathcal{X}$ . Then $f$ is

an open map.

\S 4 Theorem of Gerrizen-Grauert
The following theorem is used to give the relation between rigid spaces in the
classical sense and the definition of Raynaud.

Theorem.
Let $f$ : $Xarrow Y$ is a separated morphism of finite type between good formal

schemes, and let $f^{\mathrm{r}\mathrm{i}\mathrm{g}}$ be the morphism between the asociated rigid spaces $f^{\mathrm{r}\mathrm{i}\mathrm{g}}$ : $\mathcal{X}=$

$X^{\mathrm{r}\mathrm{i}\mathrm{g}}arrow \mathcal{Y}=Y^{\mathrm{r}\mathrm{i}\mathrm{g}}$ . Assume $f^{\mathrm{r}\mathrm{i}\mathrm{g}}$ satisfies $\mathcal{O}_{\mathcal{Y},f^{\mathrm{r}\mathrm{i}}(x)}\mathrm{g}arrow O_{\mathcal{X},x}$ is an isomorphism for
$x\in<\mathcal{X}>^{\mathrm{c}1}$ . Then there is an admissible blowing up $Y’arrow Y$ such that the strict

transform of $f_{Y’}$ is an open immersion.

This immediately follows from the formal flattening theorem. Here we give a
simpler proof based on Elkik’s approximation theorem.

We may assume $\mathcal{Y}$ is affine, and the ideal of definition is generated by one element
$a$ . $f^{\mathrm{r}\mathrm{i}\mathrm{g}}$ is a rigid etale morphism in the sense of [Fu, 5.1.2]. By [Fu, 5.1.3], there

is a henselian scheme $\tilde{f}$ : $\tilde{X}arrow\tilde{\mathrm{Y}}$ such that $\hat{\tilde{X}}=X$ . Here $\tilde{Y}=\mathrm{S}\mathrm{p}\mathrm{h}\Gamma(Y, \mathit{0}_{Y}).$ By
[Fu, lemma 3.2.2], there is an admissible blowing up $\tilde{Y}’$ of $\tilde{Y}$ such that the strict
transform of $\tilde{f}_{\tilde{Y}}$, is flat. (Note that we have used the flattening theorem in the
algebraic case only.) By passing to the completion, the strict transform of $f_{Y’}$ is

flat for $Y’=\hat{\tilde{Y}}’$ (in case of type v), we use Gabber’s theorem [Fu, 1.2.3] $)$ . The rest
of the argument is the same.
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