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FREE BOUNDARY PROBLEM FOR QUASILINEAR
PARABOLIC EQUATION WITH FIXED
ANGLE OF CONTACT TO A BOUNDARY

b KK B B AT SR B B D2

S B (YOSHIHITO KOHSAKA)

1. Introduction

We consider the following free boundary problem of form:

g = (a(ty))e- s(t)<x<0,t>0, (1.1)

w.(5(t). 1) = tanfy, £ > 0. | (1.2)
1w, (0.1) = tan fy. t >0, ” (1.3)
w(s(t).t) =0, t >0, (1.4)
w(x.0) = ugl(x). $(0) := 89 < L0, (1.5)

where a € C*(R) and /(o) > 0 for 0 € R (1 = 7](];), and sy is a given negative
minber, and wuy € Cz[so.()]. We also assume a compatibility condition wo,(s9) =
tan 6, 1, (0) = tanfy.ug(sp) = 0, and assume ug(x) > 0 for x € (s0.0]. The
angles 6; € (0, 3) for ¢ = 0.1 will be measured counter-clockwise from the w-axis.
If we set a(o) = arctan , the equation (1.1) is the curvature flow equation for
the graph of u separating two phase. The curvature flow equation is one of the
tyt)i(:al evolution equations which describe the motion of the phase boundary. In
this case, this problem is the curvature flow problem with preseribed angle on the

boundary of the sccond quadrant.
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If we sct a(o) = o, the equation (1.1) is the heat equation. In this case, -this
problem appears in the combustion theory.

In this note, we consider the convergence of the solution of (1.1)-(1.5) as t — oc
in the case 6y < ;. Our main goal of this paper is to show that the solution
of (1.1)-(1.5) converges as t — oc to the unique sclf-similar solution in the case

Oy < 0.

Main Theorem.  Assumec that 6y < 6.
1) There exasts an cepanding sclf-similar solution Sy corresponding to the prob-
1
lem (1.1)-(1.5) which is unique wp to translation of time. Moreover, S is convex.
t
(I1) Let Ty be a solution of (1.1)-(1.5). Then. for cach & € (0.3/2). there is a

constant Cs such that
dg(Te. 8,) < Cst™? for t>1
where dg denotes the Hausdorff distance.
To prove this theorem, we employ what s called similarity change of variables:
ulr,t) = V2t + 1 U, 7)., s(t) = V2t + 1 p(7), (1.6)

where

- = Dog(2t 4 1), (1.7)

= ==
¢ Vet +1 2

Then, problem (1.1)-(1.5) becomes

Ur = (a(Ug))e + U = U. p(r) <&<0, 7> 0, (1.8)
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Ue(p(r).7) =tanby. 7>0. ‘ (1.9)
Ug(0.7) = tan f. T > 0, (1.10)
U(p(r).7) =0, T >0, (1.11)
U0 =To(6).  p(0)=s<EL0. (1.12)

A stationary solution to (1.8) is called a self-similar solution.

2. Existence and uniqueness of self-similar solution
In this section we show that the self-similar solution corresponding to the prob-
lem (1.1)-(1.5) exists uniquely. We cousider the following ordinary differential eqna-

tion of form (P):

(a(Ug))e + AU — AU =0, £ € (q.0), (2.1)
Ug(q) = tan fo. (2.2)
Uc(0) = tan 6, (2.3)
Ulg) =0. (2.4)

This is the stationary problem of (1.8)-(1.12) for A = 1. Here, the function U and

the number A is unknown and we shall discuss the existence of solutions.

Theorem 2.1. (Fustence and uniqueness)  Let g0 8. 01 be gieen constants.

Asswne that

¢ <0, 0<6b, <0<

o] 3

Then there exists a unique solution (A.U) € [0.0c) x C%[q.0] te (I’). Mercover,

A =0 s if and only of 0y = 6.
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Remark 2.1. (Relation between A and ¢) We set A = A(g). Then, A((q) =

A ¢)/(? holds for ¢ € (0.). Here, we set ¢ = —1 and replace —( by ¢. Then,
A1 .
Mg) = 251 :

e

[NV
w
N

where M(—1) is a constant satisfying A(=1) = 0 if ) = 61 and \(—1) > 0if 6, < 0.
In Theorem 2.1, we determined (A, U) by giving ¢, . 6;. But since (2.5) holds,

we can determine (¢, U) by giving A €. 6;.

To prove Theorem 2.1, we shall employ the shooting method.

For given A € [0,00), let (Py) be the initial-valine problem (2.1), (2.2). (2.4). We

define the set . as

J = {A€[0.) | there exists a U € C*[q. 0] satisfying {Py)

for the interval [¢,0]}.

1)

Clearly. J includes A = 0. Thus. A # (.

Then, we obtain sevral leminas with respect to J.

Lemma 2.1. (Openness of J)  Assume that Ny € J. Then there is a small 6 > 0

so that the set (Mg — 8, Ao+ 3) N[0, oc) ds including in the set J.

Lemma 2.2. (Conncctedness) — Assume that Mg, A € J and Ny < Ny, If Ay <

=

A < AL then X is included in the set J.
Morcover. we study qualitative properties of solution.

Lemma 2.3.  Assume that X € [, fi]. with constants o. [ satisfying 0 < « < (.



and that U € C?[q.7y] with constants q,~ satisfying ¢ <y <0 fulfills
1< 7.7

(a(Ug))e + MU — AU =0, ¢ € [g,7].
Ug(q) = tah()o, ‘

Ufq) = 0.

Then. the following estimaies are valid:
(i) Uge(€ 5 X) > 0 for £ € [g.7]. A >0,
(ii) Ue(€ 5 X) >0 for £ € [q.9]. A € [ f].
(111) Ue(é 2 A) >0 for & €]q.v]. A= 0.
U A) >0 for & €[g.q]. A€ [onp].

where « 1s the differential with respect to A,
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By Lenuna 2.1, J is the open set included in the interval [0, co). Moreover. we

define Ay € (0.00] as the supremum of A such that there exists a solution of (Py)

in [¢g.0]. Then, by Lemma 2.2, that J is an interval [0, Ag).

We now define the mapping
D0, Ag) 2 A= U(0: A).

Then, Lemma 2.3 (ii) implies

22
ox "~

Thus. ® is a monotone increasing function, which is a bijection;

[0, Ay) — [tand. }%1'{10 D(N)).

Here. we obtain the following lemma.
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Lemma 2.4.  (i)Asswnc that Ay < oc. Then Hmya, P®(A)

(11 )Assumne that Ag = oc. Then limyjs ®(A) = .

Remark 2.2. (i) If @ is bounded from the ahove, i.e. there exists a constant M

such that a{o) < M for o € R, then

M — a(tané
A() S ( 0) < 0
q2 tan 6,

In fact, by mecans of simple computation, it follows that
a(Ug(0: X)) > a{tany) + A g tanéy.
Thus, for A € (0, Ay)
a(tanfy) + Mg tanfy < a(Ug(0: X)) < M.
Then, for any ¢ > 0

a(tan 8y) + (Ag — €)g® tanhy < M.

Hence,
M — a(tan 6y)
AO < 3
q® tan 6,
Since ¢ is arbitrary,
M — a(tan 6
Ay < )

q% tan g
(ii) We now rewrite the initial-value problen: (Py) by introducing a new dependent

variable y(£). We set
a(Ue(€)) == y(&).

Since a’ > 0, there exists a C? inverse function a™! of the function a to got

(&) = a7 (y(Q))-
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The: equation (2.1) becomes
Ye + Ma Hy) — AU = 0.

It is easy to sce that (Py).is rewritten in the form of a system

4 (:U (M) + WU
d\U) a=(y)

(y(q)) B ((z,(tzulﬁ))
vi) "\ 0 )

For later notation, we set

—Xa Y y) + )\U)

F(¢, g U, A) = ( 10y)

If the initial-value problem (%) is solvable for any A € [0, 0), i.c. sup Edg(z"l(y)
R
< 20, Ay = oc. Because, if sup %n,“l(y) < oc, F' is Lipschitz continuous with
R “e.

respect to y, U for any A € [0, oc).

Proof of Theorem 1.1. By Lemma 2.4,
O([0, Ap)) = [tan by, ).

Morcover. since 9®/9A > 0 by Lemma 2.3 (ii), ® is onc-to-one. Thus, @ is a
bijection. Consequently. for any « := tanf; € [tanfy, o0), there exist a unique
(A.U) € [0, Ag) x C?[q.0] satisfyiug the initial-value problem (Py) and Ug(0) =

tanfd;. O

3. Convergence of a solution for 6, < 6,
We consider the convergence of the solution of (1.1)-(1.5). Here, we shall discuss

the convergence of a solution for problem (1.8)-(1.12).
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Theorem 3.1.  Assume that ug € C?[s9.0] satisfying upe(so) = tanby. upe(0) =
tanfy. ug(sp) = 0. and wg(¢) > 0 for & € (s0.0]. Morcover, assume that (U(£.7),
p(71)) is a smooth solution for problem (1.8)-(1.12). Then (U(E, 7). p(7)) converge

as T — oo to (U*(&).p*) satisfying

(U))e +EU ~U" =0, p" <& <0, (3.1)
U¢(p*) = tan by, (3.2)
U¢(0) = tan 0y, (3.3)
U*(p*)=0. (3.4)

Moircover. this converqence @s coponential:
5 ~ P &
dg{l;.8) < Ce™ 07

for cach &y € (0.2) and T > 0 where dg denotes the Hausdorff distance. Ty 1s the
solutron of (1.8)-(1.12). 8 s the solution of (3.1)-(3.4). and C' 15 a constant und

18 independent of T.

For the proof of Theorem 3.1, we construct a subsolution and a supersolution for
the problem (1.8)-(1.12). which converges as 7 — oo to U* satisfying (3.1)-(3.4),

and use the strong maxiumn principle.

3.1 Structure of a subsolution

We first define vg(¢) as the following. We set

K := miu{ tanfy, inf (—“L(—{l) }

iy ¢€(sn.0) \ & — 8

Here we choose a constant ¢ satisfying



(¢f. Figure 3.1). Then, by Theorem 2.1, there exist a unique (Ag, vg) € (0,00) X

C?[¢,0] satisfying

{alvoe))e + Ao {’“0{— A Vg .: 0 ‘ < £'< 0, | (3.6)
voe(#) = tan by, | (3.7)
voe(0) = tan by, (3.8)
w0 (8) = 0. | (3.9)

By Remark 2.1, if necessary. we choose Ap such that Ay > 1. Then, we get the

following relation between wg and vg.

Lemma 3.1.  Assumec that vy satisfics (3.6)-(3.9). Then the following estimmate

is valid:
. p r
(&) > w(¢) for ¢ €60
Morcover, we get the following relation between U* and .

Lemma 3.2. Assume. that satisfics (3.1)-(3.4) and vy satisfics (3.6)- (3.9).
L 3.2 A that U* sat (3.1)-(3 1 tisf 3.6)- (3.9)

Then U* 1s represented by vy as the following:

() = o [ o
U ({)‘— \/X!/- '«)(v,—A—;)-

Morcover, this representation is unique.

Then. applying Lemma3.1, Lemma3.2 and that U* satisfies (3.1)-(3.4), we obtain

the following proposition.

Proposition 3.1.  For any 61 € (0,2]. we define

Vin.r):= MT)U*(‘P&)) (3.10)

49
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where (1) =1+ (\/1——\—-7- - 1)(1_8"".’]7),07),, V s a subsolution of (1.8)-(1.12). .

3.2 Structure of a supersclution
We first define wy(¢) as the following. Now, we choose a constant L satisfying

L < sy and

un(
0< sup (ﬁ‘“”) < tanfq. (3.11)
¢elso0] \§ — L

(cf. Figure 3.2). Then, by Theoremr 2.1, there exist a nuique (Mg, wy) € (0,050) X

C*[L. 0] satistying

{a(woe))e + Apwg =0, L < & <0, (3.12)
wog(L) = tan b, (3.13)
wpg(0) = tan 4, (3.14)
wo(L) = 0. (3.15)

By Remark 2.1, if necessary, we choose Ap such that 0 < A7, < 1. Then. we get the

following relation between wy and wy.

Lemma 3.3.  Assume that wg satisfics (3.12)-(3.15). Then the following csti-

mate 1s valid:
wp(§) <wo(l)  for &€ [s0.0].
Morcover, we get the following relation between U* and wy.

Lemma 3.4.  Assume that U* satisfics (3.1)-(3.4) and wq satisfies (3.12)-(3.15).

Then U* 4s represented by wqy as the following:

U6 = V/:\—L. Wy (7{)\__;)
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Morcover, this representation 1s unique.

Then, applying Lenma3. 3, Lenimad.4 and that U* satisfies (3.1)-(3.4). we obtain

the following proposition.

Proposition 3.2.  For any 6y € (0, VAL + 1). we define

Wi(p,7):= 'I/J(T)U*< P ) . (3.16)

P(7)

where (1) =14+ A —1)e T, Then. W is a supersolution of (1.8)- 1.12).
\ o 7 (

3.3 Proof of Theorem 3.1

We now sct
d{r) ==t {[(£ = )* + (U 7) =V (n. 7))
| p(r) <€<0. p(r)p* <0 <05
Then. we get the f()ll()wixlg.
Lemma 3.5. For7 > 9. d(r) > 0.

This lemmma is proved by using the strong maximaum principle.

Conscquently, by means of Lenma 3.1 and Lemma 3.5. we get
p(7) < @(1)p*, Uln.7m)>Vin.t) for olr)p* <n<0.7>0. (3.17)
In the same way, we get

't/)(T)p* <plr). W(p.7) > U{p.7) for plr)<p<0, 7>0. {3.18)

Here, we assume &y € [p*.0]. Theu. by the definition of V' and W (sce (3.10),

(3.16)). the interseetion points of the straight line {(&.r) | U(&)¢ —&o == 0} and



52

the graphs {(¢.7) | ¥ = V(& 7). @(r)p* < € < 0% {(6r) | r = W(Er). gl <
¢ <0} are represented as the following;

(p(7)0. @(T)U(&0)), (7)o, P(T)U*(&))-
(cf. Figure 3.3). We sct

D(&o. 1) := {¢ ] € - coordinate of intersection points of the straight

line {(&7) | U*(éy)¢ — & = 0} and the solution T }.

where I'; is the solution of (1.8)-(1.12) (c¢f. Figure 3.4). Since U{{.7) is a smooth
function in the set {(£.7)] p(7) <& <0, 7> 0}, we get D(&y. 1) # 0.

Then, by means of (3.17) and (3.18), we obtain for £ € D(&y. 1)

(0(T)&0)* + ((T)U* (&) < &% + (U(¢, 7))

Here, we see

(7)) + (o(m)U ()2 = 66 + (U (60))*)*

1 X
B < vl 1>C—5'T[{g +(U*(4)*1M2. (3.20)
VA

[((7)€0)* + ((T)U*(&0)P]M? = (6§ + (U (L)

N

- (f'_t - 1)@—‘”‘2"[4% + (U (G (3.21)
Thus, by (3.19)-(3.21) and Ay > 1 and 0 < Ay < 1. we get for & € D(éy. 7)

1 . 1 o * 211/3
(<ﬁ - 1)5-("’ <[EH U =[G+ (U (&)
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where O = sup [{é + (U*(.ﬁ'o))z]l»/z.
& Elp.0)

Conscquently, if we choose 8y € (0, VAr + 1). we obtain for 7 > 0

(ig(f‘ﬁ S‘) < C et

where ¢ = max{—C(\/'—l}\——( — 1) , C(# . 1) } and

~

do(fng) = sup sup | [¢2 + (U({“T))?]lﬂ — [{3 + (U*(fu))2]1/2 .
EoElp=.0] £ED(&y.7)

Then, we note that dy is cquivalent to the Hansdorff distance dg. Thus, the proof

of Theorem 3.1 is completed.

3.4 Proof of (II) of Main Theorem
We define

do(Ty.Sy) := sup  sup | d(O.Xy) — d(O.Y) |
Xo€S: Yed

where

Q := {Y €T’y | the intersection points between I'y and the straight line passiug

the origin O and Xy(€ Sy)}.

Then, we note that dy is equivalent to the Hausdorff distance dy.

Consequently, if we choose § € (1.2), by means of Theorem 3.1,
do(Ty. Sp) < C(2t +1)~B-D/2 < Gy=6-1)/2

Thus, the proof of Main Theorem is completed.
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