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Abstract

We study various ways of generation of a topological group depending
on the size and the topological properties of the set of generators.

1 Introduction

1.1 How to generate a topological group
Topological groups offer a rich choice of different ways of “generation” because
of their two-fold nature. In the first place they are groups, so that one can
consider the usual notion of generation–a subset $S$ of a group $G$ is said to
generate $G$ if the smallest subgroup ( $S\rangle$ of $G$ containing $S$ coincides with $G$ . In
the second place $G$ carries a topological structure, so that one can replace the
equality $G=\langle S\rangle$ by the weaker condition $\langle S\rangle$ is dense in $G$ . In such a case we
refer to $S$ as to a set of topological generators and we say that $S$ topologically
generates the group $G$ . We start in \S 2 with the instances when the set $S$ that
topologically generates $G$ has the smallest possible size (a singleton or a finite
set). Then we consider in \S 3 the case when $S$ is a convergent sequence. Next
come two different generalizations of a convergent sequence: a set with a single
non-isolated point and a compact set. In \S \S 4-7 we discuss the first aspect, in
particular \S 5 deals with the case of closed discrete set of generators. Finally,
in 8, we discuss the other generalization of the case of finite set of generators,
namely compact sets of generators. In view of the large variety of results in this
field most of the proofs are omitted.

1.2 Notation
We denote by $\mathrm{N}$ and $\mathrm{P}$ the sets of naturals and primes, respectively, by $\mathrm{Z}$ the
integers, by $\mathrm{Q}$ the rationals, by $\mathrm{R}$ the reals, by $\mathrm{T}$ the unit circle group $\mathrm{R}/\mathrm{Z}$ , by
$\mathrm{Z}_{p}$ the p–adic integers $(p\in \mathrm{P})$ . The cardinality of continuum $2^{\omega}$ will be denoted
also by $\mathrm{c}$ .

Let $G$ be a group. We denote by 1 the neutral element of $G$ and by $Z(G)$

the center of $G$ . Topological groups are Hausdorff and completeness is intended
with respect to the two-sided uniformity, so that every topological group $G$
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has a (Raikov) completion which we denote by $\hat{G}$ . A group $G$ is precompact if
$\hat{G}$ is compact, pseudocompact if every continuous real-valued function on $G$ is
bounded, countably compact-if each open countable cover of $G$ admits a finite
subcover. For topological groups $G$ and $H$ we denote by $c(G)$ the connected
component of $G$ , by $w(G)$ the weight of $G$ and by $GH$ the semidirect product
of $G$ and $H$ . For undefined symbols or notions see [19] or [20].

1.3 Some properties of the compact groups
The following facts about compact groups and their weight will be needed in
the sequel. We give first a theorem that describes the structure of compact
connected groups modulo compact connected abelian groups and compact con-
nected Lie groups.

Fact 1.1 (Varopoulos Theorem) Every connected compact group $K$ is a quo-
tient of a group of the form $A\cross L$ with respect to some closed totally disconnected
subgroup $N$ of $A\cross Z(L)$ , where $A$ is compact connected and abelian, while $L$ is
a product of connected compact simple Lie groups.

Note that every simple connected Lie group has a finite center, so that $Z(L)$
is totally disconnected as a product of finite groups. Moreover, $L/Z(L)$ is a
product of a family of $w(L)$ metrizable groups, hence it has the same weight
as $L$ . Moreover, the projection $N_{1}$ of $N$ on $A$ is totally disconnected, so that
$w(A/N_{1})=w(A)$ . As $N\subseteq N_{1}\mathrm{x}Z(L)$ the group $K\cong(A\cross L)/N$ projects onto
the group $A/N_{1}\cross L/Z(L)$ that has weight $w(A)\cdot w(L)=w(K)$ . Consequently
$w(K/D)=w(K)$ for every closed totally disconnected subgroup $D\subseteq Z(L)$ .

On the other hand, the center of $K$ coincides with the image of the center of
$A\cross L$ , hence it is isomorphic to $[A\cross Z(L)]/N$ . Hence its connected component
is isomorphic to $A/N\cap A$ . One can choose a representation with $A\cap N=1$ in
order to have $c(Z(K))\cong A$ .

The commutator subgroup $K’$ is coincides with the image of $L$ , so it is isomor-
phic to $L/N\cap L$ . A center-free connected compact group $K$ has a very simple
form: $K \cong\prod_{i\in I}L_{i}$ , where each $L_{i}$ is a connected compact simple Lie group
with trivial center (i.e., algebraically simple).

Fact 1.2 (Lee’s theorem [33]) Every compact group $G$ admits a totally discon-
nected compact subgroup $H$ wiih $G=c(G)H$ and such that $D=H\cap c(G)\subseteq$

$Z(c(G))$ . Consequently, $w(G/D)=w(G)$ and $G/D\cong c(c)/DF$ with a compact
totally disconnected group $F$ .

The equality $w(G/D)=w(G)$ follows from the fact that for the connected
compact subgroup $K=c(G)$ of $G$ we have:. $w(G)=w(K)w(G/K)$ , and. $w(K)=w(K/D)$ (the proof of this fact was given above).

Hence, $w(G/D)=w(G/K)\cdot w(K/D)=w(G/K)\cdot w(K)=w(G)$ .

2 When the set of generators is very small
2.1 Monothetic groups
The first natural question is what can we say when $S$ is as simple as possible,
e.g. a singleton. A topological group having a dense cyclic subgroup is called
monothetic. Clearly, such a group must have the following two properties:

(a) $G$ is abelian;
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(b) $w(G)\leq \mathrm{c}=2^{\omega}$ .

Let us note that while (b) has a purely topological nature, the first restraint
has a purely algebraic nature, due to the fact that cyclic groups are abelian
and the fact that a Hausdorff group having a dense abelian subgroup must be
abelian. We shall see below (Theorem 2.3) that one can invert tbis under some
conditions, i.e., (a)&(b) imply the group is monothetic.

Example 2.1 The circle group $\mathrm{T}$ as well as all its powers $\mathrm{T}^{\alpha},$ $\alpha\leq \mathrm{c}$ , are
monothetic. This follows from the following theorem of Kroneker:

Theorem 2.2 Let $\beta_{1},$

$\ldots,$
$\beta_{n}$ be real numbers such that 1, $\beta_{1},$

$\ldots,$
$\beta_{n}$ are ratio-

nally independent. Then

$\langle(\beta_{1}, \ldots, \beta_{n})\rangle+\mathrm{Z}^{n}$ is dense in $\mathrm{R}^{n}$ (1)

Now to see that $\mathrm{T}^{\mathrm{C}}$ is monothetic take a Hamel $\mathrm{b}\mathrm{a}s\mathrm{e}B=\{\beta_{\alpha}\}_{\alpha<\mathbb{C}}$ of $\mathrm{R}$ over
$\mathrm{Q}$ with $\beta_{0}=1$ . Let $q:\mathrm{R}arrow \mathrm{T}=\mathrm{R}/\mathrm{Z}$ be the canoinical quotient map. Then
the function $\beta$ : $\mathrm{c}arrow \mathrm{T}$ defined with $\beta(\alpha)=q(\beta_{\alpha+1})$ for $\beta<\mathrm{c}$ produces an
element $\beta\in \mathrm{T}^{\mathrm{C}}$ such that the cyclic subgroup $\langle\beta\rangle$ is dense in $\mathrm{T}^{\mathrm{C}}$ .

Another consequence of (1) is that $\mathrm{R}^{n}$ has a dense $n+1$-generated subgroup
(but no $n$-generated subgroup can be dense, see [2]).

Another important monothetic group is the compact Pontryagin dual $\mathrm{K}=$

$Hom(\mathrm{Q}, \mathrm{T})$ of the rationals.
Since every compact connected abelian group of weight $\leq \mathrm{c}$ is monothetic

(??), we obtain:

Theorem 2.3 A compact connected group is monothetic iff $(a)$ and $(b)$ are
satisfied.

Let us recall now the following well known fact: there exists a (projectively)
universal monothetic compact group, namely $M= \mathrm{K}^{\mathrm{C}}\cross\prod_{p}\mathrm{J}_{p}$ (i.e., every
compact monothetic group is isomorphic to a quotient of $M$).

2.2 Topologically finitely generated groups
The next most simple case comes when the set $S$ of topological generators is
finite. Clearly, every group with a dense finitely generated subgroup must have
weight $\leq \mathrm{c}$ .

Theorem 2.4 (Kuranishi’s theorem) Every semisimple compact connected Lie
group has a dense 2-generated subgroup.

Hofmann and Morris [28] extended this theorem to the case of arbitrary com-
pact connected groups that satisfy the obvious necessary considiton of having
weight $\leq \mathrm{c}$ .

Here a question may arise about the importance of connectedness in these
results. In our next comments we show that connectedness is indeed relevant.
It turns out that for topologically $n$-generated countably compact groups the
connected part “prevail” in appropriate sense.

In the sequel we denote by $F_{n}$ the free group of $n$ generators.

Theorem 2.5 (Hall’s Theorem) The intersection of the normal subgroups of
finite index of $F_{n}$ is trivial.

Consequently, the family of all normal subgroups of finite index of $F_{n}$ is a local
base at 1 of a group topology $\tau_{H}$ , the profinite topology of $F_{n}$ . This topology
is precompact, i.e., the completion $\hat{F}_{n}$ of $(F_{n}, \tau_{H})$ is compact. This group is
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metrizable since there are only countably many finite-index subgroups of $F_{n}$

(indeed, every such subgroup is finitely generated by Nielsen-Schreier’s theorem
[44, Theorem 6.1.1] $)$ . Moreover, every precompact $n$-generated group with local
base at 1 consisting of open normal subgroups is a continuous homomorphic
image of $(F_{n}, \tau_{H})$ . Therefore, every compact totally disconnected topologically
$n$-generated group is a quotient group of $\hat{F}_{n}$ . This proves the following:

Theorem 2.6 For a totally disconnected countably compact group $G$ and $n\in \mathrm{N}$

TFAE:

$(a)G$ is topologically n-generated;

$(b)$ is a quotient group of $\hat{F}_{n}$ .

In particular, topologically finitely generated countably compact groups are metriz-
able, hence compact.

Now we see that the connected component $c(G)$ of a topologically finitely
generated countably compact group is a $G_{\delta}$-subgroup:

Corollary 2.7 If a countably compact group is topologically finitely generated
then $G/c(G)$ is metrizable (hence, compact).

3 Generating a topological group by a conver-
gent sequence

3.1 Generating a compact group by a convergent sequence
A compact metrizable group may fail to have a finite set of topological generators
even in very simple cases as that of the group $G=\{0,1\}^{\omega}$ Indeed, here the
finitely generated subgroups are finite, so cannot be dense. On the other hand,
if we take $s_{n}$ to be the sequence $(0, \ldots, 0,10\ldots, 0, \ldots)\vee’\in G$ then one can easily

see that $s_{n}arrow 0$ in $G$ and the set $s^{n}=\{s_{n}\}$ is a set of topological generators.
In other words, the group $G$ is generated by a convergent sequence. This is not
surprlzing since:

Theorem 3.1 Every compact metrizable group is topologically generated by a
convergent sequence.

Before discussing the proof of this theorem let us note that it suffices to
consider only sequences that converge to $0$ . Indeed, if the convergent sequence
$S=\{s_{n}\}arrow g$ generates a dense subgroup of $G$ , then the sequence $\hat{S}=$

$\{s_{n}g^{-1}\}\cup\{g\}$ converges to 1 and generates a dense subgroup as well.
The proof of Theorem 3.1 in the abelian case is an easy consequence of the

fact that such groups are quotients of the group $( \mathrm{K}\cross\prod_{p}\mathrm{J}_{p})^{\omega}$ . In the general
case it is a consequence of a more general theorem we give below (see Theo-
rem 3.4). Prior to passing to that more general result we need the following
remark. Clearly, a non-separable group cannot be topologically generated by a
(convergent) sequence. In order to eliminate this irrelevant cardinality restraint
we consider also supersequences $S=\{s_{\alpha}\}$ converging to 1, i.e., sets $S$ such that
$S\backslash \{1\}$ is discrete and $S\cup\{1\}$ is compact. We admit here finite sets $S$ , i.e.,
eventually constant convergent sequences. In case $S$ is infinite, this means that
$S\cup\{1\}$ is the one-point Alexandrov compactification of the discrete set $S\backslash \{1\}$ .

It was proved by Douady [17, Theorem 1.3] (see also [21, Proposition 15.11])
that every infinite Galois group (i.e., compact totally disconnected topological
group) has a system $S$ of generators that converges to 1. Denote by Seq the
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class of topological groups that have a dense subgroup generated by a convergent
supersequence. Clearly, the class Seq contains the class of topologically finitely
generated groups.

Proposition 3.2 Let $f:Garrow H$ be a continuous homomorphism. If $G\in Seq$

then also $H\in Seq$ whenever $f(G)$ is a dense in $H$ .

This implies in particular that if $G\in Seq$ is dense in $H$ then also $H\in Seq.$

The class Seq has the following nice closure properties:

Proposition 3.3 The class Seq is closed under taking:

1. direct products

2. continuous homomorphic images (in particular, quotients)

3. inner products: if $G=NH$ and both subgroups $N$ and $H$ of $G$ are in Seq
then also $G\in Seq.$

Hofmann and Morris [28] established the fact (even if in different terms) that
every compact group is topologically generated by a convergent sequence, i.e.

Theorem 3.4 The class Seq contains all compact groups.

We shall briefly sketch their proof of the theorem. As mentioned above, this
was already known in the totally disconnected case ([17, Theorem 1.3]).

Step 1. Seq contains all compact abelian groups.
Indeed, every compact abelian group is a quotient of a product $\prod_{\dot{x}}M_{i}$ where

each $M_{i}$ is a compact monothetic group (in fact, either $\mathrm{J}_{p}$ or K). Now the
properties from Proposition 3.3 apply.

Step 2. Seq contains all compact connected groups.
Every compact connected group $G$ coincides with the product $Z(G)G’$ , where

$Z(G)$ is the center of $G$ and $G’=\langle[a, b] : a, b\in G\rangle$ is the commutator subgroup
of $G$ . By Step 1 $Z(G)\in Seq.$ On the other hand, by Fact 1.1 $G’$ is a quotient
of a product of compact connected simple Lie groups $L_{i}$ . So by Kuranishi’s
theorem $L_{i}\in Seq$ and again Proposition 3.3 applies.

In the general case $G=c(G)H$ for some totally disconnected subgroup $H$ . So
by Step 2 $c(G)\in Seq$ and $H\in Seq$ by Douady’s theorem. By Proposition 3.3
also $G\in Seq.$

3.2 Countably compact groups generated by a convergent
supersequence

Here we shall discuss countably compact groups in Seq. Obviously, a topological
group $G$ which is not topologically finitely generated belongs to Seq only if $G$

contains non-trivial convergent sequences. In particular, an infinite torsion topo-
logical abelian group $G\in Seq$ must contain non-trivial convergent sequences.
In view of the example (requiring MA) of van Douwen of a countably compact
subgroup of $\{0,1\}^{\mathbb{C}}$ without non-trivial convergent sequences. one immediately
concludes that countable compactness alone cannot guarantee the existence of
a topologically generating convergent sequence. This example was given for the
first time in [4]. Various ZFC examples of $\omega$-bounded groups $H\not\in Seq$ were
given in [14] (a group $G$ is $\alpha$ -bounded if every subset of size $\alpha$ of $G$ is contained
in a compact subset of $G$ ):

Example 3.5 (1) ([14, Theorem 2.8]) For every infinite cardinal $\alpha$ there ex-
ists a connected, locally connected $\alpha$-bounded abelian topological group
$G\not\in Seq$ .
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(2) ([14, Corollary 2.9]) There exists a non-separable, connected and locally
connected abelian group $H\not\in Seq$ with $|H|=\mathrm{c}$ such that $H^{\omega}$ is countably
compact.

(3) ([14, Theorem 2.11]) There exists an $\omega$-bounded dense subgroup $G\not\in Seq$

of $\{0,1\}^{\mathrm{C}}$ .

The above examples show that countable compactness of $G$ may fail to guar-
antee $G\in Seq$ . Our aim will be to see how can the situation change if we impose
on the group also minimality. A topological group $(G, \tau)$ is called minimal if $\tau$

is a minimal element of the partially ordered (with respect to inclusion) set of
Hausdorff group topologies on the group $G$ .

Theorem 3.6 ([15, Theorem 4.2.1]) Seq contains all connected abelian groups
that contain a dense countably compact minimal group. In particular, every
connected countably compact minimal abelian group has a generating convergent
supersequence.

The restriction on the group $G$ to be abelian can probably be removeded from
Theorem 3.6, but we have no proof at hand.

Theorem 3.7 Let $G$ be a countably compact minimal abelian group. Then
$c(G)\in Seq$ . If $G\in Seq$ , then also $G/c(G)\in Seq.$

Since both $c(G)$ and $G/c(G)$ are minimal (by [8]), the above theorem reduces
of the study of the general countably compact minimal abelian groups in Seq
to case of totally disconnected ones.

Now we show that a minimal countably compact abelian group need not have
a generating convergent sequence (compare with Theorem 3.6).

Example 3.8 There exists a totally disconnected $\omega$-bounded (and hence count-
ably compact) minimal abelian group $H\not\in Seq.$ To get an example take the
inverse image $H$ under the canonical homomorphism $\mathrm{Z}(4)^{\mathbb{C}}arrow \mathrm{Z}(2)^{\mathbb{C}}$ of the
subgroup $G$ of $\mathrm{Z}(2)^{\mathbb{C}}$ constructed as in Example 3.5 (3). By Proposition 3.2
$H\not\in Seq.$ Minimality of $H$ follows from the minimality criterion for dense
subgroups (see Theorem 4.12 or [11, Chap. 4]).

3.3 The sequential generating rank
For $G\in S$ set

seq$(G):= \min$ { $|S|$ : $S\subseteq G$ generating supersequence of $G$}.
Since $|S|\leq\psi(G)$ for every convergent supersequence $S$ in $G$ , we have

$d(G) \leq\max\{\omega, seq(c)\}\leq\psi(G)$ . (2)

The following fact was proved first by Hofmann and Morris [28, Theorem 4.14]
in the case of compact non-monothetic groups $G$ . Recently Shakhmatov and the
author [12] succeeded to find a new proof that works for all topological groups:

Theorem 3.9 [12] $)$ seq$(G)^{\omega}\geq w(G)$ for every $G\in Seq$ .

Actually, when $G$ is compact and connected then seq$(G)$ turns out to be the
least cardinal $\kappa$ such that $\kappa^{\omega}\geq w(G)$ , in particular seq$(G)$ depends only on the
weight of the group $G([12])$ .

For every $\alpha>\mathrm{c}$ there exists a compact group $G$ such that seq$(G)\geq$ a and
$w(G)=\alpha^{\omega}$ [$29$ , Corollary 2.16]. Note that for compact $G$ with $w(G)\leq \mathrm{c}$ one has
seq$(G)=2$ when $G$ is connected and non-abelian; otherwise $\max\{\omega, seq(G)\}=$
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$w(G/c(G))$ when $G/c(G)$ is infinite (clearly, for finite $G/c(G)$ one has seq$(G/c(G))\leq$

$seq(G)\leq seq(G/c(G))+2)$ .
The argument to prove Proposition 3.3 proves also the equality

seq$(G_{1}\cross G_{1})=seq(G_{1})_{Se}q(G_{2})$ (1)

that obviously extend to all finite direct products. In the case of infinite products
one has the inequalities that follow from the above properties:

$\log|I|\cdot\sup\{Seq(ci):i\in I\}\leq seq(\prod_{\in iI}Gi)\leq|I|\cdot\sup\{seq(ci) : \dot{i}\in I\}$
.

This becomes an equality in the case of countably infinite products. This
formula is available also in the case of $\sum$-products and a-products.

Analogously, the argument to prove Proposition 3.2 leads to seq$(H)\leq seq(G)$

when there exists a continuous homomorphism $f:Garrow H$ such that $f(G)$ is a
dense in $H$ .

4 The suitable sets
The above instances motivated Hofmann and Morris [28] to introduce the notion
of a suitable set of a topological group $G$ , this is a discrete subset $S$ of $G$ that
generates a dense subgroup of $G$ and $S\cup\{1\}$ is closed in $G$ . In other words,
the set $S’=S\cup\{1\}$ has again at most one adherence point (as in the case
of a convergent supersequence $Sarrow 1$ ), namely 1. These authors extended
Douady’s theorem by proving that every locally compact group has a suitable
set (but it need not be a converget supersequence any more!).

Theorem 4.1 (Hofmann-Morris [28]) Every locally compact topological group
has a suitable set.

Later they proved a much stronger result for connected groups of weight $>\mathrm{c}$

(Theorem 4.6).
Here we see that suitable sets in countably compact groups give nothing new.

It turns out that they are either finite or a non-trivial convergent supersequence:

Corollary 4.2 ([15, Proposition 2.2]) Let $G$ be a countably compact group.
Then:

$(a)G$ has a suitable set iff $G\in Seq$ .

$(b)G$ has a closed suitable set iff $G$ has a finitely generated dense subgroup.
In such a case $G/c(G)$ is compact metrizable.

We denote by $S$ the class of groups having a suitable set set. Sometimes
suitable sets $S$ algebraically generate the group $G$ . In such a case we refer to $S$

as a generating suitable set and denote by $S_{g}$ the class of groups having such a
set [15]. There are few examples of groups in $S_{g}$ : all countable groups [4] (see
also \S 6.1).

More detail on suitable sets can be found in the paper [14, 2, 15, 48] $)$ .

4.1 The generating rank
Following [28], for $G\in S$ set

$s(G):= \min${ $|S|$ : $S\subseteq G$ suitable}.
Then
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$d(G) \leq\max\{\omega, s(c)\}\leq w(G)$ . (3)

The first inequality is obvious, for the second one should exploit the fact that
$S\backslash \{1\}$ is discrete.

Mel’nikov [34] proved the equality $\max\{\omega, s(G)\}=w(G)$ in the case of totally
disconnected compact groups. For reader’s convenience we give a proof here.

Theorem 4.3 (Mel’nikov) Every totally disconnected compact group $G$ satisfies
$\max\{\omega, s(c)\}\leq w(G)$ .

Proof. To show that $\max\{\omega, s(G)\}\geq w(G)$ it suffices to note that if $S$ is a
supersequence convergent to 1 in such a group assigning to each open normal
subgroup $N$ of $G$ the finite set $F_{N}:=S\backslash N$ one obtains a countably many-to-
one map from the filter $N$ of all open normal subgroups of $G$ to $[S]^{<\omega}$ . Indeed,
let $N_{0}$ be the closed normal subgroup generated by $N\cap S$ . Since $\langle S\rangle$ is dense
in $G$ , it follows that $NF_{N}=G$ and $G/N_{0}$ is topologically finitely generated,
hence metrizable by Theorem 2.6. Then if $N’$ is an open normal subgroup of $G$

such that $S\backslash N^{l}\subseteq F_{N}$ then $N’$ contains the set $N\cap S$ and consequently also
$N_{0}$ . Clearly, such subgroups $N’$ are in bijective correspondence with the open
normal subgroup of the quotient $G/N_{0}$ that are countably many. QED

It was shown in [14] that $\max\{\omega, s(G)\}\leq L(G)\psi(G)$ for every group $G\in S$ .
In particular this gives

$G\in S\Rightarrow d(G)\leq L(G)\psi(G)$ . (4)

This helped in finding a ZFC example of a group without a suitable set in
[14]. It was $\mathrm{b}\mathrm{a}s$ed on the following example found by Okunev and Tamano [36]:

Example 4.4 There exists a $\sigma$-compact separable space $X$ with $nw(X)>\omega$

and $C_{p}(X)$ Lindel\"off. Then $L=C_{p}(X)$ is not separable, while $\psi(L)=L(L)=$
$\omega$ , so that by (4) $L$ has no suitable set.

Another example with stronger property can be obtained under the assump-
tion of Q.

Example 4.5 ([14]) Ivanov proved in [32] under the assumption of $\theta$ there
exists a compact non-metrizable space $X$ such that all $X^{n}$ are hereditarily sep-
arable. Now $L=C_{\mathrm{p}}(X)$ is hereditarily Lindel\"of and non-separable. So for every
dense subgroup $H$ of $L$ we have $d(H)>\omega=L(H)\psi(L)$ . Again by (4) $H$ has
no suitable set.

In the case of locally compact groups one has the general Theorem 4.1 and
the following more precise form:

Theorem 4.6 (Hofmann-Morris [30]) If $G$ is a locally compact connected group
with $w(G)>\mathrm{c}$ then the arc component of $G$ contains a suitable set of $G$ of
cardinality $s(G)$ .

In case when the vector subgroup splits one has:

Theorem 4.7 (Cleary-Morris [2]) For a connected compact group $G$ with $w(G)\leq$

$\mathrm{c}s(\mathrm{R}^{n}\cross G)=n+1$ .

The class $S$ , similarly to the class Seq, is closed under taking (semi)direct
products, $\sum$-products and a-products. More precisely:

$s( \prod_{i\in I}G_{i})\leq|I|\sup${ $S$ (ci) : $\dot{i}\in I$ }.
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Analogous formula is available in the case of $\sum$-products and a-products.
Unlike the class Seq, the class $S$ fails to be closed under taking arbitrary quo-

tients (this property fails even for local homeomorphisms, cf. Example 4.11).
On the other hand, $S$ is closed under closed homomorphic images; more pre-
cisely, for a continuous closed surjective homomorphism $h$ : $Garrow H$ one has
$s(H)\leq s(G)([15])$ . The closedness of $h$ is essential here, this property fails
even when $\mathrm{k}\mathrm{e}\mathrm{r}h$ is discrete (cf. Example 4.11).

4.2 Separable groups
Separable groups with countable pseudocharacter (more generally, $nw(G)=\omega$ )
admit a suitable set.

Theorem 4.8 Let $G$ be a separable topological group. Then $G$ has a suitable
set in the following case:

$(a)$ if $G$ is of countable pseudocharacter;
$(b)$ if $G$ is not precompact; in this case $G$ has a closed suitable set.

Item (b) is a particular case of the following more general fact observed in
[4]. These authors ([4, Definition 5.3]) defined the boundedness number $b(G)$ of
a topological group $G$ as

$b(G):= \min${ $\kappa$ : $(\exists$ open $U\subseteq G)(\forall F\in[G]^{<\kappa})G\neq FU$}.
Then $b(G)\leq d(G)^{+}$ for every topological group $G$ [$4$ , Theorem 5.5].

Theorem 4.9 ([4, Theorem 5.7]) If $d(G)<b(G)$ then $G\in S$ (actually, $G$ has
a closed suitable set) and $s(G)=d(G)$ .

This theorem shows that a separable group without a suitable set must be pre-
compact. Actually, it can be shown that such a group must be pseudocompact
([14, Corollary 3.8]).

Since a topological group with a countable network is separable and has count-
able pseudocharacter we get from (a):

Corollary 4.10 ([14, Corollary 3.10]) Every topological group with a countable
network has a suitable set.

Note that for an open subgroup $H$ of a topological group $G$ one obviously has
$[G : H]<b(G)$ . Since $d(G)\leq|G|$ for every $G$ we conclude that if $H$ is an open
subgroup of $G$ with $[G:H]=|G|$ then $G$ has a closed suitable set by Theorem
4.9. In this way we get the following:

Example 4.11 Let $H$ be any topological group and let $H_{d}$ denote the group $H$

equipped with the discrete topology. Then the group $G=H\cross H_{d}$ has a closed
suitable set as $H$ is an open subgroup of $G$ with $[G:H]=|G|$ . If we choose $H$

without a suitable set, then $H\cong G/H_{d}$ is locally homeomorphic to $G$ that has
a (closed) suitable set.

4.3 Groups close to being metrizable
Comfort, Morris, Robbie, Svetlichny and Tka\v{c}enko [4, Theorem 6.6] proved that
every metrizable topological group $G$ has a suitable set. Recently Okunev and
Tkachenko [37] found a nice unifying generalization of this fact and Theorem 4.1.
It is based on the notion of an almost metrizable topological group introduced
by Pasynkov [38] –a topological group $G$ is said to be almost metrizable if
it contains a non-empty compact set $K$ of countable character in $G$ . Clearly,
all locally compact and all metrizable topological groups are almost metrizable
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[38]. It was proved in [37] that every almost metrizable group has a suitable
set. Note that the line of this generalization of compactness is transversal to the
line of countable compactness considered in \S 3.2. In fact, as shown in [38], an
almost metrizable topological group $G$ has a compact subgroup $N$ such that the
quotient space $G/N$ is metrizable. Since every pseudocompact metrizable space
is compact, we conclude that every pseudocompact (i.n particular, countably
compact) almost metrizable group is compact.

In connection with metrizable and close to being metrizable groups we mention
also the following result: if a group $G$ is a countable unions of closed metrizable
subspaces then $G$ has a suitable set ([14, Corollary 3.13], in case $G$ is not compact
that set can be chosen closed).

4.4 Free topological groups with or without suitable sets
The first ZFC example of a topological group without a suitable set was given
in the framework of free topological groups. It was proved in [4] that the free
abelian topological group $A(\beta\omega\backslash \omega)$ has no suitable set. This can be put in a
more general form (see [4]). However, the free topological group over a compact
space often has a suitable set (see (e) below).

The free topological group $F(X)$ of a Tychonov space $X$ has a suitable set in
many cases. Namely, when $X$ is:

(a) separable (holds for $A(X)$ as well, cf. [4]);

(b) metrizable ([14]);

(c) paracompact a-space (i.e., has a a-discrete network) [47] $)$ ;

(d) has at most one non-isolated point ([48]);

(e) compact with one of the following properties:

-ordinal space ([48, 37]);

-dyadic space [37];

-polyadic space ( $=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{o}\mathrm{u}\mathrm{S}$ image of a product of convergent super-
sequences) [37].

4.5 Minimal groups
We say that a topological group $G$ is totally minimal if every Hausdorff quotient
group of $G$ is minimal. To recall a criterion for (total) minimality of dense
subgroups we need the following definition. A subgroup $H$ of a topological group
$G$ is totally dense if for every closed normal subgroup $N$ of $G$ the intersection
$H\cap N$ is dense in $N$ . For the minimality criterion of dense subgroups we need
another notion: a subgroup $H$ of a topological group $G$ is essential if every
non-trivial closed normal subgroup $N$ of $G$ non-trivially meets $H$ .

Theorem 4.12 Let $G$ be a Hausdorff topological group and $H$ be a dense sub-
group of G. The. $n$ :

(1)
$([9])HinG$

.
is totally minimal iff $G$ is totally minimal and $H$ is totally dense

(2) $([^{?}])H$ is minimal iff $G$ is minimal and $H$ is essential in $G$ .

Theorem 4.13 A totally minimal group $G$ has a suitable set in the following
cases:. ([15, Theorem 4.1.4]) $G$ is abelian;
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$\bullet$ ([15, Theorem 4.1.5]) $G$ is connected and precompact.

The proofs of both items is $\mathrm{b}\mathrm{a}s$ ed on the fact that metrizable groups admit
suitable a set and the group $G$ is totally dense in a product of metrizable groups.

It is not clear whether “totally minimal” can be replaced by “minimal” in
Theorem 4.13, asking the group to satisfy the conjunction of both conditions in
the theorem. Theorem 3.6 shows that this is possible if one adds also countable
compactness. The role of connectedness was shown in Example 3.8.

5 Closed discrete generators (closed suitable
sets)

Here we discuss when $G\in S$ has a closed suitable set. We denote by $S_{c}$ the
subclass of these groups in $S$ . We offer here some recent unpublished results
from [16].

Proposition 5.1 Let $G$ be a topological group. Suppose that $H$ is a closed
normal subgroup of $G$ such that $G/H$ contains $a$ closed suitable set $\Sigma$ . If $d(H)\leq$

$|\Sigma|$ , then $G$ has $a$ closed suitable set.

Note that the requirement $H\in S$ is no longer needed. To pay for this however,
we need that the density of $H$ not be too large.

Definition 5.2 For $G\in S$ (resp., $G\in S_{c}$ ) denote by $\sigma_{c}(G)$ the minimum
cardinality of a closed suitable set for $G$ . Similarly, let $\Sigma(G)$ (resp. $\Sigma_{c}(G)$ )
the minimum cardinal $\alpha$ such that, if $S$ is a suitable set for $G$ , then $|S|<\alpha$

(resp., the minimum cardinal $\alpha$ such that, is $S$ is a closed suitable set for $G$ ,
then $|S|<\alpha$ ). For $G\not\in S$ (resp., $G\not\in S_{c}$ ) set $s(G)=\infty$ and $\Sigma(G)=0$ (resp.,
$\sigma_{c}(G)=\infty$ and $\Sigma_{c}(G)=0)$ .

Note that:

1. $\Sigma(G)>0\Rightarrow\Sigma(G)\geq\aleph_{0}$ (resp., $\Sigma_{c}(G.)>0\Rightarrow\Sigma_{c}(G)\geq\aleph_{0}$ ).

2.
$\aleph_{1}([1.5,2.7])$

A a-compact group $G\in S_{\mathrm{c}}$ satisfies $\sigma_{c}(G)\leq\aleph_{0;}$ and $\Sigma_{\mathrm{c}}(G)\leq$

3. ([15, 3.4.5] and [48, 21]) $s(G)\leq s(H)\sigma_{c}(c/H)$ (resp. $\sigma_{\mathrm{c}}(G)\leq\sigma_{c}(H)\sigma_{C}(G/H)$ )
when all values involved are $\neq\infty$ . If so, then $\Sigma(G)\geq\Sigma(H)\Sigma_{C}(G/H)$

(resp. $\Sigma_{c}(G)\geq\Sigma_{c}(H)\Sigma_{\mathrm{C}}(c/H)$).

Theorem 5.3 ([16]) Let the group $G$ have a closed normal subgroup $H$ with
$G/H\in s_{c}$ ;

$(a)$ if $d(H)\leq\sigma_{c}(G/H)$ , then $\sigma_{c}(G)\leq\sigma_{c}(G/H)$ ;

$(b)$ if $d(H)<\Sigma_{c}(G/H)$ , then $G\in S_{\mathrm{c}}$ and $\Sigma_{c}(G/H)\leq\Sigma_{c}(G)$ ;

$(c)$ if $H$ is discrete, then always $G\in S_{c}$ with $\sigma_{c}(G)\leq|H\backslash \{1\}|\cdot\sigma_{c}(G/H)$ .

Let us note that the first item of this theorem is a substantial improvement of
[15, Theorem 3.4.5 $(\mathrm{b})$ ] (in the case $d(H)\leq\sigma_{c}(G/H)$ !) where the conclusion
$G\in S_{c}$ is obtained only under the condition $N\in S_{c}$ and the proof gives the
weaker inequality $\sigma_{c}(G)\leq\sigma_{c}(H)\cdot\sigma_{C}(c/H)$ . See also 5.6 infra.

Notice that $s(\mathrm{T})=\sigma_{c}(\mathrm{T})=1,$ $\Sigma_{c}(\mathrm{T})=\aleph_{0}$ , whereas $\Sigma(\mathrm{T})=\aleph_{1}$ . Also,
$s(\mathrm{R})=2$ , and $\Sigma(\mathrm{R})=\aleph_{1}$ . Motivated by the fact that in these two examples
$s(G)<\aleph_{0}$ and $\Sigma(G)=\aleph_{1}$ one can ask:
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Question 5.4 ([16]) Let $G$ be a topological group such that $s(G)<\aleph_{0}$ . Does it
follow that $\Sigma(G)=\aleph_{1}$ ? For example, is there a topologically finitely generated
topological group, without infinite suitable sets?

M. Tkachenko observed that the answer is “Yes” under the assumption of
CH (there exists a countably compact monothetic group without converging
sequences [46] $)$ .

As seen above, $\mathrm{T}$ (or any other compact monothetic group) is a counterex-
ample for the above question if we replace $s$ and $\Sigma$ by $\sigma_{c}$ and $\Sigma_{c}$ , resp.; $i.e$ .
$\mathrm{T}$ is a topologically finitely generated topological group, without infinite closed
suitable sets. See also 6.5 infra.

The next theorem from [16] answers positively [15, Question 3.4.3 $(\mathrm{b})$ ] in the
case of a discrete divisor subgroup $H$ .

Theorem 5.5 Let $G$ be a topological group. Suppose that $H$ is a discrete normal
subgroup of $G$ with $G/H\in S.$ Then $G\in S$ .

A similar result to Theorem 5.3 (a) supra follows:

Corollary 5.6 Let $G$ be a topological group. Suppose that $H$ is a discrete nor-
mal subgroup of $G$ with $G/H\in S$ . Then $s(G)\leq|H\backslash \{1\}|\cdot s(G/H)$ . QED

6 Generators in Bohr topologies
Here we discuss topological groups equipped with the Bohr topology. Given a
topological group $(G, \tau)$ , consider the weakest group topology $\tau^{+}$ on $G$ which
makes all $\tau$-continuous homomorphisms of $G$ to compact groups $\tau^{+}$ -continuous.
The new topology $\tau^{+}$ is called the Bohr topology on $G$ . Clearly, $\tau^{+}$ is weaker
that $\tau$ and the group $G^{+}=(G, \tau^{+})$ is precompact. However, the topology $\tau^{+}$

need not be Hausdorff. The group $G$ is said to be maximally almost periodic
(MAP) when $G^{+}$ Hausdorff.

6.1 Abelian groups
All locally compact abelian groups are MAP. Furthermore, the continuous homo-
morphisms $Garrow \mathrm{T}$ of alocally compact abelian group $G$ separate the elements
of $G$ . It is also known that for an abelian group $(G, \tau)$ , the Bohr topology $\tau^{+}$

on $G$ is the weakest one which makes the $\tau$-continuous homomorphisms to the
circle group $\tau^{+}$ -continuous.

There are many precompact topological groups which have no suitable set;
one can even find an $\omega$-bounded minimal abelian group which is not in $S$ (see
Example 3.5). On the other hand, every locally compact group has a suitable set
by Theorem 4.1. The following result (proved independently in $[15, 48]$ shows
that the functor $+\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$ to a group $G$ its modification $G^{+}$ preserves the
latter property of locally compact abelian groups.

Theorem 6.1 $G^{+}$ has a suitable set for every locally compact abelian group $G$ .

If a group $G$ is discrete, we follow van Douwen and write $G\#$ instead of $G^{+}$ .
One can prove that $c\#$ has a closed generating suitable set for every discrete
abelian group, $\mathrm{i}$ . $\mathrm{e}.,$ $c\#\in S_{g}$ ([15, Theorem 5.7]).

Theorem 6.1 can be generalized as follows. The functor $+\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{s}$ arbitrary
products of locally compact Abelian group, that is, $( \prod_{i\in I}Gi)^{+}\cong\prod_{i\in I}c_{i}^{+}$ for
every family $\{G_{i} : \dot{i}\in I\}$ of locally compact abelian groups (see [15, Theorem
5.1 $(\mathrm{d})])$ . This fact along with Theorem 6.1 and the stability of $S$ under products
gives:
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Theorem 6.2 ([15, Corollary 5.9]) Let $G$ be a cartesian product of locally com-
pact abelian groups. Then $G^{+}\in S$ .

Let us mention here that the question whether every abelian topological group
satisfying Pontryagin duality admits a suitable set ([15, Question 5.10 $(\mathrm{b})$ ], see
also [47, Problem 5.4 $(\mathrm{b})$ ] $)$ has a negative answer. This question was motivated
by the above corollary and the fact that LCA groups as well as all their products
satisfy Pontryagin duality.

Example 6.3 ([16]) Let $X$ be a compact zero-dimensional space. Then the
free abelian topological group $A(X)$ satisfies Pontryagin duality according to a
theorem of Pestov [39] (see also [24] for a generalization). On the other hand,
for the compact zero-dimensional space $X=\beta D$ , where $D$ is a discrete space
of cardinality $\aleph_{1}$ , its group $A(X)$ has no suitable sets [4, Corollary 3.10]. QED

The results from \S 5 about lifting of closed suitable sets can be applied to
answer a question from [15, Question $5.10(\mathrm{a})$ ] (see also [47, Problem 5.4 $(\mathrm{a})]$ ).

Theorem 6.4 ([16]) Let $G$ be a locally compact Abelian group. Then $G\in S_{\mathrm{c}}$

iff $G^{+}\in S_{c}$ .

Remark 6.5 [15, Proposition 2.8] implies that for alocally compact non-compact
group $G,$ $G\in S_{c}\Leftrightarrow d(G)<b(G)$ . Note that according to the inequal-
ity $b(G)\leq d(G)^{+}$ in the general case Theorem 4.9), this yields $G\in S_{c}$ iff
$b(G)=d(G)^{+}$ .

6.2 Non-abelian groups
Here we mention another application of lifting closed suitable sets to the Bohr
topology. A topological group $G$ is said to be Moore if any continuous uni-
tary irreducible representation is finite dimensional. We refer the reader to
\S 22 of [26] for an explanation of the terminology. The class [Moore] of locally
compact Moore groups contains all locally compact Abelian and all compact
groups, and it is closed under the operations of forming closed subgroups, Haus-
dorff quotients, and finite products and extensions (Roberston [42]). It is true
that [Moore] $\subset$ [MAP], where [MAP] denotes the class of locally compact MAP
groups. If $G$ is a [MAP] group such that the closure $G’$ of the commutant sub-
group of $G$ is compact, then $G$ is called a Takahashi group. The class of locally
compact Takahashi groups is denoted by [Tak]. As in 6.6, if $G$ is a [Tak] group,
then we denote by $G’$ the closure of the commutator subgroup of $G$ . Then $G’$ is
compact, and $G/G’$ is alocally compact Abelian group, so that $[\mathrm{T}\mathrm{a}\mathrm{k}]\subseteq[\mathrm{M}\mathrm{o}\mathrm{o}\mathrm{r}\mathrm{e}]$ .

Theorem 6.6 ([16]) Let $G$ be $a$ [Moore] group. Then $G^{+}\in S$ .

The above answers positively a conjecture in [48, Remark 26.5].

Example 6.7 (a) Another source of [MAP] groups contained in $S$ is given
by the class of the so called van der Waerden groups. A compact group is
said to be a $\mathrm{v}\mathrm{d}\mathrm{W}$ group, if every algebraic homomorphism into a compact
group is continuous. It follows that a compact group $G\in \mathrm{v}\mathrm{d}\mathrm{W}\Leftrightarrow$

$G_{d}^{+}=G$ , where $G_{d}$ denotes the underlying group of $G$ equipped with its
discrete topology. By Remus and Trigos-Arrieta [43, Corollary 1], and
the paragraph following Question 1 in $(1\mathrm{o}\mathrm{c}. \mathrm{c}\mathrm{i}\mathrm{t}.)$ , we have that an infinite
$\mathrm{v}\mathrm{d}\mathrm{W}$ group equipped with its discrete topology cannot be Moore. However
since $G_{d}^{+}=G$ is compact, $($discretized $\mathrm{v}\mathrm{d}\mathrm{W})^{+}\subset S$ .

(b) Consider the discrete group $G=\oplus_{n<\omega}S_{3}$ , where $S_{3}$ is the symmetric
group. Being countable, $G$ is not a $\mathrm{v}\mathrm{d}\mathrm{W}$ group. Moreover, in page 207 of
Heyer [25] it is shown that $G$ is not Moore. Since $G$ is countable, $G^{+}\in S_{c}$

follows from [4, Theorem 2.2].

114



Remark 6.8 $\bullet$ The class [Moore] is disjoint from the class of infinite dis-
crete $\mathrm{v}\mathrm{d}\mathrm{W}$ groups. As shown above, when equipped with their Bohr
topologies, both classes are contained in $S$ . The example in (b) is con-
tained in neither one of the above, yet belongs to $S$ . Hence, a natural line
of research is to investigate the relation of [MAP] groups equipped with
their Bohr topology, and the class $S$ .. Notice that the (Abelian) free topological group on any space $X$ is MAP,
and it is locally compact if and only if $X$ is discrete (DUDLEY [18]). Thus,
if we drop the requirement on the groups to be locally compact, then 6.3
is an example of a MAP group such that $G^{+}\not\in S$ . For another (trivial)
example, consider any totally bounded group that do not belong to $S([4]$ ,
[14], [15], and [48] $)$ .

Here is a version of 6.4 for [Moore].

Theorem 6.9 ([16]) Let $G$ be $a$ [Tak] group. Then $G\in S_{c}\Leftrightarrow G^{+}\in S_{C}$ .

Theorem 6.10 ([16]) Let $G$ be $a$ [Moore] group. Then $G\in S_{c}\Leftrightarrow G^{+}\in S_{c}$ .

Remark 6.11 Let $G\in$ [Tak]. Then $G\in S_{c}\Rightarrow G/G’\in S_{c}$ and $G^{+}\in s_{c}\Rightarrow c+/G’\in$

$S_{c}$ by [15, 3.4.2], $G/G’\in S_{c}\Leftrightarrow G^{+}/G’\in S_{\mathrm{c}}$ by 6.4, and $G^{+}\in S_{c}\Leftrightarrow G\in S_{c}$

by Theorem 6.9. If $d(G’)<\Sigma_{c}(G/G’)$ , then Proposition 5.1 would imply
$G/G’\in S_{c}\Rightarrow G\in S_{c}$ and $G^{+}/G’\in S_{c}\Rightarrow G^{+}\in S_{c}$ , hence in this case, all
four properties of $G$ are equivalent. The condition $d(G’)<\Sigma_{c}(G/G’)$ is nec-
essary: Let $L$ be any simple compact Lie group, and take $G:=\mathrm{Z}\cross L^{\mathrm{C}^{+}}$ .
Then $G’=\{0\}\cross L^{\mathrm{C}^{+}}$ , hence $G\in$ [Tak]. By 6.4 $\{G/G’, G^{+}/G^{;}\}\subset S_{c}$ , yet
$\{G, G^{+}\}\cap S_{c}=\emptyset$ by [15] $($ 2.7 $(\mathrm{a}))$ .

7 Totally suitable sets
Here we report result from [16] on a class contained in $S$ : call a suitable set $S$ in
a topological group $G$ totally suitable if it has the additional property that $\langle S\rangle$ is
totally dense in $G$ . Let $S_{t}$ denote the class of all groups having a totally suitable
set. Obviously $S_{g}\subseteq S_{t}\subseteq S$ . We start the next subsection with two examples
showing th.at both inclusions and are proper even in. the case of

$\mathrm{c}\mathrm{o}\mathrm{m}..\mathrm{p}.\mathrm{a}\mathrm{c}\mathrm{t}$
abelian

groups.

7.1 Totally suitable sets in compact abelian groups
Example 7.1 (a) The circle group $\mathrm{T}$ has a totally suitable set. In fact, let $S$

be the set of all points of the form $x_{n}=1/n!$ in T. Since $x_{n}arrow 0$ , clearly
$S$ is a suitable set. Since $S$ generates $\mathrm{Q}/\mathrm{Z}$ , which is totally dense in $\mathrm{T}$ ,
this proves $\mathrm{T}\in S_{t}$ . We leave to the reader the extension of this argument
to $G=\mathrm{T}^{n}$ . Another (easy) example is that $\mathrm{Z}_{\mathrm{p}}\in S_{t}$ [ $11$ , Theorem 3.5.3].
More generally, every

$\mathrm{s}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{b}.\mathrm{l}\mathrm{e}$ set in $\mathrm{Z}_{p}.\mathrm{i}\mathrm{s}$ totally
$\mathrm{S}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}.$ (l.oc. $\mathrm{c}\mathrm{i}\mathrm{t}$ ). See

\S 7.3 infra. .

(b) $G=\mathrm{Z}_{p}^{2}\not\in S_{t}$ , consequently no compact abelian group containing a copy of
$\mathrm{Z}_{p}^{2}$ can be in $S_{t}$ . Indeed, every totally dense subgroup of $G$ has cardinality
$\mathrm{c}[41]$ , while every suitable set of $G$ must be countable. Another easy
example is $G=\mathrm{Z}(p)^{\omega}\not\in S_{t}$ , where $\mathrm{Z}(p)$ is the cyclic group of order $p$

(again every suitable set of $G$ must be countable while no proper subgroup
of $G$ can be totally dense). From the “connected end” one can show that
no infinite power $G=\mathrm{T}^{\sigma}\in S_{t}$ . In fact, every totally dense subgroup of $G$

has cardinality $2^{\sigma}=|G|([11])$ , while suitable sets have cardinality $\leq\sigma$ .
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Putting together a) and b) we see that $S_{t}$ is not closed even under taking
Cartesian squares. On the other hand, taking into account that surjective con-
tinuous homomorphisms preserve total density of subgroups, we extend [15,
Theorem 3.4.1] to $S_{t}$ :

Proposition 7.2 $S_{t}$ is closed under taking closed continuous homomorphic im-
ages.

By means of this proposition and the fact that a group in $S_{t}$ has no copies of
$\mathrm{Z}_{\mathrm{p}}^{2}$ for any prime $p$ we prove:

Theorem 7.3 Let $G\in S_{t}$ be a compact abelian group. Then $G$ is finite-
dimensional and $G/C(G) \cong\prod pG_{p}$ where each group $G_{\mathrm{p}}$ is either a finite p-group
or a product $\mathrm{Z}_{p}\cross F_{p}$ where $F_{p}$ is a finite $p$ -group. In particular, $G$ is metrizable.

The above theorem yields that for any prime $p$ the power $\mathrm{Z}(p)^{\alpha}\in S_{t}$ iff $\alpha$ is
finite. The conclusion of Theorem 7.3 enables us to claim that compact abelian
groups $G\in S_{t}$ are generated by a converging sequence $s_{n}arrow 0$ . In particular,
this means that $G$ admits a countable totally dense subgroup. The class $\mathcal{K}$ of
compact abelian groups $G$ with this property is described in [11, p. 141] (where
it is denoted by $\mathcal{K}’$ ): a compact abelian group $G$ belongs $\mathcal{K}$ iff for every prime

$p_{l}$
the group $G$ has no copies of $\mathrm{Z}_{\mathrm{p}}^{2}$ and $\mathrm{Z}(p)^{\omega}$ . The inclusion

$S_{t}\cap$ { $\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\mathrm{a}}}\mathrm{C}\mathrm{t}$ abelian $\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{s}$} $\subseteq \mathcal{K}$

helps to describe the compact abelian groups in $S_{t}$ . For $G\in \mathcal{K}$ define the support
of $G$ as $\pi(G):=$ {$p\in \mathrm{P}:\mathrm{Z}_{p}$ embeds in $G$ }. In these terms one has:

Theorem 7.4 ([16]) Let $G\in \mathcal{K}$ be a (compact) connected group with $|\pi(G)|<$

$\infty$ . Then $G\in S_{t}$ .

It is not clear whether Theorem 7.4 generalizes to all connected groups in
$\mathcal{K}$ . It seems that all $co\mathrm{n}$nected $gro\mathrm{u}$ps of $C$ are in $S_{t}$ without any restriction on
$|\pi(G)|$ , but no proof is available even in the particular case of $G=\mathrm{K}$ . Note that
$\mathrm{K}\in S_{t}$ would imply that $S_{t}$ contains all one-dimensional compact connected
abelian groups by virtue of Proposition 7.2.

We prove below that for $G\in \mathcal{K}$ with $c(G)\in S_{t}$ one has $G\in S_{t}$ .
The class of groups $G\in \mathcal{K}$ with $\pi(G)=\emptyset$ , known as exotic tori (cf. [10, 11]),

presents a good approximation of the usual tori $\mathrm{T}^{n}$ . These are the compact
abelian groups $G$ such that the torsion subgroup $t(G)$ is totally dense in $G$ (or,
equivalently, $t(G)$ is a dense and minimal subgroup of $G$ , cf. [10] $)$ . A compact
abelian group is an exotic torus iff it admits subgroups isomorphic to the p-adic
integers $\mathrm{Z}_{p}$ for no prime $p([10,11])$ .

The class of connected exotic tori is quite large–there are $\mathrm{c}$ many pairwise
$\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{h}_{\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{t}}\mathrm{o}\mathrm{p}\mathrm{i}\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}-\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}_{\mathrm{V}}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}$ connected one-dimensional exotic tori ([10, 11]).
In general, an exotic torus $G$ need not be in $\mathcal{K}$ . One has $G\in S_{t}$ iff $t(G)$

is countable. This surely occurs when the exotic torus $G$ is connected, then
$t(G)\cong(\mathrm{Q}/\mathrm{Z})^{n}$ where $n=\dim G$ is finite ([10]).

The next corollary obviously follows from Theorem 7.4 and generalizes our
observation $\mathrm{T}^{n}\in S_{t}$ in Example $7.1(\mathrm{b})$ . It shows that our main conjecture is
true for connected exotic tori.

Corollary 7.5 Every connected exotic torus is in $S_{t}$ .
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7.2 Factorization in $S_{t}$

It is easy to see that no infinite powers of compact groups belong to $S_{t}$ . On
the other hand, Theorem 7.3 yields that if a product $\prod_{i}G_{i}\in S_{t}$ , then only
countably many groups $G_{i}$ can be non-trivial. Moreover, $S_{t}$ is closed under
those finite products that do not lead out of the class $\mathcal{K}$ :

Theorem 7.6 For $G_{1},$ $G_{2}\in S_{t}$ one has $G_{1}\mathrm{x}G_{2}\in S_{t}$ iff $\pi(G_{1})\cap\pi(G_{2})=\emptyset$ .

The above theorem gives:

Corollary 7.7 Let $G$ be a compact abelian group. Then the following conditions
are equivalent for $G$ :

1. $G\cross H\in S_{t}$ for every $H\in S_{ti}$

2. $G^{2}\in S_{t}$ ;

3. $G$ is an exotic torus and $G\in S_{t}$ .

Indeed, since $S_{t}$ is closed under quotients of compact groups by Proposition
7.2, for a compact abelian group $G\in S_{t}$ one has $G^{2}\in S_{t}$ iff $G$ is an exotic torus.

The following useful formula is available for every compact abelian group $G$

and closed subgroup $G_{1}$ of $G$ :

$\pi(G)=\pi(c1)\cup\pi(G/G_{1})$ , (1)

therefore, $(G_{1}\in \mathcal{K})$ A $(G/G_{1}\in \mathcal{K})$ imply $G\in \mathcal{K}$ if and only if $\pi(G_{1})\cap\pi(G/G_{1})=$

$\emptyset$ . Every compact abelian group $G$ can be written as $G=G_{z}\cross G_{0}$ , where
$G_{z}= \prod_{p\in\pi}(c)\backslash \pi(\mathrm{C}(c))\mathrm{z}_{p},$ $G_{0}\supseteq c(G)$ and $\pi(G_{0})=\pi(c(c\mathrm{o}))=\pi(c(G))$ . Since
every group of the type $G_{z}$ is in $S_{t}$ and $\pi(G_{z})\cap\pi(G_{0})=\emptyset$ , Theorem 7.6
yields $G\in S_{t}$ iff $G_{0}\in S_{t}$ . This is why, from now on we shall assume that
$\pi(G)=\pi(C(G))$ .

Question 7.8 Does Theorem 7.6 hold for extensions instead of direct products?
In other words, if $G$ has a closed normal subgroup $G_{1}\in S_{t}$ such that $G_{2}=$

$G/G_{1}\in S_{t}$ is it true that also $G\in S_{t}$ (note that according to the above remark
$\pi(G_{1})\cap\pi(G/\dot{G}_{1})=\emptyset$ is a necessary condition for this)?

In view of Theorem 7.4 the answer is “Yes” for connected groups with finite
support. The answer is “Yes” also in the case when $G_{1}=c(G)$ :

Theorem 7.9 Let $G\in C$ be a compact group with $c(G)\in S_{t}$ . Then $G\in S_{t}$ .

The next corollary strengthens Theorem 7.4.

Corollary 7.10 If $\pi(c(G))$ is finite for some group $G\in \mathcal{K}$ then $G\in S_{t}$ .

These examples provide a large class of groups in $S_{t}$ .

7.3 Compact abelian groups where all suitable sets are
totally suitable

Note that every sequence converging to $0$ in $\mathrm{T}$ is a suitable set, hence not every
suitable set is totally suitable. On the contrary, in a group like $c\#$ every suitable
set is also totally suitable. This suggests the following

Problem 7.11 Characterize the groups in which every suitable set is also to-
tally suitable.
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Let $\mathcal{T}$ be the subclass of $S$ of groups in which every suitable set is also totally
suitable. Obviously, $\mathrm{T}\not\in \mathcal{T}$ and $T\subseteq S_{t}$ . Moreover, $\mathrm{Z}_{p}\in T$ for every prime $p$

$(7.1(\mathrm{b}))$ , while $\mathrm{Z}_{p}\cross \mathrm{Z}_{q}\not\in \mathcal{T}$ for all pairs of primes $p,$ $q$ (because the singleton
$(1, 1)\in \mathrm{Z}_{p}\mathrm{x}\mathrm{Z}_{q}$ forms a suitable set in case $p\neq q$ that is not total.l.y suitable).

Example 7.12 . For every infinite subset $A\subseteq \mathrm{P},$ $G_{A}:= \prod_{p\in A}\mathrm{Z}(p)\in$

$S_{t}\backslash \mathcal{T}$ . More generally, no finite power of $G_{A}$ belongs to $\mathcal{T}$ .

$\bullet$ For every $p\in \mathrm{P}$ and every non-trivial finite abelian group $F,$ $G=\mathrm{Z}_{p}\cross$

$F\not\in \mathcal{T}$ . In fact, let $F=\{f_{1}, \ldots, f_{n}\}$ and let $\xi_{1},$

$\ldots,$
$\xi_{n}\in \mathrm{Z}_{p}\backslash p\mathrm{Z}_{p}$ be

independent. Then $S:=\{(\xi_{1}, f_{1}), \ldots, (\xi_{n}, f_{n})\}$ is a suitable set of $G$ that is
not totally suitable, since $\langle S\rangle 2t(G)=\{0\}\cross F.$ (The density of $H=\langle S\rangle$

is ensured by the fact that $(\xi_{i}, 0)\in H$ for some $\dot{i}$ . Hence $cl(H)\supseteq \mathrm{Z}_{p}\cross\{0\}$ .
To conclude observe that the second projection $Garrow F$ sends $H$ onto
$F.)$

$\bullet$ For every infinite subset $A\subseteq \mathrm{P},$ $G_{A}:= \prod_{p\in A}\mathrm{Z}_{p}\not\in \mathcal{T}$ since $G_{A}$ is mono-
thetic, while the only monothetic compact group with a totally dense
infinite cyclic subgroup is $\mathrm{Z}_{p}$ .. Now assume that $G\in \mathcal{T}$ is connected. Then by the inclusion $\mathcal{T}\subseteq S_{t}$ , and
by Theorem 7.3, $G$ is metrizable. Hence $G$ is monothetic. By the final
remark in the previous item, $G$ cannot be in $\mathcal{T}-\mathrm{a}$ contradiction.

It turns out that these examples pretty much characterize all compact abelian
groups in $\mathcal{T}$ and yield the following surprising characterization of the p-adic
integers:

Theorem 7.13 Let $G$ be an infinite compact abelian group. Then all suitable
sets of $G$ are totally suitable iff $G\cong \mathrm{Z}_{p}$ for some prime $p$ .

Proof We prove first that $\mathcal{T}$ is closed under taking quotients. In fact, let $G\in \mathcal{T}$

and let $f$ : $Garrow N$ be a continuous surjective homomorphism. Take a suitable
set $S$ of $N$ . Then $S$ is either a finite set or a converging sequence since our
groups are compact metrizable (4.2). Therefore, we can find a set $S_{1}$ in $G$ with
similar properties with $f(S_{1})=S$ . Now $\mathrm{k}\mathrm{e}\mathrm{r}f$ is a compact metrizable group.
By Theorem 3.1 there exists a convergent sequence $S_{2}$ generating $\mathrm{k}\mathrm{e}\mathrm{r}f$ . Then
$S_{0}=S_{1}\cup S_{2}$ is a convergent sequence generating $G$ . Now $G\in T$ yields that
the subgroup $\langle S_{0}\rangle$ of $G$ is totally dense. Hence the subgroup $\langle S\rangle$ of $N$ (as a
homomorphic image of $\langle S_{0}\rangle)$ is totally dense as well. Thus $N\in T$ . Since $\mathrm{T}\not\in \mathcal{T}$ ,
this proves that every group in $\mathcal{T}$ is totally disconnected. The above example
shows that the unique totally disconnected compact groups in $\mathcal{T}$ are the groups
$\mathrm{Z}_{p}$ for some prime $p$ . QED

7.4 When the group is not compact abelian
We discuss first totally suitable sets in some non-compact abelian groups that
are still close to being compact.

As far as LCA groups are concerned, it is easy to see that $\mathrm{R}^{n}\in S_{t}$ iff $n=$
$0$ . More generally, a metrizable separable LCA group in $S_{t}$ cannot contain
non-trivial vector subgroups. One can prove that $\dot{i}fG\in LCA$ has no vector
subgroups and for some compact open subgroup $K$ of $G$ the quotient $G/K$ is
not torsion, then $G\in S_{t}$ iff $G\in S_{g}$ . Thus one is left with LCA groups $G$ that
are covered by compact open subgroups $K_{\alpha}$ such that $G/K_{\alpha}$ is torsion. For
every $\alpha$ the set $S_{\alpha}:=S\cap K_{\alpha}$ is a supersequence converging to $0$ in $K_{\alpha}$ , so that
$|S_{\alpha}|\leq w(K_{\alpha})=w(K)$ , consequently, $|S|\leq w(K)$ as the open set $K_{\alpha}$ contains
all but finitely many elements of $S$ . Then $|H|\leq w(K)$ and $H\cap K$ is totally
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dense in $K$ . Then one can prove that either $w(K)=\omega$ (i.e., $G$ is metrizable),
or $w(K)$ is a strong limit cardinal1 of countable cofinality.

One can generalize the statement “$G$ is metrizable” in Theorem 7.3 in the
more general case of a countably compact minimal abelian group (every compact
group ’has these two properties) as follows.

Theorem 7.14 Let $G\in S_{t}$ be a co\‘untably compact $\min_{\dot{i}}mai$ abelian group.
Then $G$ is metrizable, hence compact.

As far as totally suitable sets in non-abelian groups are concerned we note
that $G\in S$ iff $G\in S_{t}$ when $G$ is topologically simple (has no proper closed
normal subgroups). Hence the infinite symmetric group $S(X)$ , as well as all
simple compact connected Lie groups are in $S_{t}$ . Actually, all products of such
groups are in $S_{t}$ . In contrast with the abelian case, now $m$any non-compact
separable metrizable LC groups (as $SL_{n}(\mathrm{R})$ etc.) belong to $S_{t}$ (note that such
groups contain copies of R).

8 Compact generation of topological groups
When the set of generators $S$ is compact we speak of compactly generated group.
Note that $S^{-1}$ , as well as all powers $S^{n}$ , are compact along with the set $S$ .
Hence, with $S_{0}:=S\cup S^{-1}$ , one can see that $G=S_{0}\cup S_{0}^{2}\cup\ldots\cup S_{0}^{n}\ldots$ . Hence
$G$ is $\sigma$-compact. This proves the implication

compactly $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}\Rightarrow\sigma$ -compact. (6)

In order to better realize the implication (6)- let us recall that a LCA group
$G$ is:

(a) compactly generated iff $G\cong \mathrm{R}^{n}\cross \mathrm{Z}^{m}\cross K$, where $n,$ $m\in \mathrm{N}$ and $K$ is a
compact abelian group.

(b) a-compact iff $G\cong \mathrm{R}^{n}\cross H$, where $H$ contains an open compact subgroup
$K$ with $|H/K|\leq\omega$ .

Let us note that (a) and (b) are quite different even in the case when $G$ is
discrete–then $n=0$ in both cases and (a) means that $G$ is finitely generated,
while (b) entails only that $G=H$ is countable.

The precise relation in (6) was determined recently by Fujita and Shakhmatov
[22] in the case of metric groups.

They observed that a compactly generated group $G$ must necessarily satisfy
the following condition

for every open subgroup $H\leq G$ there exists a finite $F\subseteq G$ with $G=\langle F\cup H\rangle$ .
$(FS)$

In other words, $(\mathrm{F}\mathrm{S})$ says that $G$ is finitely generated modulo every open
subgroup. In the case of an abelian group $G$ this means precisely that every
discrete quotient $G/H$ of $G$ is finitely generated. In the following example we
collect several sufficient conditions that imply $(\mathrm{F}\mathrm{S})$ .

Example 8.1 $(\mathrm{F}\mathrm{S})$ follows from each of the following conditions:. $G$ is a (dense subgroup of a) connected group;. $G$ has no proper open subgr..o$\mathrm{u}\mathrm{p}\mathrm{S}$;
$\overline{\mathrm{l}\mathrm{i}.\mathrm{e}.,\lambda<w(G)\mathrm{a}\mathrm{l}\mathrm{w}\mathrm{a}\mathrm{y}\mathrm{S}\mathrm{y}\mathrm{i}\mathrm{e}\mathrm{l}\mathrm{d}\mathrm{s}2\lambda<}w(c)$ .
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$\bullet$ $G$ is precompact.

Clearly, (a) implies (b), but in general (b) does not imply (a) even for totally
disconnected complete metric groups (Stevens [45]).

Theorem 8.2 (Fujita-Shakhmatov [22]) A metric group $G$ is compactly gen-
erated iff $G$ is a-compact and satisfies $(FS)$ .

Here metrizable can be replaced by almost metrizable, but it cannot be re-
moved completely as the following example shows:

Example 8.3 The group $G=\mathrm{Q}^{\#}$ is countable and precompact, hence satisfies
$(\mathrm{F}\mathrm{S})$ . Nevertheless, $G$ is not compactly generated. In fact, by Glicksberg’s
theorem [23] the only compact subsets of $c\#$ are the finite ones. Since $G$ is not
finitely generated, it cannot be compactly generated either.

The main tool in proving Theorem 8.2 is the following technical results that
illustrates the power of the condition $(\mathrm{F}\mathrm{S})$ in the case of metrizable groups:

Lemma 8.4 ([22, Theorem 7]) Let $G$ be a metric group that satisfies $(FS)$ .
Then for every countable subset $D\subseteq G$ there exists a convergent sequence $S$

with $D\subseteq\langle S\rangle$ .

8.1 Topological compact generation
Now we require that the group $G$ has a compact set $S$ of topological generators
and consider the class $C$ of all groups $G$ with this property. This gives a natural
generalization of the class Seq. Now (6) may fail. Let is recall, that according to
[22] for a a-compact group “compactly generated” is equivalent to “topologically
compactly generated”, i.e., “compactly generated” is always equivalent to “

$\sigma-$

compact and topologically compactly generated”. Hence the class $C$ contains
Seq but need not contain all a-compact groups.

What is important here is that the necessary condition $(\mathrm{F}\mathrm{S})$ remains valid for
topologically compactly generated groups. Indeed, it is easy to see that $G\in Seq$

implies $(FS)$ as well: if $S$ is a supersequence that topologically generates $G$ then
for every open subgroup $H$ of $G$ the complement $F=S\backslash S$ is finite as $Sarrow 1$

and $H$ is a nbd of 1. Then the subgroup $\langle F\cup H\rangle$ is both dense (contains the
dense subgroup $\langle S\rangle)$ and open (contains the open subgroup $H$ ). Thus $(F\cup H\rangle$

must be also closed and coincide with $G$ . The necessary condition $(\mathrm{F}\mathrm{S})$ remains
valid for topologically compactly generated groups too. Indeed, this follows
from the next lemma or the following direct argument. If $K$ is a compact set
that topologically generates $G$ then for every open subgroup $H$ of $G$ there exist
finitely many translate $\{aH : a\in F\}$ that cover $K$ . Then the subgroup $\langle F\cup H)$

is both dense (contains the dense subgroup $\langle K$ ) $)$ and open (contains the open
subgroup $H$). Thus $\langle F\cup H\rangle$ must be also closed and coincide with $G$ .

Lemma 8.5 Let $G_{1}$ be a dense subgroup of G. Then $G$ satisfies $(FS)$ iff $G_{1}$

satisfies $(FS)$ .

Proof. Assume $G$ satisfies $(\mathrm{F}\mathrm{S})$ and let $H$ be an open subgroup of $G_{1}$ . Then its
$\mathrm{c}1_{\mathrm{o}\mathrm{S}}\mathrm{u}\mathrm{r}\mathrm{e}\overline{H}$ in $G$ is open, so there exists a finite subset $F\subseteq G$ such that $F\cup\overline{H}$

generates $G$ . For every $f\in F$ pick an element $g_{f}\in G_{1}\cap f\overline{H}$ (it exists by the
density of $G_{1}$ ) and let $F_{1}:=\{g_{f} : f\in F\}$ . Then the finite set $F_{1}\subseteq G_{1}$ has
the property $G=\langle F_{1}\cup\overline{H}\rangle$ . We shall see that $A=\langle F_{1}\cup H\rangle$ coincides with $G_{1}$ .
Indeed, $A$ is dense in $G=\langle F_{1}\cup\overline{H}\rangle$ as every element of $\overline{H}$ is a limit if a net of
elements of $H$ . Thus $A$ is dense in $G_{1}$ too. But $A$ contains an open subgroup
of $G_{1}$ . Hence $A$ is also closed in $G_{1}$ . Thus $A=G_{1}$ .
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Now assume that $G_{1}\in(FS)$ . Let $H$ be now an open subgroup of $G$ . Then
there exists a finite $F\subseteq G_{1}$ such that $F$ generates $G_{1}$ along with $G_{1}\cap H$ . Now
the subgroup $B$ of $G$ generated by $H$ and $F$ contains $G_{1}$ , hence it is dense. On
the other hand, it contains $H$ hence it is also closed. Thus $B=G$ . Therefore
$G\in(FS)$ . $\backslash$

’ QED

Since every compactly generated group satsifies $(\mathrm{F}\mathrm{S})$ and since every $G\in C$

contains a dense compactly generated subgroup, the Lemma 8.5 gives:

Corollary 8.6 $G\in(FS)$ for every $G\in C$ .

Lemma 8.4 gives :

Lemma 8.7 A separable metric group that satisfies $(FS)$ is topologically gen-
erated by a convergent sequence.

Then one can easily obtain the following:

Theorem 8.8 For a metrizable group $G$ the followig are equivalent:

$(a)G$ is separable and satisfies $(FS)$ ;

$(b)G$ is topologically compactly generated;

$(c)G$ is topologically generated by a convergent sequence.

Without “metrizable” (a) does not imply (b) (see Example 8.3). In general
(b) does not imply $\sigma$-compact. However, it seems plausible that (c) and (b)
remain equivalent if (b) is replaced by a stronger form:

Conjecture 8.9 (Dikranjan-Shakhmatov) $G$ is topological.ly gene.rat..ed. by a com-
pact metrizable set iff $G$ is topologically generated by a converging sequence.

This conjecture is true when $G$ is generated by a compact connected metriz-
able set $S$ (consider $F(S)$ - the free abelian topological group and the dense
homomorphism $F(S)arrow G$ ; it suffices to prove it for $F(S))$ .

8.2 The $k$-generating rank
For $G\in C$ set

$k(G):= \min${$w(K)’$. $K\subseteq G$ generating compact set of $G$ }.
Note that convergent supersequences are compact, so that Seq $\subseteq C$ and

seq$(G)\geq k(G)$ if the group $G$ is in Seq. Since $d(K)\leq w(K)$ for every compact
set $K$ , we get

$d(G)\leq k(G)\leq seq(G)\leq\psi(G)$

in case $k(G)$ is infinite.
The invariant $k(G)$ appears for the first time implicitely in [40, Theorem]

where the following theorem is proved:

Theorem 8.10 ([40]) Let $G$ be a locally compact abelian group. Then $k(H)=$
$w(H)$ for every closed subgroup of $G$ iff $c(G)$ is metrizable.

The next proposition gives properties similar to those of Seq.

Proposition 8.11 The classe $C$ is closed under taking:

1. direct products, $\sum$ -products and $\sigma$ -products.
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2. continuous homomorphic images (in particular, quotients)

3. inner products: $\dot{i}fG=\grave{N}H$ and $bot\dot{h}subg\dot{r}oup_{S}N$ and $H$ of $G$ are $\dot{i}nC$

then also $G\in C$ .

In analogy with (1) one can prove that $k(G_{1}\cross G_{1})=k(G_{1})k(G_{2})$ .
Let us note that according to Theorem 8.8 the metrizable groups in $C$ are

separable. Hence if $\mathrm{a}..\mathrm{p}$ roduct of metri.zable groups $\mathrm{b}\mathrm{e}_{\vee}1\mathrm{o}\mathrm{n}’.\mathrm{g}\mathrm{s}$ to $C$ , then these
groups are necessarily separable.

Lemma 8.12 Let $G= \prod_{i\in I}K_{i}$ be a product of non-trivial precompact metriz-
able groups $K_{i}$ . Then $G\in C$ and $k(G)^{\omega}\geq w(G)$ unless $G$ is monothetic.

Proof. Assume $G$ is not monothetic. $G\in C$ as $K_{i}$ (being precompact) satisfies
$(FS)$ for every $\dot{i}\in I$ . In case the group $G$ is metrizable, or more generally,
$|I|\leq \mathrm{c},$ $w(G)\leq \mathrm{c}=k(G)^{\omega}$ as $G$ is not monothetic.

Now we assume that $|I|\geq \mathrm{c}$ Let us note first that without loss of generality
each group $K_{i}$ can be assumed complete, hence compact. Moreover, as there are
at most $\mathrm{c}$ many paiwise non-isomorphic compact metrizable groups $\{K_{j}\}_{j<}\mathrm{c}$ , it
is not restrictive to assume that all groups $K_{i}$ are isomorphic to a fixed one $H$ .
Indeed, if $G= \prod_{j<\mathbb{C}}H_{j}^{\alpha_{j}}$ , then for every $j<\mathrm{c}$ we can get $k(G)^{\omega}\geq\alpha_{j}$ noting
that the projection $Garrow H_{j}^{\alpha_{j}}$ gives $k(G)\geq k(H_{j}^{\alpha_{j}})$ . Since also $k(G)^{\omega}\geq \mathrm{c}$ , we
get immediately $k(G)^{\omega}\geq w(G)$ . Now, when $G=H^{\alpha}$ one can argue as in the
proof of [28, Lemma 4.10] where $H$ is a compact Lie group and $S$ is a compact
generating set of $G$ containing 1. For the sake of completeness we shall sketch
briefly that proof in the case of a general compact metric group $H$ . Let $S$ be
an arbitrary compact generating set of $G$ . Set $B=H^{C(H)}s$, and note that
$S$ can be considered in a natural way as a subgroup of $B$ via the evaluation
maps $ev_{S}$ , where $s\in S$ and $ev_{S}(f)=f(s)$ for every $f\in C(S, H)$ . Note that
there is a natural projection $\pi$ : $Barrow G$ defined by $\pi(\varphi)(\dot{i}):=\varphi(p_{i}|_{Y})$ for
$\varphi\in B$ , i.e., $\pi(\varphi)(i)$ is simply the evaluation of the map $\varphi$ : $C(S, H)arrow H$
at the function $p_{i}|_{Y}\in C(S, H)$ . Note that the so defined $\pi$ is identical on
$S$ . Moreover, $\pi$ is a continuous homomorphism of compact groups. Since the
image $S=\pi(S)$ generates a dense subrgoup of $G$ , the homomorphism $\pi$ is also
surjective as $\pi(B)$ is a closed subgroup of $G$ that contains a dense subgroup.
Hence we have $|C(S, H)|\geq w(B)\geq w(G)=\alpha$ . On the other hand, one can
prove that $|C(S, H)|\leq w(S)^{\omega}$ using the fact that $H$ is a subspace of $I^{\omega}$ and
$|C(S, I)|\leq w(S)^{\omega}$ . A proof of this probably well known fact can be found for
example in [27, Proposition 1.4.1] $)$ . QED

In this way we get a second proof of (4) in the case of precompact groups.

Remark 8.13 It seems plausible that a more general version of the lemma
can be proved. Let us note that the groups $G$ involved in this section have
$b(G)\leq\omega_{1}(\omega$-totally bounded in the sense of Guran, it can be proved that they
are subgroups of products of separable metrizable groups). This suggests the
question: do $\omega$ -totally bounded groups with $(FS)$ belong to $C$ ? Note that all
works for such groups as well in case they are dense subgroups of products of
separable metrizable groups. But also a second point is important: we used in
the above proof that fact that $\pi$ does not increase the weight –this works for
precompact groups.

Applying this lemma one can easily prove that the inequality $k(G)^{\omega}\geq w(G)$

holds for every group $G$ that adimts a dense continuous homomorphism into a
product of $w(G)$ many non-trivial precompact metrizable groups.

Theorem 8.14 The inequality $k(G)^{\omega}\geq w(G)\geq seq(G)\geq k(G)$ is satisfied by
a topological group $G\in C$ that has one of the following properties:
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$\bullet,$

$G$ is compact connected;. $G$ is precompact abelian.
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