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\S 0. Introduction

Let $X$ be a nondegenerate projective variety of dimension $n$ and of degree $d$ in $\mathbb{P}^{r}$ .
We say that $X$ is $k$ -normal if the homomorphism $H^{0}(\mathrm{p}r_{}.\mathcal{O}\mathrm{P}(k))arrow H^{0}(X, \mathcal{O}x(k\mathrm{I})$

is surjective., i.e., hypersurfaces of degree $k$ cut out a complete linear system on $X$ .
According to [EG], [Mul], $X$ is $m$-regular iff one of the following conditions holds:

(1) $H^{i}(\mathbb{P}^{r},\mathcal{I}_{X}(m-i))=0$ for all $i\geq 1$ ;
(2) $H^{i}(\mathrm{p}\Gamma,\mathcal{I}X(j))=0$ for $i\geq 1,$ $i+j\geq m$ ;
(3) For all $k\geq 0$ the degrees of minimal generators of the k-th syzygy modules of

the homogeneous saturated ideal $I_{X}$ of $X$ are bounded by $k+m$ .
Attempts to bound the regularity of a projective variety $X\subset \mathbb{P}^{r}$ are motivated in part
by the desire to bound the complexity of computing the syzygies in terms of related
invariants of $X$ .

The importance of m-regularity stems from the above equivalences and the follow-
ing well-known results [Mul]; If $X$ is $m$-regular then $X$ is cut out by hypersurfaces of
degree $m$ set-theoretically and scheme-theoretically. Furthermore, Hilbert polynomial
and the Hilbert function of $X$ have the same values for all $k\geq m-1$ .

It is not hard to show that reg $X\geq 2$ and $X$ is 2-regular if and only if $X$ is of
minimal degree. There is a well-known conjecture concerning the $k$ -normality and
$k$ -regularity of $X$ :

Regularity conjecture [EG], [GLP]. Let $X$ be a nondegenerate integral projective
scheme of dimension $n$ and degree $d$ in $\mathbb{P}^{r}$ which is defined over algebraically closed
field of characteristic zero.

(1) $X$ is m-norm,al for all $m\geq d-\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{l}(X)$ .
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(2) $X$ is $m$ -regular for all $m\geq d-\mathrm{C}\mathrm{o}\dim(X)+1,\dot{i}.e,$.
re$g(X)= \min${ $m\in \mathbb{Z}:X$ is m-regular} $\leq d-(r-n)+1$ .

(3) Classification of all extremal examples with geometric interpretations which
make the bound best possible.

This conjecture including the classification of borderline examples was verified for
integral curves $([\mathrm{C}]’.[\mathrm{G}\mathrm{L}\mathrm{p}])$ and an optimal bound was also obtained for smooth sur-
faces ([P], [L]). For a historical remark and further results for higher dimensional
smooth varieties, see [K2]. Roughly speaking. the varieties on the boundary of regu-
larity conjecture are $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{Z}e\mathrm{d}}\sim$ by the property of having a $(d-(r-n)+1)$-secant
line. (Clearly, $d-(r-n)+1$ is the largest possible number of intersections of a line
with a nondegenerate vaniety of degree $d$ by the

$.\mathrm{g}$
eneralized Bezout Theorem.) Note

that if $X$ has $(m+1)$-secant line, $X$ can not be m-regular.
In addition, for smooth projective varieties, as we will see in this note, the locus

of multisecant lines of a smooth variety $X$ plays an important role in bounding reg-
ularity of $X$ . So, geometry of multisecant lines of a given smooth variety and vector
bundle techniques (developed by Lazarsfeld, [L]) link the behavior of $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}e\mathrm{d}$ Betti
numbers of the minimal graded free $\mathrm{r}e$solution of homogeneous coordinate ring of $X$

to vanishing of cohomology groups of certain vector bundles on a smooth variety and
the structure sheaf on a smooth $\mathrm{v}\mathrm{a}r$iety (see Lemma 2.1, Lemma 2.3 and Theorem
2.6). This is a connection between $\mathrm{s}^{\backslash }\mathrm{y}\mathrm{z}\mathrm{y}g\mathrm{i}\mathrm{e}\mathrm{s}$ and geometry of a smooth variety. In par-
ticular, Kodaira-Kawamata-Viehwe$g$ vanishing theorem is very useful for Castelnuovo
regularity in the case of smooth $\mathrm{v}\mathrm{a}r$ieties, see [BEL] where we can see some important
and interesting results and various applications which bound Castelnuovo regularity
in terms of degrees of defining equations of a given smooth variety.

On the other hand, there are various approaches in the categories of monomial
ideals, toric varieties. and locally Cohen-Macaulay Buchsbaum $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{S}_{/}\backslash$ see [HM]
[PS], [SV].

\S 1. Basic background

In this section we recall basic results which will be used in subsequent sections.
We work over an algebraically closed field of characteristic zero.

Definition 1.1. For a coherent sheaf $\mathcal{F}$ on $\mathbb{P}^{r},$
$\mathcal{F}i\dot{s}m$ -regular if $H^{i}(\mathbb{P}^{r}, \mathcal{F}(_{\backslash }m-i))=$

$0$ for all $i_{}>0$ and $r\mathrm{e}\mathrm{g}(F)$ is defined by $\inf$ { $m\in \mathbb{Z}:\mathcal{F}iS$ m-regular}.

Proposition 1.2.

(a) Let $\mathcal{F}$ be a $p$ -regular vector bundle and $\mathcal{G}$ be a $q$ -regular vector bundle on $\mathbb{P}^{r}$

$wh_{i},ch$ is defined over an $algebrai\mathrm{C}jall,y$ closed field of characteristic zero. Then
$\mathcal{F}\otimes \mathcal{G}$ is $(p+q)$ reguiar and $S^{k}(\mathcal{F})$ and $\Lambda^{k}(\mathcal{F})$ are $(kp)$ -regular.
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(b) Let $F$ be a coherent sheaf on $\mathbb{P}^{r}$ and let $\cdotsarrow \mathcal{F}_{i}arrow\cdot\cdot:arrow \mathcal{F}_{0}arrow \mathcal{F}arrow 0$ be an
exact sequence of coherent sheaves on $\mathbb{P}^{r}$ such that $\mathcal{F}_{i}$ is $(p+i)$ -regular. Then

$\mathcal{F}$ is p-regular.

Proof. See [L], $428\mathrm{p}$ . $\square$

Definition 1.3. A $s$ cheme $X$ is called punctual if $\mathrm{s}_{\mathrm{u}\mathrm{p}\mathrm{p}}x=x$ , where $x\in X$ is a
point. A punctual $s$ cheme $X$ is called curvilinear if $\mathcal{O}_{x}$ is isomorphic to $\mathbb{C}[x]/(x^{k})$ for
some $k\geq 1$ .

It is clear that a punctual scheme is curvilinear if and only if it admits an $e$mbedding
into a smooth curve.

Lenlma 1.4. Let $X$ be a $n$ -dimensional smooth projective variety in $\mathbb{P}^{r}f$ and suppose
that $n=\dim X\leq 5$ . Let $\Lambda^{r-n-2}$ be a general $lir|_{\text{ノ}}ear$ subspace of $dimenS\dot{i}on(r-n-2)$ ,
so $that_{f}$ in particular, A is disjoint $f7^{\cdot}omX$ , and let $\pi_{\Lambda}$ be the projection with center
$\Lambda_{f}$ and put $Y=\pi_{\Lambda}(X)\subset \mathbb{P}^{n+1}$ . Then all fibers of $\pi_{\Lambda}$ : $Xarrow Y$ are curvilinear.

Proof. It is proved by J. Mather that the variety $X_{q}=\{x\in \mathrm{X}|d\mathrm{i}\mathrm{m}T(xX)\cap\Lambda=q-1\}$

has codimension $q(q+1)$ in $X$ (see [AO] Theorem 2). So, if $\dim X\leq 5$ then $X_{q}=\emptyset$

for $q\geq 2$ . Therefore, for $x\in \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{P}\pi_{\Lambda}^{-1}(y),$ $T_{x}(X)\cap\Lambda=\emptyset$ ( $\mathrm{s}\mathrm{o}_{\mathrm{r}}.x$ is a reduced point)
or one point (in this case, $\mathcal{O}_{\pi_{\Lambda}^{-3}(y),x}$ is isomorphic to $\mathbb{C}[x]/(X^{k})$ for some $k\geq 1.$ ) $\square$

Theorem 1.5 (J. Mather). Let $X\subset \mathbb{P}^{r}$ be a smooth nondegenerate $n$ -dimensional
variety, let $\Lambda^{r-n-}\underline’\subset \mathbb{P}^{N}$ be a generic linear subspace, and let $\pi_{\Lambda}$ : $\mathbb{P}^{r}--\Rightarrow \mathbb{P}^{n+1}$ ,
$Y=\pi_{\Lambda}(X)\subset \mathbb{P}^{n+1}$ . Let $Y_{k}=\{y\in Y|$ length $\pi_{\Lambda}^{-1}(y)\geq k\}_{\rangle}$ and put $X_{k}=\pi_{\Lambda}^{-1}(Y_{k})$ ,
so that $X_{1}\supset\cdots\supset X_{k}\supset X_{k+1}\cdots$ is a $decreaS\dot{i}ng$ filtration. Assume that $n\leq 14_{i}$ so
that we are $\dot{i}n$ Mather’s $tt\gamma$) $iCe$

” range. Then $X_{n+2}=\emptyset$ and $\dim X_{k}\leq n+1-k$ . If
$\dim X_{k}=\mathrm{d}\mathrm{i}\mathrm{I}\mathrm{n}Y_{k}=n+1-k$ , then there exists a dense open subset of $Y_{k}$ over which
all the fibers of $\pi_{\Lambda}$ are reduced.

Proof. This follows from the main theorem of [Mal] and the discussion in \S 5 of [Ma2].
A $\mathrm{k}e\mathrm{y}$ ingredient is the inequality

(1.0)
$x \in\pi^{-1}\sum_{(y)}(\delta_{x}+\gamma_{x})\leq n+1_{/}$

. $y\in Y$,

where $\delta_{x}=$ length $\mathcal{O}_{\pi^{-1}(y)\rangle x}$ and $\gamma_{x}$ is another non-negative invariant introduced by
J. Mather for all stable $g\mathrm{e}\mathrm{r}\mathrm{n}$)$\mathrm{S}$ in the $(^{J}\mathrm{n}\mathrm{i}_{\mathrm{C}}\mathrm{e}7$

’ range (cf. [Ma2]); in particular, $\gamma_{x}=k-1$

if $O_{x}\simeq \mathbb{C}[x]/(x^{k})$ for some $k\geq 1$ ), which is always the case for $n\leq 5$ . $\square$

Remark 1.6. Let $X\subset \mathbb{P}^{r}$ be a smooth nondegenerate $n$ -dimensional subvariety and
let $S_{m}(X)$ be the locus of $m$-secant lines of $X$ in $\mathbb{P}^{r}$ . Assume that $n\leq 14$ . Then by
Theorem 1.6 one has dirn $S_{n+2nx}-\leq n+1+m$ , which gives us some information on
“collinear” fibers of a generic linear $\mathrm{p}r$ojection of $X$ to a hypersurfac$e$ .
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Theorem 1.7 (The $\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}+2$-secant lemma). Let $X\subset \mathbb{P}^{r}$ be a smooth n-
dimensional subvariety and let $Y$ be an irreducible variety parametrizing a family of
lines $\dot{i}n\mathbb{P}^{r}$ . Assume that, for a general $L_{y}$ , the length of the scheme-theoretic inter-
section $L_{y}\cap X$ is at least $n+2$ . Then we have

$dim( \bigcup_{y\in}YLy)\leq n+1$

Proof. See [R2]. $\square$

We remark that the importance of Theorem 1.7 is that it is true in all dimensions.
In the nice range it is an immediate corollary of Theorem 1.5.

Let $X$ be a nondegenerate zero-dimensional subscheme of $1e\mathrm{n}g\mathrm{t}\mathrm{h}d$, not necessarily
reduced, and let $r=$ dirn $\langle X\rangle$ . where $\langle X\rangle=\mathbb{P}^{r}$ is the span of $X$ . Let’s put $t=$

$\max$ { $k|\dim\langle X’\rangle=1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}X’-1$ $\forall X’\subset X$ , length $X’\leq k+1$ }. It is clear that $1\leq$

$t\leq r$ , and that $t=1$ iff $X$ has a trisecant line.

The following Proposition 1.8 was communicat $e\mathrm{d}$ to me by F. L. Zak. However,
for lack of suitable references we give brief proofs here.

Proposition 1.8. In the above situation,

(a) $X$ is $k$ -normal for all $k \geq\lceil\frac{d-r-1}{t}\rceil+1$ , where $\lceil a\rceil$ is the smallest integer that
is not less than a.

(b) assume that $d\geq r+3$ . $X$ is $(d-r)$ -normal but fails to be $(d-r-1)$ -normal
if and only if $X$ has a $(d-r+1)$ -secant line;

Proof. We proceed by induction on $r$ . If $r=i$ , i.e. $X$ is a “general position $\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{e}’ \text{ノ}$

then our assertion is proved in [Pe,Theorem 28.8]. Let us fix an integer $r_{0}$ and sup-
pose Proposition 1.2 holds for $t\leq N\leq r_{0}-1$ . For $r=r_{0}$ , we may also assume
that Proposition 1.2 is true for finite $s\mathrm{c}\mathrm{h}e$mes of degree smaller than $d$ . Let $A$ be a
graded homogeneous ring of $X$ . Equivalently, we show the surjectivity of the natural
morphi $s\mathrm{n}\mathrm{n}$

$\mathrm{A}_{k}arrow H^{0}(x, \mathcal{O}x(k))$

for all $k$ such t,hat $d\leq tk+(r-t)+1$ . Choose a hyperplane $H$ such that $\deg Y\geq r$

and $\langle Y\rangle=H$ , where $Y=X\cap H$ . As in the proof of [ $\mathrm{P}\mathrm{e}_{\}$ Theorem 28.8], we consider
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the diagram
$0$ $0$

$\downarrow$
$\downarrow$

$[A/(0 : H)]_{k}arrow\alpha_{k}$ $H^{0}(Z, \mathcal{O}z(k))\simeq \mathbb{C}d_{1}$

$H\downarrow$ $\downarrow$

$(*)$

$A_{k+1}\downarrow$ $arrow\rho_{k+1}H0(X, Ox(k+1))\simeq \mathbb{C}d\iota$

’

$[A/HA]_{k+}1arrow\beta_{k+1}H^{0}(Y, \mathcal{O}Y(k+1))\simeq \mathbb{C}^{d_{2}}$

$\downarrow$
$\downarrow$

$0$ $0$

where $d_{2}=\mathrm{d}e\mathrm{g}Y$ and $Z$ is the subscherne of $X$ of degree $d_{1}\geq 1$ corresponding
to the graded ring $A/(\mathrm{O} : H)$ . Clearly, any closed sub$s$ cheme of degree $(t+1)$ in
either $Y$ or $Z$ spans $\mathbb{P}^{t}$ . So, by the induction hypothesis, $\alpha_{k}$ is surjective for all $k$

such that $d_{1}\leq tk+(n-t)+1,$ $n=\dim\langle Z\rangle$ and $\beta_{k+1}$ is surjective for all $k$ such
that $d_{2}\leq t(k+1)+(r-1-t)+1$ . By the snake lemma, to show that $\rho_{k+1}$ is
surjective it suffices to verify the surjectivity of $\alpha_{k}$ and $\beta_{k+1}$ . If $n<t$ , then $Z$

is a $‘(\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}$ position scheme” and $\mathrm{c}x_{k}$ is surjective for all $k\geq 1$ . Furthermore, if
$d=d_{1}+d_{2}\leq t(k+1)+(r-t)+1$ , then $d_{2}\leq d_{1}+d_{2}-1\leq t(k+1)+(r-1-t)+1$ and
either $n<t$ or $d_{1}\leq d_{1}+d_{2}-\mathrm{N}\leq t(k+1)+(r-t)+1-r=tk+1\leq tk+(n-t)+1$ .
Thus $\alpha_{k}$ and $\beta_{k+1}$ are surjective, and we are done.

(b) The fact that $X$ is $(d-r)$ -normal is an immediate consequence of Proposition 1.2
for $t=1$ . If $X$ has a $(d-r+1)$ -secant line, then it is clear that it fails to be $(d-r-1)-$
normal. To prove the converse, we argue as in the proof of Proposition 1.2 and proceed
by induction on $N$ . Assertion (b) is $\mathrm{c}1e\mathrm{a}r$ for $r=1$ . Suppose that it is true in the
case when $\dim\langle X\rangle<r$ , and let $X\subset \mathbb{P}^{r},$ $\deg X=d,$ $\langle X\rangle=\mathbb{P}^{r}$ be a sch$e\mathrm{m}\mathrm{e}$ without
$(d-r+1)$ -secant lines. We may also assume that (b) holds for finite schemes in $\mathbb{P}^{r}$

of degree smaller than $d$ . First of all, if $X$ fails to be $(d-r-1)$ -normal, then from
Proposition 1.2 we get $(d-r-1)< \lceil\frac{d-r-1}{t}\rceil+1$ and $d_{J}\geq r+3$ implies $t=1,$ $\mathrm{i}.\mathrm{c}$ .
$X$ has a trisecant. Choose a hyperplane $H$ passing through this trisecant such that
$r+1\leq\deg(Y=H\cap X)\leq d-1$ and $\langle Y\rangle=H$ . Since $\mathrm{Y}$ has no $(d-r+1)$ -secant line,
from the induction hypothesis it follows that $Y$ is $(d-r-1)$ -normal. The $s$ cheme $Z$

introduced in the proof of Proposition 1.2 satisfies the condition $1\leq \mathrm{d}\mathrm{e}gZ\leq d-r-1$ ,
and so $Z$ is $(d-r-2)$-normal. This means that the morphisms $\alpha_{d-r-2}$ and $\beta_{d-r-1}$

in the commutative diagram $(*)$ are surjective. By the snake lemma, $\rho_{d-\Gamma-1}$ is also
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surjective, i.e. $X$ is $(d-r-1)$-normal, which contradicts our assumptiom that $X$ fails
to be $(d-r-1)$ -normal. So $X$ should be $(d-r-1)$-normal as required (it should $\mathrm{b}\mathrm{e}_{\lrcorner}$

mentioned that from the proof it is $\mathrm{c}\mathrm{l}\mathrm{e}_{l}$ar that for $d\geq r+3$ the $(d-r+1)$ -secant line
is unique). $\square$

\S 2. Monoidal construction and its applications
for slllooth varieties of dimension 3

A useful tool for study of regularity of $s$mooth projective varieties of small di-
mension and small codimension is provided by well-known monoidal constructions via
many generic projection theorems (cf. [BM], [K1], [K2], [L], [Mal], [Ma2], [Pi], and
[R1] $)$ . Applications of this method in Castelnuovo regularity so far depen$d$ on van-
ishing theorems for cohomology of vector bundles (e.g., Kodaira-Kawamata-Viehweg
vanishing theorern and vanishing theorems for positive $\mathrm{v}e$ctor bundles) and informa-
tion about the fibers of generic projections from $X$ to a hypersurface of the same
dimension. There are good bounds for regularity of smooth projective varieties of
$\dim X\leq 6$ (see Remark $2.7.(\mathrm{c})$ ) . $\mathrm{I}_{4’}\mathrm{I}_{\mathit{0}}r\mathrm{e}$ precisely, reg $X\leq d-e+1$ for integral curves
and smooth surfaces (see [GLP], [L]). In this section, we deal with higher normality
and regularity of smooth threefolds by using well-known monoidal construction via a
generic projection.

Let $X$ be a smooth threefold of degree $d$ and codimension $e$ in $\mathbb{P}^{r}$ defined over the
complex number field C. We will use a general construction considered in $[\mathrm{L}]_{\text{ノ}}.[\mathrm{C}_{7}]$ , and
[K2]. Let $\Lambda=\mathbb{P}^{r-5}\subset \mathbb{P}^{r},$ $\Lambda\cap X=\emptyset,$ $\Lambda=\mathbb{P}(V)$ be a general linear subspace, and let

$\tau_{\Lambda}$ : $Xarrow \mathrm{Y}$ be the projection with center at $\Lambda$ , so that $Y\subset \mathbb{P}^{4}$ is a hypersurface of
degree $d$ . Let $\mathcal{V}$ be a collection of linear subspaces $V_{j}\subset S^{j}(l^{\prime^{\vee}})$ such that $\dagger/_{1}^{-}=V$ and
$V_{2}=S^{2}(V)$ . $\mathrm{C}_{\mathrm{o}\mathrm{n}\mathrm{S}}\uparrow \mathrm{i}\mathrm{d}\mathrm{e}r$ the natural restriction morphism $\tilde{\omega}_{3,k,\mathcal{V}}$ . If $\tilde{\omega}_{3,k,\mathcal{V}}$ is surjective,
then we get the following exact sequence:

(2.0) $0arrow E_{3.k,\mathcal{V}}arrow V_{k}\otimes \mathcal{O}_{\mathrm{P}^{4}}(-k)\oplus\cdots\oplus V_{1}\otimes \mathcal{O}_{\mathrm{P}^{4}}(-1)\oplus \mathcal{O}_{\mathrm{P}^{4}}arrow\pi_{\Lambda*}\mathcal{O}_{X}arrow 0$,
$\overline{\omega}_{3,k,\mathcal{V}}$

where $E_{3,k,\mathcal{V}}$ is locally free of the $s$ame rank as the middle.

Lenuma 2.1. Suppose that $\tilde{\omega}_{3,k,\mathcal{V}}$ is surjective. Then
(a) reg $(E_{3,k,\mathcal{V}}^{*})\leq-2$ ;
(b) $E_{3.k,\mathcal{V}}^{*}$ is $(-3)$ -regular if and only if $X\dot{i}S$ linearly normal and $H^{0}(\mathcal{I}_{X/\mathrm{P}}7^{\cdot}(2))=$

$H^{1}(O_{X})=0$ .

Proof. (a) is proved in [ $\mathrm{L},$ Lenlma 2.1]. (b) Our argument is similar to that in [A1].
By definition, $E_{3,k,\mathcal{V}}^{*}$ is $(-3)$ -regular iff $H^{i}(\mathbb{P}^{4}, E_{3}*,k.v(-3-i))=0$ for $i>0$ . By Serre
duality, this is equivalent to $H^{j}(\mathbb{P}^{4}, E_{3.k,v}(2-j))=0$ for $0\leq j\leq 3$ . For $j=3$ ,
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this vanishing follows from Kodai$r\mathrm{a}$ vanishing theorem. $i^{\mathrm{F}ro\mathrm{n}1}$ the exact cohomology
sequence $\mathrm{c}o$rrespondin$g$ to (2.0), it follows that

$j=0,$ $H^{0}(\mathbb{P}4, E_{3,k,\mathcal{V}(}2)\mathrm{I}=0$ if and onl.y if $H^{0}(\mathcal{I}_{X}/^{\mathrm{p}}r(^{\underline{\eta}}))=0$ ,

$j=1,$ $H^{1}$ ( $\mathbb{P}^{4}.$ Es$\text{ノ}$ ’
$k,v(1)$ ) $=0$ if and only if $X$ is linearly normal,

$j=2,$ $H^{2}$ ( $\mathbb{P}^{4},$ En, $k,v$ ) $=0$ if and only if $H^{1}(Ox)=0$ .

This completes the proof of (b). $\square$

Remark 2.2. For a smooth threefold $X$ in $\mathbb{P}^{5}$ , conditions of Lemma 2.1 can be verified
using Zak’s linear normality theorem ( $\mathrm{i}.\mathrm{e}.,$ $X$ is linearly normal if $\dim(X)>\neq\frac{2}{3}(N-1)$ )

and Barth’s Lefschetz theorem ( $H^{1}(\mathcal{O}_{X})=0$ if $N<2n$ ) . $\mathrm{F}\mathrm{u}\mathrm{r}\mathrm{t}\mathrm{h}e\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}\text{ノ}$. for a locally
Cohen-Macaulay threefold $X\subset \mathbb{P}^{5}$ which is contained in a hyperquadric, it is shown in
[K1] that if $X$ has an even degree $2\uparrow$ then it is a complete intersection of hyperquadric
and a hypersurface of degree $m$ and if $X$ has an odd degree $2m+1$ then it is proj ectively
Cohen-Macaulay and linked to a $\mathbb{P}^{3}$ via a complete intersection of a hyperquadric and
a hypersurface of degree $m+1$ . This means such a variety is very simple.

Lemma 2.3. Suppose that $\hat{\omega}_{3,k,\mathcal{V}}$ is surjective. Then

(a) $\mathrm{r}e\mathrm{g}E_{3,k,v}=\mathrm{r}\mathrm{e}\mathrm{g}X\leq(d-e+1)+\sum_{j=3}^{k}(j-2)\dim Vj$ ;
(b) If $E_{3.k,\mathcal{V}}^{*}$ is $(-3)$ -rcgular, then

reg $E_{3,k,\mathcal{V}}= \mathrm{r}\mathrm{e}\mathrm{g}X\leq(d-e+1)-\dim V1-\dim V_{2}+.\sum_{?^{=4}}^{k}(j-3)\dim V_{i}$.

Proof. This is an easy consequence of Lernma 2.1, (2) in $[\mathrm{K}2],$ ( $\mathrm{c}\mathrm{f}$. see also [L]). $\square$

For a smooth codimension two $s$ubvariety $X^{n}\subset \mathbb{P}^{n+2},$ $n\geq 4,\cdot$ by Serre $\mathrm{s}$ construc-
tion( $[\mathrm{o}\mathrm{s}\mathrm{S}]$ , Ch.I, Theorem 5.1.1) it is defined scheme-theoretically as the zero locus of
a section of a $r$ank two vector bundle (corresponding to $X$ ) and such a section induces
an exact sequence

$0arrow \mathcal{O}_{\mathrm{P}^{n+2}}arrow \mathcal{E}arrow \mathcal{I}_{X}(k)arrow 0$

where $\mathcal{E}$ is a $\mathrm{r}\mathrm{a}\mathrm{r}\perp \mathrm{k}$ two vect,or bundle with $c_{1}(\mathcal{E})=k$ and $c_{2}(\mathcal{E})=\mathrm{d}egX$ . Note that $\mathcal{E}$

is uniquely determined up to isomorphism.
In this case, it is also known that $X$ is a complete intersection if and only if its

corresponding rank two vector bundle splits as a sum of trivial line bundles $([\mathrm{o}\mathrm{s}\mathrm{S}]$ ,

Ch.I, Lemma 5.2.1.) if and only if it is projectively normal (due to Gherardelli,
Gaeta, Peskine, and Grifiths an$d$ Evans) and in particular, by Hartshorne’s conjecture
$X^{n}\subset \mathbb{P}^{n+2}$ should be a complete intersection for $n\geq 4$ [H1]. There is no known
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smooth projective vari $e\mathrm{t}\mathrm{y}$ of codimension two other than complete intersections if
$\dim(X)\geq 4$ .

However, there are many non-projectively normal threefolds in $\mathbb{P}^{5}$ [Rao] (of course,
this case is not in the Hartshorne’s conjecture range), and so it would be interesting
to get an optimal bound for these varieties on higher order normality and regularity
in ternas of degree and codimension as mentioned before.

Theorenu 2.4. Let $X$ be a smooth threefold of degree $d$ in $\mathbb{P}^{5}$ .
(a) $X$ is $k$ -normal for all $k\geq d-4$ which is sharp as the Palatini scroll of degree

7 shows.
(b) $\mathrm{r}e\mathrm{g}X\leq d-1$ and $\mathrm{r}e\mathrm{g}X=d-1$ if and only if it is a complete intersection of

two quadrics or a Segre $threef_{\mathit{0}}ld.\cdot$

Proof. We give a sketch of proof here for simplicity. Suppose $X$ is contained in a
hyperquadric in $\mathbb{P}^{5}$ . By Remark 2.2, $X$ is $k$-normal for all $k\geq 0$ . In this case, it is
easy to compute reg $X$ and $\mathrm{r}\mathrm{e}\mathrm{g}X=d-1$ if and only if it is a complete intersection
of two quadrics or a Segre threefold [K1]. On the other hands, for a srnooth threefold
with $h^{0}(\mathcal{I}_{X}(2))=0$ , by Theorem 1.7 an$d$ Proposition 1.8, we have an exact sequence

$0arrow E_{3,3}arrow \mathcal{O}_{\mathrm{P}^{4}}(-3)\oplus \mathcal{O}_{\mathrm{P}}4(-2)\oplus \mathcal{O}_{\mathrm{P}}4(-1\mathrm{I}\oplus \mathcal{O}_{\mathrm{P}}4arrow^{\mathrm{s}}\pi p[\tau_{5}^{3},\tau^{2},\prime l\urcorner 15,\mathrm{J}\mathcal{O}*xarrow 0$

where $p=(0,0,0.\mathrm{o}, \mathrm{o}, 1’)=Z(\tau_{0}, T_{1,2}.T, \tau 3, T_{4})\not\in X$ and $\pi_{p}$ : $\mathbb{P}^{5}--\sim>\mathbb{P}^{4}$ is a generic
projection [L], [K2]. Then, by Lemnna 2.1, $E^{*}$ is $(-3)$ -regular and consequently. by
Lemma 2.3, reg $X\leq d-3$ . So, t,here is no boundary examples with $\mathrm{r}e\mathrm{g}X--d-1$ if
$h^{0}(\mathcal{I}_{X())=0}2.$ $\square$

Remark 2.5. As for the Palatini scroll of degree 7, consider an exact sequ.ence

$0arrow\Omega_{\mathrm{p}\mathrm{s}}^{2}(2\mathrm{I}arrow\Lambda^{2}V\otimes \mathcal{O}\mathrm{p}\mathrm{s}arrow\Omega_{\mathrm{P}^{5}}(2)arrow 0$

Therefore, $\Omega_{\mathrm{P}^{5}}(2)\dot{i}S$ globally generated. Choose four generic sections $s_{1},$ $s_{23,4},$$SS$ of
$H^{\mathfrak{c}j}(\mathbb{P}^{5},$

$\Omega_{\mathrm{p}\mathrm{s}())}2$ which induce an exact sequence

$0arrow \mathcal{O}_{\mathrm{P}}^{\oplus 4}5arrow^{3}\varphi--(_{\mathit{8}}1,s2,s,s4)\Omega \mathrm{P}^{5}(2\mathrm{I}arrow(\Lambda^{4}\varphi)^{*}\mathcal{I}_{X}(c_{1}(\Omega \mathrm{p}5(2))arrow 0$

where $X$ is the dependency locus of $\varphi$ and it is a smooth 3-fold in $\mathbb{P}^{5}$ by Kleiman’s
Bertini-type theorem. Since $X\sim c_{2}(\Omega_{\mathrm{P}}5(2))$ up to rational equivalence and by the
formula
[see OSS, p.16]

$c_{k}(E \otimes \mathcal{L})=\sum_{i=0}^{k}c_{i}(E)\cdot C_{1}(\mathcal{L})^{k-i}/\cdot r=rank(E),$ $\mathcal{L}$ a line bundle,
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we get $c_{2}(\Omega \mathrm{p}5(2))=7$ . Note that for a smooth 3-fold $X$ in $\mathbb{P}^{5}i\deg X=c_{2}(\mathcal{I}_{X}(5))=7$ .
$\dot{\delta}From$ the exact sequence

$0arrow \mathcal{O}_{\mathrm{P}^{5}}^{\oplus)}4arrow\Omega_{\mathrm{P}^{5}}(2)arrow \mathcal{I}_{X}(4)arrow 0$ ,

we can determine the module structure of $H_{*}^{i}(\mathcal{I}_{A}\mathrm{x}-)=\oplus_{n\in \mathbb{Z}}H^{i}(\mathcal{I}x(n))$ . We get

$h^{1}(\mathbb{P}^{5},\mathcal{I}_{X}(k))=\{$

1 when $k=2$

$0$ $u’ h_{\text{ノ}}enk\neq 2$

In other words, $X$ is $k$ -normal for $k\neq 2$ . Furthermoref re$gX=4$ . We see that
$h^{0}(\mathbb{P}^{5},\mathcal{I}x(k))=0,$ $k=2.3\text{ノ}$ and $h^{0}(\mathbb{P}^{5},\mathcal{I}_{\mathrm{X}^{\prime(4}d}))\neq 0$ .

Let $X$ be a smooth projective $n$ -fold and codimension $e$ . Let $S_{i}(X)$ be the locus
of $i$ -secant lines of $X$ . Note that $\dim S_{n}+2(X)\leq n+1$ by Theorem 1.7.

Theorem 2.6. Let $X$ be a smooth threefold of degree $d$ and codimension $e$ in $\mathbb{P}^{r}$ .
(a) reg $X\leq(d-e+1)+1$
(b) If $\dim s_{4}(x)\leq 4$ , then reg $X\leq(d-e+1)$

Proof. For a proof of $(a)$ , the bad fibers under the generic projection are collinear 4
distict point $s$ which can only be occurred in a finite number of points in $\pi_{p}(X)$ by
Theorem 1.5. So, there is an exact sequence

$0arrow Earrow H^{3}\otimes \mathcal{O}_{\mathbb{P}^{4}}(-3)\oplus S\underline{)}(V)\otimes\prime C9_{\mathrm{P}}4(-2)\oplus V\otimes \mathcal{O}_{\mathrm{P}}4(-1)\oplus \mathcal{O}_{\mathrm{P}}4arrow\pi_{\Lambda_{*}}\mathcal{O}_{X}arrow 0$

, where $\Lambda=\mathbb{P}^{r-4}\subset \mathbb{P}^{r}$ is a general linear subspace such that $\Lambda\cap X=\emptyset,$ $H$ is a linear
form in A which does not meet with any line of 4 aligned point $s\pi_{\Lambda}^{-1}(y)$ and $\pi_{\Lambda}$ : $Xarrow Y$

is the projection with center at A. Then, by Lemma 2.1, $E^{*}$ is $(-2)$ -regular and thus
by Lemma 2.3, $\mathrm{r}\mathrm{e}\mathrm{g}X\leq(d-e+1)+1$ . Furthermore, if we assume $\dim S_{4}(x)\leq 4$

then $\mathrm{r}\mathrm{e}gX\leq(d-e+1)$ because all fibers are $\underline{?}$-normal and consequently, we have an
exact sequence

$0arrow Earrow S^{2}(V)\otimes \mathcal{O}\mathrm{P}4(-2)\oplus V\otimes \mathcal{O}_{\mathrm{F}’}4(-1)\oplus \text{ノ}O_{\mathrm{P}^{4}}arrow\pi_{\Lambda_{*}}O_{X}arrow 0$

$\square$

Remark 2.7.
(a) $\dim s_{4}(x)\leq 4$ is equivalent to the fact that the generic projection of $X$ into

$\mathbb{P}^{4}$ has no collinear fiber of length 4. In fact Z. Ran showed in [R1] that for any
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smooth threefold in $\mathbb{P}^{n},$ $n\geq 9_{i}$ we get $\dim s_{4}(X)\leq 4$ and as a result, regularity
conjecture $\dot{i}S$ true in this case..

(b) It would be natural and interesting to describe all threefolds which have no
collinear fibers of length 4 under the $gener\dot{i}C$ projection even in the case of
smooth threefolds in $\mathbb{P}^{5}$ .

(c) The methods used in the proof of Theorem 2.6 can be extended to higher dimen-
sional smooth varieties only if we know the length of fibers and their positions
$u\gamma t,der$ the generic $projecf_{\text{ノ}}ion$ of such a smooth variety. It can be shown that
reg $X\leq(d-e+1)+\epsilon_{n_{2}}$ where $\epsilon_{n}=4,10,20$ as $\dim X=4,5,6$ respectively.
In particular, when $\dim X\leq 5$ , multiple points of fibers are always $curvilinea\Gamma$

from Lemma 1.4 which makes the analysis of all fibers possible in a sense of
$k$ -normality of fibers under generic projection. For $detailS\rangle$ see [K3].
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