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In this announcement we present results to appear concerning the regularity
of the free. boundary $\partial\{u>0\}$ of non-neg.ative solutions of the heat equation
with strong absorption

$\partial_{t}u-\Delta u=-\frac{1+\gamma}{2}u^{\gamma},$ $\gamma\in(0,1)$ . (1)

Equation (1) has been used in L. K. Martinson [15} and in Ph. Rosenau, S.
Kamin [17] to describe the transport of thermal energy in plasma. Alterna-
tively it has been $\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{d}^{\vee}$ as the asymptotic limit of a system proposed by

C. Bandle and I. Stakgold in [3] as a simple model for a reaction diffusion
process.
Concerning the case of one space dimension the solution’s behaviour near
extinction points has been extensively studied (see for example A. Riedman,
M. A. Herrero [9], M. A. Herrero, $\mathrm{j}$. J. L. Velazquez $[12, 13])$ and for ini-
tial data with compact support the number of extinction points has been
estimated (see [9] and X.-Y. Chen, H. Matano, M. Mimura [5]). The paper
[5] contains furthermore time-continuity of the set $\{u>0\}\subset(0, \infty)\cross \mathrm{R}$
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with respect to Hausdorff distance and it tells us that the one-dimensional
free boundary is a subset of a locally finite union of graphs of continuous
functions.
For the stationary problem H. W. Alt and D. Phillips proved in [1] regularity
of the free boundary in higher dimensions. Regarding the time-dependent
problem in higher dimesions, regularity of the solution, estimates of the Haus-
dorff measure of the free boundary, the asymptotic behaviour near horizontal

free boundary points (points in which the behaviour in time is dominant, see
Proposition 2.2) and other results are contained in the paper [6] by H. J.
Choe and the author.

Here we announce a regularity result for $\partial\{u>0\}$ in higher dimensions:
suppose that $u$ is a solution of the Cauchy problem and that the initial data
$u^{0}$ satisfy $0\leq u^{0}\in C_{0}^{2,\sigma}(\mathrm{R}^{n})$ and $(u^{0})^{-\gamma}\Delta u^{0}\in L^{\infty}(\mathrm{R}^{n})$ : then $\partial\{u>0\}$ can
be decomposed into a regular part $R=\{(t, x)\in((\mathrm{O}, \infty)\cross \mathrm{R}^{n})\cap\partial\{u>0\}$ :
at least one blow-up limit of $u$ at $(t, x)$ is a half-plane solution} such that
$\partial\{u>0\}$ is locally in an open neighborhood of $R$ a $\mathrm{C}^{\frac{1}{2},1+\mu}$-surface, and a
singular part $\Sigma$ which is ignored by spatial integration by parts in $\{u>0\}$ ,
i.e.

$\int_{\{u(t})>0\}\partial i\zeta=\int_{\partial_{\mathrm{r}\epsilon \mathrm{d}\{}}u(t)>0\}\nu_{i}\zeta \mathcal{H}^{n}-1=\int_{R\cap\{}s=t\}i\zeta\nu \mathcal{H}^{n}-1$

for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$ and every $\zeta\in C_{0}^{0,1}(\mathrm{R}^{n})$ (Corollary 6.1); here the reduced
boundary $\partial_{\mathrm{r}\mathrm{e}\mathrm{d}}\{u(t)>0\}$ is the set of free boundary points at which the
outer normal of H. Federer [7, 4.5.5] exists. Let us first remark that while
$\Sigma$ is in the just mentioned sense a set of less relevance, it is in general not

a set of small measure: the steady-state solution $( \frac{1-\gamma}{2}|X1|)^{\frac{2}{1-\gamma}}$ satisfies $R=$

$\emptyset$ , $\Sigma=\partial\{u>0\}$ and $\mathcal{H}^{n-1}(\Sigma)>0$ . Even worse, when perturbing the
stationary equation to $\Delta u=gu^{\gamma}$ where $g$ is a strictly positive $C^{\infty}$-function,
we expect (in analogy to the counter-example by D. Schaeffer in [18, 2.9]
for the case $\gamma=0$) the appearance of free boundaries such that the relative
boundary of $R$ is a set of positive $n-1$-dimensional Hausdorff measure.
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This complicated behaviour of steady-state free boundaries distinguishes our
equation from other equations like e.g. the porous medium equation. And
we have to include the stationary behaviour fully into our considerations for
two reasons: first, in the more physical context of [3] the reactant would be
replenished at the bound.ary of some domain and thus be close to a non-
trivial steady-state solution for large time. The second and more compelling
reason is that by Proposition 2.2 the behaviour close to each non-horizontal
free boundary point is that of a steady-state solution.
Let us furthermore point out that our situation is different from that of the
one-phase Stefan problem (see A. Friedman, D. Kinderlehrer [10] and L. A.
Caffarelli [4] $)$ where it was physically justified to assume the temperature to
be non-decreasing in time: in the setting of [3] we expect the formation of
dead cores in finite time, so there have to be regions where the concentration
$u$ is decreasing. Regarding the propagation of a thermal pulse ([17]), the
support of a smooth pulse with sufficiently steep slopes will first expand and
later on shrink, so there are sign changes of $\partial_{t}u$ .

We do not know whether it is possible to obtain our result by an extension of
the sophisticated methods in [1]. We chose here a different approach which
is related to the concept of Liapunov stability and to results concerning the
Plateau problem.
In Section 1 we prove an “epiperimetric inequality” for the class of half-
plane solutions $H= \{x-t(\frac{1-\gamma}{2}\max(x\cdot\nu, 0))\frac{2}{1-\gamma} : \nu\in\partial B_{1}(0)\}$ and the
boundary-adjusted energy

$M(v)= \int_{B_{1}()}\mathrm{o}(|\nabla v|^{2}+\max(v, 0)^{1+\gamma})-\frac{2}{1-\gamma}\int_{\partial B_{1(0)}}vd2\mathcal{H}^{n-1}$ :

if $c$ is any non-negative homogeneous function of degree $\frac{2}{1-\gamma}$ which is close
enough to the some $h\in H$ , then there exists a function $v$ with the same
boundary values on $\partial B_{1}(0)$ but with a lower energy value

$M(v)\leq(1-\kappa)M(c)+\kappa M(h)$ (Theorem 1.1). (2)
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In hommage to the inequality derived by E. R. Reifenberg for the perimeter,

we call (2) by abuse of name “epiperimetric inequality.” Our proof however

owes nothing to the proof of the epiperimetric inequality in E. R. Reifenberg

[16] or that in J. E. Taylor [19] as it works completely by indirect methods.

The boundary-adjusted energy plays here the role of the Liapunov function,

i.e. its scaled version satisfies a monotonicity formula: defining

$\Phi_{(t_{0},)}x_{0}(r)=r^{-n-\frac{2(1+\gamma)}{1-\gamma}}\int_{B_{r}(x_{0})}(|\nabla u(t_{0}, \cdot)|2+\max(u(t_{0}, \cdot),$
$0)^{1}+\gamma)$

$- \frac{2}{1-\gamma}r^{-n+1-\frac{4}{1-\gamma}}\int_{\partial B_{r}()}x0(ut0, \cdot)2d\mathcal{H}^{n-1}$ ,

the function $rrightarrow\overline{C}r^{\beta}+\Phi_{(t0,x_{0}}$) $(r)$ is non-decreasing for any $(t_{0}, x_{0})\in\partial\{u>$

$0\}$ at which $|\partial_{t}(u-\gamma)1|$ is H\"older-continuous (Theorem 3.1).

The epiperimetric inequality (2) leads now to the differential inequality

$\max(\Phi_{(t_{0},)}x_{0}(r)-\Phi_{(}t_{0},x0)(0+),$ $c_{2}r)^{l} \beta\geq\Lambda\frac{1}{r}\max(\Phi(t0,x_{0})(r)-\Phi(t\mathrm{o},x_{0})(0+),$ $c2r^{\beta})$

which in turn implies H\"older-continuity of $r\vdasharrow\Phi_{(t0,x_{0})}(r)$ and a convergence

estimate for $\frac{u(t0,x\mathrm{o}+\prime\cdot)}{2}$ to the unique blow-up limit $u_{0}$ (Theorem 4.1).
$f\overline{-}\gamma$

This reminds very much of the use of Liapunov functions in the theory of

linearized stability and of Liapunov’s direct approach (compare e.g. to The-

orem 18.7 and Remark 18.9 in H. Amann [2] $)$ . The convergence result itself

on the other hand is reminiscent of a result by J. K. Hale and P. Massatt

for differentiable gradient systems, by which one obtains single-point $\omega$-limit

sets in the case that the multiplicity of the eigenvalue $0$ at critical points is 1

([11, Theorem 4.3]). Let us however point out that our method also works

for the obstacle problem where the second variation of the energy vanishes

in more than one direction and that our energy $M$ is not of class $C^{2}$ , so
a linearization regardless of the direction is not possible. This also means
that we cannot apply the center manifold theorem and test the local center

manifold for coincidence with the invariant manifold $H$ in order to obtain

our result.
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In Sections 5 and 6 we derive-mainly by topological methods-the relative
openness and $\mathrm{C}^{\frac{1}{2},1+\mu}$-regularity of the.set $R$ .
Let us conclude with the remark that it sh\’Ould be possible to obtain higher
regularity of $R$ .

1 THE EPIPERIMETRIC INEQUALITY

$H:= \{x\vdasharrow(\frac{1-\gamma}{2}\max(x\cdot\nu, 0))^{\frac{2}{1-\gamma}} : \nu\in\partial B_{1}(0)\}$ of all half-plane solutions
as well as the boundary-adjusted energy

$M(v):= \int_{B_{1}(0})(|\nabla v|^{2}+\max(v, 0)^{1+\gamma})-\frac{2}{1-\gamma}\int_{\partial B_{1}(0)}v2d\mathcal{H}n-1$

for $v\in H^{1,2}(B_{1}(\mathrm{o}))$ .
Then $M$ takes for $h\in H$ the value $M(h)= \frac{1}{2}M((\frac{1-\gamma}{2}|x\cdot\nu|)^{\frac{2}{1-\gamma})}$

$= \frac{1}{2}\int_{B_{1}(0)}(\frac{1-\gamma}{2}|X_{1}|)^{\frac{2}{1-\gamma}}(\frac{1-\gamma}{2}|X_{1}|\mathrm{I}^{\frac{2\gamma}{1-\gamma}}(1-\frac{1+\gamma}{2})$

$= \frac{1}{2}\frac{1-\gamma}{2}\int_{B_{1}()}\mathrm{o}(\frac{1-\gamma}{2}|_{X|}1)^{\frac{2(1+\gamma)}{1-\gamma}}=:\frac{\alpha_{n}}{2}>0$ .

THEOREM 1.1 (the epiperimetric inequality) There exist $\kappa\in(0,1)$

and $\delta\in(0,1)$ such that the following holds for each non-negative function $c$

in $H^{1,2}(B_{1}(\mathrm{o}))$ that is homogeneous of degree $\frac{2}{1-\gamma}$ :
if $||c-h||_{H^{1},(}2B_{1}(0))\leq\delta$ for some $h\in H$ then there exists a function $v\in$

$H^{1,2}(B_{1}(\mathrm{o}))$ such that $v=c$ on $\partial B_{1}(0)$ and $M(v) \leq(1-\kappa)M(c)+\kappa\frac{\alpha}{2}\mathrm{k}$
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2 INTRODUCTION TO THE PROBLEM AND PROP-

ERTIES OF SOLUTIONS

Throughout this paper we assume that $\gamma\in(0,1)$ , that $\Omega\subset \mathrm{R}^{n}$ is a bounded

domain with $C^{2,\sigma}$ boundary for some $\sigma\in(0,1)$ , that the boundary data

$g$ are non-negative and satisfy $g\in W_{\infty}^{1,2}((0, \tau)\cross\Omega)$ for $T<\infty$ and that
$u\in L^{2}((0, T);H^{1,2}(\Omega))$ for $T<\infty$ is a solution of

$u=g$ on $(\{0\}\cross\Omega)\cup((0, \infty)\cross\partial\Omega)$

(3)
and $\partial_{t}u-\Delta u=-\frac{1+\gamma}{2}\max(u, 0)^{\gamma}$ in $(0, \infty)\mathrm{x}\Omega$

in the sense of distributions.
It is well known that (3) has a unique solution which is by the comparison

principle bounded in $(0, T)\cross\Omega$ for $T<\infty$ . Taking $\min(u, 0)$ as test function

in the weak equation (3) we see immediately that $u$ has to be non-negative.

Standard energy estimates furthermore imply that $u\in H^{1,2}((0,T)\cross\Omega)$ for
$T<\infty$ and parabolic $IP$-theory yields that $u\in W_{p}^{1,2}((0, T)\cross\Omega)$ for $T<\infty$

and $1\leq p<\infty$ .
Let us also remark that $g(t, x)=0$ for $t\geq T_{0}$ leads by comparison to
$\max(\mathrm{O}, (1-\gamma)\frac{1+\gamma}{2}(\frac{2(\sup u(T0,\cdot))^{1-}\gamma}{(1+\gamma)(1-\gamma)}-t+T_{0}))^{\frac{1}{1-\gamma}}$ (in $\{t>T_{0}\}\cross\Omega$) to the con-

clusion that $u(t, x)=0$ for $t \geq T_{0}+\frac{2(\sup u(T0,\cdot)^{1-\gamma}}{(1+\gamma)(1-\gamma)}$ .
The following Theorem 2.1, Proposition 2.1, Corollary 2.1, Lemma 2.1, Propo-

sition 2.2 and Corollary 2.2 have been stated and proved as Theorem 3.1,

Proposition 4.1, Corollary 4.2, Lemma 5.1, Proposition 5.2 and Corollary 5.3

in [6]. Note however that the equation considered in [6] does not contain the

factor $\frac{1+\gamma}{2}$ , so several of the statements differ from those in [6] by a factor.

THEOREM 2.1 (regularity) There exists a constant $\overline{C}<\infty$ depending

only on $n,$ $\gamma,T,$ $M$ and $\delta\in(0,1)$ such that for each solution $u$ of (3) with

respect to $n,$ $\gamma$ and $g\in \mathrm{C}^{\frac{2+\sigma}{2},2+\sigma}([0, T]\cross\overline{\Omega})$ satisfying

1 $+(0,T \mathrm{s}\mathrm{u}\mathrm{p})\cross\Omega g+\{^{\sup_{0\}\cross\Omega}|g^{-}\Delta g|}\gamma+(0,T)\sup|g^{-\gamma}\partial t\cross\partial\Omega|g\leq M<\infty$

138



the estimates

$||\nabla(u^{\frac{1-\gamma}{2}})||L\infty((\delta,\tau_{-}\delta)\cross\Omega_{\delta})+||\partial_{t}(u^{1}-\gamma)||L\infty((0,\tau)\cross\Omega)\leq\overline{C}$

and $||u^{\frac{1-\gamma}{2}}||_{\mathrm{c}}2^{1}’((\delta,\tau-\delta)\cross 1\Omega_{\delta})\leq\overline{C}$

hold (here $\Omega_{\delta}:=\Omega-B_{\delta}(\partial\Omega)$ ).

’PROPOSITION 2.1 (non-degeneracy) There. exists a constant $c>0$
depending only on $n$ and $\gamma$ such that the solution $u$ of (3) satisfies for

,
$e$very

$(t_{0}, x_{0})\in\overline{\{u>0\}}$ and every $Q_{f}(t0, x_{0})\subset(0, \infty)\cross\Omega$ the estimate

$\sup_{Q_{r}^{-(t0,x)}\mathrm{o}}u\geq cr^{\frac{2}{1-\gamma}}$

COROLLARY 2.1 (flnite propagation speed of $\{u>0\}$ ) There exists
a constant $1\leq S<\infty$ depending only on $n,$ $\gamma$ and $M$ such that for each so-
lution $u$ of (3) with respect to $n,$ $\gamma$ and $g\in \mathrm{C}^{\frac{2+\sigma}{2},2+\sigma}([0, \infty)\mathrm{x}\overline{\Omega})$ satisfying

1
$+ \{^{\sup_{0\}\cross\Omega}|g^{-}\Delta g|}\gamma+()\sup_{0,\infty\cross\partial\Omega}|g^{-\gamma}\partial tg|\leq M<\infty$

and for every $Q_{f}^{+}(t_{0,0)}x\subset(0, \infty)\cross\Omega$ the implication

$u(t_{0}, \cdot)=0$ in $B_{f}(x_{0})\Rightarrow u(t_{0}+s^{2}, \cdot)=0$ in $B_{\max(0,\mathrm{r}-ss}$) $(x_{0)}$

holds.

LEMMA 2.1 (subsolution property) The function $w:=|\partial_{t}(u^{1}-\gamma)|^{\frac{1}{1-\gamma}}$

is subcaloric in $(0, \infty)\cross\Omega$ in the sense that any caloric function
$v\in L^{\infty}(Q\mathrm{r}(t_{0}, X\mathrm{o}))\mathrm{n}o0(\overline{Q_{f}(t0,X\mathrm{o})}\cap\{u>0\})$ satisfying $Q_{f}(t0, x_{0})\subset(0, \infty)\cross$

$\Omega,$ $0\leq v$ a. $e$ . in $Q_{f}(t0,x_{0})$ and $(1-\gamma)|\partial tu|\leq u^{\gamma}v^{1-\gamma}$ in $(\{t_{0^{-}}r^{2}\}\cross B_{t}(x\mathrm{o}))\cup$

$((t_{0^{-}}r, t_{0}2+r^{2})\cross\partial B’(X_{0}))$ must $be\geq w$ a. $e$ . in $Q_{f}(t0, x_{0})$ .
We define $u$ to be a solution of the Cauchy problem if

$u^{02}\in C_{0}’\sigma(\mathrm{R}^{n}),$ $(u)0-\gamma\Delta u^{0_{\in L^{\infty}}}(\mathrm{R}n)$ ,
$u=u^{0}$ on $\{0\}\cross \mathrm{R}^{n}$ , (4)

$u\geq 0$ and $\partial_{t}u-\Delta u=-\frac{1+\gamma}{2}\max(u, 0)^{\gamma}$ in $(0, \infty)\cross \mathrm{R}^{n}$
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in the sense of distributions.
Note that this $u$ coincides by Corollary 2.1 in $(0, \infty)\cross B_{Z}(0)$ with the solution
of (3) with respect to $g(t, x)=u^{0}(x)$ and $\Omega=B_{Z}(0)$ provided that $Z$ has

been chosen large enough in terms of $n,$ $\gamma$ and $u^{0}$ .
For a solution $u$ of the Cauchy problem (4) we know in addition the following

from [6]:

PROPOSITION 2.2 (horizontal and non-horizontal points) The fol-
lowing dichotomy holds at each free boundary point $(t_{0}, x_{0})\in((0, \infty)\cross\Omega)\cap$

$\partial\{u>0\}$ :
either $\lim\sup_{\{}u>0$}

$\ni(t,x)arrow(t_{0},x0)|\partial_{t}(u-\gamma)1|=(1-\gamma)\frac{1+\gamma}{2}$ in which case ( $t_{0},$ $x_{0)}$ is

called $a$ horizontal point and $\max(\mathrm{O}, (1-\gamma)\frac{1+\gamma}{2}(-t))\frac{1}{1-\gamma}$ is the unique blow-
up limit with respect to every blow-up sequence $u_{m}(t, x)= \rho_{m}-\frac{2}{1-\gamma}u(t_{0}+$

$\rho_{m^{2}}t,$ $x_{0}+\rho_{m}x)$ (where $\rho_{m}arrow 0$ as $marrow\infty$),

or $\lim\sup_{\mathrm{t}\}}u>0\ni(t,x)arrow(t0,x\mathrm{o})|\partial_{t}(u-\gamma)1|=0$ in which case $(t_{0}, x\mathrm{o})$ is called $a$ non-
horizontal point and every blow-up limit is a non-trivial steady-state solution

of (3) which is homogeneous of degree $\frac{2}{1-\gamma}$ .

Throughout this paper we will often use the term homogeneous solution of
degree $\frac{2}{1-\gamma}$ . This will always denote a non-negative homogeneous solution of

degree $\frac{2}{1-\gamma}$ of class $C^{2}$ of the equation $\Delta v=\frac{1+\gamma}{2}v^{\gamma}$ . Moreover, let us denote
by Hor the set of horizontal points.

COROLLARY 2.2 (relative openness of non-horizontal points) The
set of non-horizontal free boundary points $\partial\{u>0\}$ –Hor is open relative
to $((0, \infty)\cross \mathrm{R}^{n})\mathrm{n}\partial\{u>0\}$ .

3 THE MONOTONICITY FORMULA

A powerful tool is now given by the monotonicity formula introduced by the
author in an elliptic version ([20, Theorem 3.1]) and in a parabolic version
([21, Theorem 3.1]). As we are going to need both versions in the subsequent
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sections, we state here the monotonicity formula for the perturbed elliptic
case, Theorem 3.1, and that for the parabolic case, Theorem 3.2. Since
Theorem 3.1 has the advantage of being local we shall prefer it to Theorem
3.2 in the remaining part of the paper. This way yields (by very minor
modifications of the following proofs) also an independent proof of regularity
for the stationary boundary value problem.

THEOREM 3.1 (the monotonicity formula) Suppose that $\beta\in(0,1)$ ,
that $C<\infty$ and that $K\subset\subset((0, \infty)\cross\Omega)\cap\partial\{u>0\}$ satisfies for $(t_{0},$ $x_{0)}\in K$

and $\delta:=\frac{1}{2}\inf_{K}\mathrm{d}\mathrm{i}_{\mathrm{S}}\mathrm{t}(\cdot, \partial\Omega)$ the estimate $|\partial_{t}(u^{1-\gamma})(t_{0}, X)|\leq C|x-X0|^{\beta}$ for
$x\in B_{\delta}(x_{0})$ . Then there exists $\overline{C}<\infty$ such that for all $0<\rho<\sigma<\delta$ and
every $(t_{0}, x_{0})\in K$ the function

$\Phi_{(t_{0,x0})}(r):=r^{-n-\frac{2(1+\gamma)}{1-\gamma}}\int_{B,(x\mathrm{o})}(|\nabla u(t_{0,\cdot)1^{2}}+\max(u(t_{0}, \cdot),$ $0)^{1}+\gamma)$

$- \frac{2}{1-\gamma}r^{-n+1-\frac{4}{1-\gamma}}\int_{\partial B_{f}(x)}0u(t_{0}, \cdot)^{2}d\mathcal{H}n-1$ ,

defined in $(0, \delta)$ , satisfies $|\Phi_{(t0,x0}$ ) $(\sigma)-\Phi_{(t0,x})(0\rho)$

$- \int_{\rho}^{\sigma}r^{-n-\frac{2\langle 1+\gamma)}{1-\gamma}}\int_{\partial B_{\mathrm{r}}}(x\mathrm{o})2(\nabla u(t_{0}, \cdot)\cdot\nu-\frac{2}{1-\gamma}\frac{u(t_{0},\cdot)}{r})2d\mathcal{H}^{n-1}dr|$

$\leq\overline{C}(\sigma^{\beta}-\rho^{e})$ .

THEOREM 3.2 Assume that $u$ is a solution of the Cauchy problem (4),
that $(t_{0}, x_{0})\in(0, \infty)\cross \mathrm{R}^{n}$ , that $\tau_{f}-(t_{0})=(t_{0}-4r^{2}, t_{0}-r^{2})\cross \mathrm{R}^{n}$ , that
$0< \rho<\sigma<\frac{\sqrt{t_{0}}}{2}$ and that

$G_{(t_{0}},x \mathrm{o})(t, X)=4\pi(t_{0}-t)|4\pi(t0-t)|-\frac{n}{2}-1\exp(-\frac{|x-x_{01^{2}}}{4(t_{0^{-}}t)})$

is the ,$backwardS$ heat kernel. Then

$\Psi_{(t_{0},0}^{-}x)(r)=r-2-\frac{2(1+\gamma)}{1-\gamma}\int_{T_{r}^{-}(t_{0})}(|\nabla u|2+\max(u, 0)^{1+\gamma})G_{()}t0,x0+$
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$- \frac{2}{1-\gamma}\frac{1}{2}r^{-\frac{4}{1-\gamma}}\int_{T_{r}^{-}(t_{0}})\frac{1}{t_{0}-t}u2c_{()}t_{0},x0$

satisfies the monotonicity formula

$\Psi_{(t0,x_{0})}^{-}(\sigma)-\Psi_{(t_{\mathit{0}^{X}0}}^{-},()\rho)=\int_{\rho}^{\sigma}r^{-1-}\frac{4}{1-\gamma}\int_{T_{r}^{-}(t}0)\frac{1}{t_{0}-t}’(\nabla u\cdot(x-x\mathrm{o})$

$-2(t_{0-}t) \partial tu-\frac{2}{1-\gamma}u)^{2}c_{(t0^{x_{0}}},)dr\geq 0$

Let $\Psi_{(t_{0}}^{-},x_{0}$ )
$(\mathrm{o}+)$ denote the right limit $\lim_{rarrow 0}\Psi_{(0}-t,x\mathrm{o}$)

$(r)\in[-\infty, \infty)$ . Then
$(t_{0}, x_{0})\vdasharrow\Psi_{(t_{0},)}^{-}x_{0}(\mathrm{o}+)$ is an upper semicontinuous function in $(0, \infty)\cross \mathrm{R}^{n}$

4 AN ENERGY DECAY ESTIMATE AND UNIQUENESS

OF BLOW-UP LIMITS

In this section we state that an epiperimetric inequality always implies an
energy decay estimate and uniqueness of blow-up limits. More precisely:

THEOREM 4.1 (energy decay, un.iqueness of blow-up limits) Suppose
that $\beta\in(0,1)$ , that $C<\infty$ and that $K\subset\subset((0, \infty)\cross\Omega)\cap\partial\{u>0\}$ satisfies
for $(t_{0}, x_{0})\in K$ and $\delta:=\frac{1}{2}\inf_{K}\mathrm{d}\mathrm{i}_{\mathrm{S}}\mathrm{t}(\cdot, \partial\Omega)$ the estimate $|\partial_{t}(u^{1-\gamma})(t_{0}, X)|\leq$

$C|x-x0|^{\beta}$ for $x\in B_{\delta}(x_{0})$ . Assume furthermore that the epiperimetric in-

equality holds with $\kappa\in(0,1)$ for each $c_{f}(x):=(_{r}^{\cup x})^{\frac{2}{1-\gamma}}u(t0, x0+r \frac{x}{|x|})$ such
that $r\leq r_{0}<1$ , and let $u_{0}$ denote an arbitrary blow-up limit of $u$ at the
point $(t_{0},$ $x_{0)}$ .
Then for each $\Lambda\in(0,$ $\min(\beta,$ $(n+ \frac{2(1+\gamma)}{1-\gamma})\frac{\kappa}{1-\kappa}))$ there exists $C^{\star}<\infty$ such
that

$|\Phi_{(t)}(0,x_{0}r)-\Phi_{()(}t0,x00+)|\leq C^{\star}r^{\Lambda}$ for $(t_{0}, x_{0})\in K$ and $r\in(\mathrm{O}, r_{0})$ ,

$\int_{\partial B_{1}(0)}|\frac{u(t_{0},x_{0}+rx)}{r^{\frac{2}{1-\gamma}}}-u_{0}(0, x)|d\mathcal{H}^{n-1}\leq C^{\star}r^{\frac{\mathrm{A}}{2}}$ for $(t_{0}, x_{0})\in K$

and $r\in(0,\mathrm{r}_{2}\Delta)$ , and $u_{0}$ is the unique blow-up limit of $u$ at the point $(t_{0}, x_{0})$ .
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5 ASYMPTOTIC BEHAVIOUR NEAR REGULAR POINTS

The point is that the assumptions of Theorem 4.1 can be verified uniformly in
an open neighborhood of a regular free boundary point, i.e. a free boundary
point at which at least one blow-up limit coincides with a half-plane solution.
Thus we obtain the $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\dot{\mathrm{w}}$ing

COROLLARY 5.1 (differentiability) Let $u$ be a solution of the Cauchy
problem (4) and suppose that $(t_{0}, x_{0})\in R$ . Then there exist $\delta>0$ , a function
$\mathcal{U}:\overline{Q_{\delta}(t_{0},x\mathrm{o})}\cap Rarrow\partial B_{1}(0)$ and $\frac{\omega(z)}{z}arrow 0$ as $zarrow \mathrm{O}$ such that

$|u(t, x)-( \frac{1-\gamma}{2}\max((_{X}-\overline{X})\cdot\nu(\overline{t},\overline{X}),$ $0))^{\frac{2}{1-\gamma}}$
$\leq\omega(|x-\overline{X}|^{\frac{2}{1-\gamma}}+|t-\overline{t}|^{\frac{1}{1-\gamma})}$

for every $(\overline{t},\overline{x})\in Q_{\delta}(t_{0}, x_{0})\cap R$ .

6 REGULARITY

The key idea to prove the relative openness and regularity of the set $R$

is that the half-plane solutions take a lower energy value than any other
homogeneous solution of degree $\frac{2}{1-\gamma}$ whose coincidence set has a non-empty
interior. This proven, it is possible to derive the following regularity result:

THEOREM 6.1 Let $u$ be a solution of the Cauchy problem (4). Then
$\partial\{u>0\}$ is locally in an open neighborhood of the set $R$ a $\mathrm{C}^{\frac{1}{2},1+\mu}$ -surface.
The space outer normal $\nu(t, x)$ to $\partial\{u>0\}$ is locally in $R$ a H\"older-continuous

function.

By the Hausdorff measure estimate in [6] this implies

COROLLARY 6.1 Let $u$ be a solution of the Cauchy problem (4). Then
$((0, \infty)\cross \mathrm{R}^{n})\cap\partial\{u>0\}$ is the disjoint union of $R$ and $\Sigma,$ $\partial\{u>0\}$ is locally
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in an open neighborhood of $R$ a $\mathrm{C}^{\frac{1}{2},1+\mu}$ -surface and the set $\Sigma$ is ignored by

spatial integration by parts in $\{u>0\}$ , $i.e$ .

$\int_{\{u(t)>0\}}\partial i\zeta=\int_{\partial_{\mathrm{r}\epsilon \mathrm{d}\{}}u(t)>0\}\nu_{i}\zeta \mathcal{H}^{n}-1=\int_{R\cap\{s=}t\}i\zeta\nu \mathcal{H}^{n}-1$

for a. $e$ . $t\in(0, \infty)$ and every $\zeta\in C_{0}^{0,1}(\mathrm{R}^{n})$ ; here the reduced boundary
$\partial_{\mathrm{r}\mathrm{e}\mathrm{d}}\{u(t)>0\}$ is defined as the set of free boundary points at which the outer
normal of of H. Federer $[7, \mathit{4}\cdot \mathit{5}.\mathit{5}]$ exists.

Acknowledgement: The author wishes to thank H. Matano for helping to
clarify the dynamical systems aspect of this result.
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