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1. Introduction

We discuss the existence of positive classical solutions of the boundary value

problems:

—Au = Ag(z)f(u) in Q
(I3)

(1— Of)g-g- +ou=0 on 01,
where A and a are real parameters and  is an open bounded region of RY, N > 2
with smooth boundary 0. We shall suppose that o < 1; thus a = 0 corresponds
to the Neumann problem, o = 1 to the Dirichlet problem and 0 < o < 1 to the
usual Robin problem. We shall assume throughout that ¢ : @ — R is a smooth
function which changes sign on (.

Equation (I§) arises in population genetics with f(u) = u(l —u) (see [7]). In
this setting (I§) is a reaction-diffusion equation where the real parameter A\ > 0
corresponds to the reciprocal of the diffusion coefficient and the unknown function

u represents a relative frequency so that there is interest only in solutions satisfying

0 <wu < 1. In this paper we shall study the structure of the set of positive solutions
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of (I) in the cases where f(u) = u(l — |u|") and flu) = u(1’,+ lu|?), p > 0. In
order to obtain a better understanding of this structure we no longer impose the
restrictions that A > 0 or that v < 1.

We obtain new existence results by using a variational method based on the
properties of eigencurves, i.e., properties of the map A — p(A) where () denotes

the principal eigenvalue of the linear problem

(1.1) { ~Au = Ag(x)u =pu in Q

(1-— a)g—jj +au=0 on 0.

Our method works provided that the linearized problem for (IY), viz,

—Au = Ag(z)u in Q
Le Ou
(L) (1-01),61+o,u:0 on OS2
on

has principal eigenvalues and it is shown in Afrouzi and Brown [1] that this occurs
on an interval [ag, 1] where ag < 0. Thus we are able to obtain existence results for
(I$') even'in the case of nonstandard Robin boundary conditions where o 1s small
and negative. Our method depends on using eigencurves to produce an equivalent
norm on W12(Q); such an equivalent norm is also introduced in [4].

Solutions of (I§) also arise from the bifurcation of solutions from the zero solution
in the (\,u)— plane. We shall investigate the nature of bifurcating solutions in the
cases f(u) = u(1—|u?) and f(u) = u(1+ |u|?); in the former case we show that the
solutions whose existence has been established by variational means are completely
distinct from those arising from bifurcation but that in the latter case variational
and bifurcation methods give existence results for precisely the same A-ranges.

Our results illustrate the very significant role played by the indefinite weight

function g(2) in the existence of positive solutions of (I§). If g(v) = 1 and flu) =
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u(l — |ul?) then (IY) becomes

~Au =du(l=|uf) in Q

(1 —a)%% +aou=0 on 0N

Then, when a > 0, it is well known that positive solutions must satisfy 0 < u <1
and are precisely those arising out of bifurcation from the zero solution; moreover
the equation has no positive solutions if A\ < A\; where A; denotes the least eigenvalue
of the Laplacian. We shall show, however, that, when ¢ changes sign, the variational
method proves the existence of a positive solution for all A, 0 < A < A (a), where
At () denotes the positive principal eigenvalue of (L) and that such solutions are
not bounded above by 1.

The plan of the paper is as follows. In section 2 we first recall the facts that we
shall require about eigencurves and show how eigencurves can be used to generate
an equivalent norm for W12(Q); then using this equivalent norm we prove the
existence of solutions by applying variational methods. In section 3 we discuss
the solutions of (I{) which arise from bifurcations and compare these with the

variational solutions obtained in section 2 for the case where a € (0, 1], i.e., where

we have Dirichlet or the standard Robin boundary condition.

2. Variational Solutions

We first recall some facts about how the method of eigencurves can be used to
prove the existence of principal eigenvalues of (L%) (see, e.g., [1]). For fixed A\ we
denote by p(a, \) the principal eigenvalue of the Schrédinger problem (1.1). Clearly

A is a principal eigenvalue of (L®) if and only if A,u(a, A)=0.

It can be shown that u(a, A) has the variational characterisation

pla, \) :inf{/(1vu|‘2—/\gu2)dm+1 “ / wrdS, u e WH(Q), /uz de =1}
J§2 a0

—a Jg JQ
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from whence it follows that

(1) @ = p(ae, A) is an increasing function;

(11) A = p(a, ) is a concave function with a unique maximum such that p(a, ) —
—00 as A — Foo.

If « € (0,1], then u(e,0) > 0. In particular, A — p(a, A) has exactly one
negative zero A7 (a) and one positive zero A\T(a). Thus A\ (a) and A (a) are
principal eigenvalues for (L®).

If « =0, i.e., we have the Neumann problem, then 1(0,0) = 0. If [Q gdx <0,
(L*) has principal eigenvalues A7(0) = 0 and A" (0) > 0. On the other hand, if
Jq 9dz > 0, there exist principal eigenvalues such that A7(0) < AT(0) = 0.

Suppose now that [Q gdx < 0 and that o is small and negative. Then, since
a — u(e, ) is increasing, there still exist principal eigenvalues A\ (o) < AT (o) of
(L*) but now both A7 (o) and A*(«) are positive. It can be shown that there exists
ap < 0 such that the above is true for all o € (ag,0), but for o < g pa, A) <0
for all A so that principal eigenvalues no longer exist.

Similar considerations show that when [, g da > 0 there exists ag < 0 such that
there principal eigenvalues A~ (a) < AT (a) < 0for \g < A < 0 but when [, gda =0
there are no principal eigenvalues for a < 0.

We now show how the above eigencurves A — p(a, \) may be used to produce

an equivalent norm for W12(Q).

Theorem 2.1. Suppose o € (0,1) or that fﬂ gda #0 and o € (ag,0] so that (L)

has principal eigenvalues A\~ (a) and \T(a). For any A € (A~ (a), AT (o))

ullx = {/ [[Vul* — Agu?] dz + a / u? dS, 2
Q [219]

l—a,

defines a norm in WH2(Q) which is equivalent to the usual norm for W1h2(Q).
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Proof. Since || ||x corresponds to the bilinear form

<u,v >\= / (Vu.Vo = Aguv)da + a / uv dS,
Jo o9

—«
in order to prove that || ||y is a norm it suffices to prove that < u,u >, > 0 for all

u € W2(Q) — {0}. By the variational characterisation of u(a, \) we have

(21) < U, U >A= / Hvu’.? - /\gul] dx + - / ’LL2 dSl‘ > /J'(O'lv /\) / u’2 dz.
Ja L—a [y Ja

Hence, if A7 (o) < A < AT(a), p(a,\) > 0 and so < u,u >x> 0 whenever u # 0.
Thus || ||x 1s a norm.

We now prove the equivalence of the norms. It is easy to see that there exists
a constant A > 0 such that [Jul|x < Kllu||w12(q). Suppose that there exists a
sequence {u,} C W1%(Q) such that llunllwiz@) =1 and [Ju,flx = 0 as n — oo.
Since {u,, } is bounded in W12 (), there exists a subsequence, which for convenience
we again denote by {uy}, such that u,, — v weakly in W?(Q). Since W1?(Q)
may be compactly embedded in L*() and in L?(9Q), we have u,, — v in L?(Q)
and u, — v in L*(99Q). Since |[u,|[x — 0, it follows from equation (2.1) that

un, — 0 in L}(Q), ie., v = 0. Thus u,, — 0 in L*(Q) and u,, — 0 in L*(9Q) and

v oy : . 2 2 o : 2 _ . . r
50, since limy, oo [ fo[|[Vun > = Aguj ] da + 12 S us dS,.] = 0, we must have that
limy, oo ]Q |Vun,|? de = 0. This is impossible, however, as unl|wiz@) = 1forall n
and so we have a contradiction. It follows that ||u||y and ||u||w1.2(q) are equivalent
norms.

Using a similar argument it can be proved that

Corollary 2.2. If A € (A7 (1), AT (1)) where A™(1) and AT(1) denote the principal

eigenvalues of (L) wn the case of Dirichlet boundary conditions, then

[[u][x = {/g;HVUIQ ~ Agu?] da}?
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defines a norm on Wy 2(Q) which is equivalent to the usual norm for We(Q).

We can now prove the existence of solutions to nonlinear equations by using

variational methods. We first consider the case where f(u) = u(l — |u?).

Theorem 2.3. Suppose o € (0,1) or that [, gdr # 0 and o € (ag,0]. Then, of

0<p< =25,
—Au = Ag(z)u(l —|ul?) m Q
(22) Ou

(1—a)=—4+au=0 on 09,
on

has a positive solution for all X € (A" (), \T(a)), provided that A # 0.

Proof. Let M = {u € W'2(Q) : A [, glul/'T*de = —1}. Since ¢ < 0 on an open
subset of Q, M is nonempty. Moreover, as LPT2(Q2) may be embedded compactly
in Wh2(Q), M is weakly closed in Wh2(Q).

Since the natural energy functional associated with equation (2.2), viz.,

1 2 1 2 A ) o . A
' = |Vu|® — s Ag Ny g Ly
L¢—+‘Q(2|Vu’f 2/\g/u, +p+2£/|u| )d(z,+2(1_a)ttm u?dS,

is bounded neither above nor below, we are led to consider the constrained problem

of minimizing the functional

(0]

I(u) = /(!VMQ — Agu®) da + / u?dS, = [|ull3
Ja a9

— o,

restricted to M.

It is easy to see that J) is sequentially weakly lower semicontinuous and Theorem
2.1 shows that Jy is coercive. It follows (see Struwe [9], Theorem 1.2) that Jy 1s
bounded from below on M and attains its infimum on M.

Suppose that Jy assumes its infimum at uy € M. Then |uy] € M and Jy(uy) =

Jxa(lur]). Thus we may assume that uy > 0 on 2.
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By the Lagrange multiplier rule there exists a parameter x € R such that

y

—

/ Vuy - Vodr — /\/ guxd da +
Q

/ ux¢p dSy + KA / guxlux|fdde =0
Q aQ Ja

for all ¢ € W12(Q2). Setting ¢ = uy above gives

[N / dlualP*? = k.

Since uy € M cannot vanish identically, ||ux|[x > 0 and so & > 0.
Let u = kruy € W12(Q). Then u is a weak solution of equation (I§) in the

sense that

/ (VuVd — Ague + AgululPd) de + —— | ugdS, =0
Q 1 —a /s

for all ¢ € WH2(Q). It follows from standard regularity arguments that v € C*(Q2)
is a classical solution satisfying the appropriate boundary condition.
Since u > 0 on €2, it is easy to deduce from the maximum principle that v > 0

on 2.

Corollary 2.4. If 0 < p < —%5, then the equation

{ —Au = Ag(a)u(l — |ul?) n Q
u=0 on 09,

has a positive solution for A € (A~ (1), AT (1)), provided that A # 0.
Proof. The result follows as in the proof of Theorem 2.3 but considering the func-

tional
u — / (|Vu|* — Agu?) dx
Ja ‘
for u € W, 2(Q).

Conclusions identical to those of Theorem 2.3 and Corollary 2.4 can also be

obtained for the case where f(u) = u(l + |u|?) by considering the same functional



34

Jx constrained to the set {u € WH?(Q) : A [, glulP™® dv = 1}; in this case the

Lagrange multiplier £ < 0 and the change of variable u = »(—f‘z)%u A 1s required.
Finally in this section we remark that since the function Jy is even, using the

Krasnoselskii genus and minimax principles (see [9]), it can be shown that the above

equations have infinitely many distinct pairs of solutions for all o € (ayg, 1].

3. Solutions arising from bifurcation

The following lemma is central in proving that bifurcation occurs and in deter-

mining the direction of bifurcation.

Lemma 3.1. Let o € [0,1] and suppose that A # 0 is a principal eigenvalue of (L)
with corresponding positive principal eigenfunction ¢. Then A fﬂ gt dz > 0 for

all p > 1.

Proof. Suppose 0 < o < 1. Multiplying (L®) by ¢” we obtain —A¢ ¢ = \gpPT!

on ) and so

(3.2) ~/ %gbf’ dS, +p/ (,ﬁ””l }V¢[2 de = / /\gc,bf”rl dax.
F193 on Q Ja

Hence

‘ y v ' e v
A / g de = / PPt dS, +p / PPV da
1239} JQ

Q 1—a
and so the required result holds.

If o =0 or =1, the surface integral term in (3.2) vanishes and the result

follows easily.

We now show that bifurcation occurs at our principal eigenvalues by using the

Crandall and Rabinowitz theorem on bifurcation from simple eigenvalues [6].
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Suppose that f : R — R is any smooth function such that f(0) = 0 and

f'(0) = 1. Consider F: R x C57(Q) — C7() defined by
F(M\u)=—Au— \gf(u)

where C377(Q) = {u € C**7(Q) : (1—a)%+cu =0 on Q}. Then F is a smooth

an

map with Fréchet derivative F,, such that
F.(\0)u = —Au — Agu.

Thus, if Ao denotes a principal eigenvalue of (L%) and ¢¢ a corresponding pos-
itive eigenfunction, then N(F,(A,0)) = [¢o] and R(F,(\o,0)) = [¢o]t = {u €
C(8) : [o udo dz = 0}. Moreover Fy, (Ao, 0)do = —g¢o and since, by Lemma 3.1,
A fQ gd* dz > 0, it follows that Fru(X0,0)¢0 € R(Fy(N\o,0)). Thus by the Crandall
and Rabinowitz theorem there exists a curve of nontrivial solutions of the form
s — (A(s),s(¢o + 9(s)) bifurcating from (A\g,0) where A\(0) = \g, 1(0) = 0 and
¥(s) € CF () N o] .

Now suppose that f(u) = u(l — |u|?) where p > 0. We shall determine the

direction of bifurcation. For sufficiently small s we have

—Ado = Mip(s) = As)glgo + 1 (s)][1 — fu(s)["]

and so

—Ado — Ai(s) = dogldo + ()] [T = [u(s) ]+ (A(s) = Ao)gldo + ¥(s)] [1 — [u(s)|"].

Hence

—Atp(s) = Aogp(s) = —Aogldo + ¥ (s)][u(s)P + (A(s) — Ao)gldo + ¥(s)] [1 — u(s) ]
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and so, since R(—A — \og) = [¢o]*, we must have

Yo / gldo + ¥(s)]lu(s) [P0 dx = (M(s) = Ho) / glo + ()] [1 = [u(s) "] da.
JQ

A

Thus, dividing by s? and letting s — 0, we obtain

: +2 5
.As) = No Jo 9067 da
11111 - = AQ —-———>—
s—0 sP [Q g(pa dx

The formula above determines the direction of bifurcation of the branch of positive

solutions. In particular we have

Theorem 3.2. Let o € [0,1] and suppose that g # 0 is a principal eigenvalue of
(L*®). Then a curve of positive solutions for equation (2.2) bifurcates from the line

of zero solutions at (\g,0); bifurcation is to the right (left) of Ao > 0(<0).

We now investigate in more detail the curve of positive solutions bifurcating from
(Mo, 0) where Ay > 0.
It is straightforward to show that, when a € (0, 1], equation (2.2) is equivalent

to the operator equation
(3.2) u=AKpgNu

where Kg : C(Q) — C(£) is the compact integral operator with kernel the Green’s
function associated with —A and the corresponding boundary condition and N :
C() — C(Q) is the Nemytskii operator N(u)(x) = g(a)u(x)[l — Ju(x)|?]. It is
also easy to show that the Rabinowitz global bifurcation theorem (see [8]) can be
applied to equation (3.2) to give the existence of a continuum C of positive solutions
of (2.2) joining (Ag,0) to oo in R x C'(Q).

We now show that the variational solutions whose existence was proved in the

previous section cannot lie on C.
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Theorem 3.3. Suppose 0 < o < 1. If (\,u) € C, then u(z) < 1 for z € Q.

Proof. Clése to the bifurcation poinf (Mo, 0) the continuum C must coincide with
the curve of positive solutions given by the Crandall and Rabinowitz theorem and
so, if (\,u) € C lies close to the bifurcation point, we must have that u(z) < 1 for
all z € Q.

Suppose that there exists (\,u) € C such that u(xg) > 1 for xg € Q. Then there
must exist (A, u*) € C such that 0 < u*(x) < 1 for all 2 € Q and u*(2*) = 1 for

some z* € Q. Let v = 1 — u*. Then v satisfies

;A'v = /\(—g)f—(l—:v—>v in £ (1- oz)@ +av=a in O
v on

where f(u) = u(1—|ul?). Thus v(z) > 0for z € Q, v(a*) = 0and —Av+g(x)v =0
on § for some smooth function ¢. It follows from the maximum principle that, if
2* €  then v(z) = 0 in  which is impossible. But, if 2* € 02, then (1 —oé)g% =«
and so S—Z(x*) > 0 which is also impossible as v attains its minimum value at z*.

Hence u(z) < 1 for all x € Q whenever (\,u) € C.
The existence of positive solutions to

(3.3) —Au = Ag(z)f(u) in (1- a)glﬁ +au =0in 09
n

where o > 0, f : [0,1] — R*, f(0) = f(1) = 0, f/(0) = 1, f"'(u) < 0 for
u € (0,1) is studied in [5] where it is shown that (3.3) has only the zero solution
for 0 < A < A (a). Clearly solutions of equation (2.2) satisfying 0 < u < 1 are
also solutions of equation (3.3) with f(u) = u(1 — |u|?). But, under the hypotheses
of Theorem 3.3, if (A\,u) € C, we must have that 0 < u(z) < 1 for z € {2 and so

A > A (a).
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Thus, if 0 < a < 1, C lies entirely in [A(a),00) x {u € C(Q) : Ju(z)] < 1 for z €
1} and so none of the variational solutions whose existence we established for
A < At (a) lie on C. Moreover, since by [5] zero is the unique nonnegative solution
of (3.3) lying between 0 and 1. for A < A\ (a), it follows that if u is a variational
solution of (2.2) then u(xzg) > 1 for some 2y € Q.

It is easy to adapt the above argﬁment to deal with the case where a = 1
(Dirichlet boundary conditions) and again show that C lies entirely in [A*(a), c0) x
{u e C(Q) : u(z) <1fora e N} so that the bifurcation and variational solutions

are completely disjoint from each other.

I ap < a < 0 and [,gdz < 0 so that both A™(a) and A™(«) are positive
with corresponding principal eigenfunctions ¢_ and ¢ , straightforward continuity
arguments show that [, gd" T da < 0 and fa ggbﬁ_“ dx > 0 provided that o is
sufficiently close to zero. It follows from (3.1) that the bifurcation of positive
solutions occurs to the left at A™(a) and to the right at A™(a). When o < 0 the
argument used in the proof of Theorem 3.3 to show the boundedness of continua
emanating from principal eigenvalues no longer holds and the global nature of the
continua bifurcating from A7 (a) and A7 («) is an interesting open problem; it is
unclear which of the alternatives in the Rabinowitz theorem hold, i.e., whether the

two continua join up with each other or become unbounded.

We now consider the case when f(u) = u(1+ |u|?). Formula (3.1) now becomes

As) = A . P2 1o
(3.4) lim () 0 . _/\Oifl.g%%
50 o’ fQ gPi du

Suppose 0 < o < 1. It follows easily from (3.4) that a curve of positive solutions
bifurcates to the left at (A" (a),0). The Rabinowitz global bifurcation theorem

can again be applied in this case to give the existence of a continuum of positive
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solutions C joining (AT (a),0) to co in R x C(Q). The next lemma shows that C

intersects A = A*(a) only at (AT (a),0).

Lemma 3.4. There does not ezist a positive solution of the equation

—Au = N (a)g(2)u(l + [ul?) in Q

34 O
(3:4) (1.— a)@ +au=0 on O0.
on

Proof. Suppose that u is a positive solution of (3.4) and let ¢ be a positive principal
eigenfunction of (L?) corresponding to A*(a). Multiplying (3.4) by u~(P+1)gpr+2

and (L) by u=?¢P*! subtracting and integrating we obtain

. i\ p+1 .
(3.5) / [(2> (UAD — dAu)] da = /\+(Of) / g(2)o" T de.
JQ

U JQ

But by Picone’s identity (see [3] and the references therein)

2

divle (2) (uV — $Vu)] = 5(9) (A — pAu) + € (53>

(:)
U

which holds for any ¢ € C*(R), u, ¢ € C?, u > 0. Choosing £(¢) = **! and using
« 7 (R o

integration by parts in (3.5) gives

¢ p+1 3¢ au ¢ 1)’2
./m(a) Wan ™ ‘55)‘[51“(?)*1)/&)(5) ‘

and so we have a contradiction.

Hence C bifurcates to the left at (AT (a),0) and has no other intersection point
with the line A = A (a). Since there are no positive solutions when \ = 0, C—
{(A(@),0)} must lie strictly between A = 0 and A = A\*(a) and so must approach
oo in such a way that ||u|| — oo in this region.

We can derive further information about C by making use of a priori bounds ob-
tained by Berestycki, Capuzzo-Dolcetta and Nirenberg in [2] under some additional

assumptions on ¢, {2 and p.
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Lemma 3.5. Suppose Qt ={2 € Q : g(a) >0}, Q7 ={v e Q : g(x) <0} and

FP=QtNQ~. IfT CQ, Vg(x)#0 foralla €T and p < W{—l then, for all X # 0,

there exzists C' > 0 such that u(x) < C for all @ € Q for any positive solution u of

,

equation (3.4).

Thus under the hypotheses of Lemma 3.5 C cannot approach co at any nonzero
value of \ and so must approach oc in such a way that ||ju|| — o0 as A — 0. It
follows by a simple connectedness argument that there must exist (A, u) .E C for
every A € (0,\"(«)). Thus in this case the variational solutions discussed in the

previous section may coincide with the solutions arising from bifurcation.
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