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1. Introduction

Recently we have proposed an algorithm for solving nonlinear least squares problems with linear
constraints [15]. The method proposed there successively constructs trust region constraints, which
are ellipsoids centered at the iterative points, in such a way that they lie in the relative interior.
of the feasible region. The purpose of this paper is to generalize the results of [15] to nonlinear
equality constrained problems with non-negative variables. .
Over the last decade, various methods using a trust region strategy have been studied for
constrained nonlinear optimization problems, including box constrained problems [5, 6, 11, 14, 16]
and nonlinear equality constrained ploblems (2, 4,7, 8,9, 13, 17, 19]. In particular, when dealing
with equality constraints, adding a trust region constraint directly to the problem may result in an
infeasible subproblem. To overcome this difficulty, two approaches have been introduced. The first
approach, which was first proposed by Vardi [17], and later used by Byrd, thnabel and S!hultz
[2] and M. EL-Alem [7], relaxes the linearized equality constraints so as to intersect a trust region
constraint. Specifically we first compute the vertical component of a trial step in the range space
of the matrix of equality constraint gradients at each iteration and then the horizontal (tangential)

component in the null space. The second approach, which was introduced by Celis, Dennis and
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Tapia [4] and later studied by Powell and Yuan [13], iteratively solves quadratic programming
subproblems with some additional constraints using a standard trust region strategy. We adopt

the second approach in this paper.

In this paper, we consider the following nonlinearly constrained optimization problem:
minimize f(z) subject to c(x) =0, z >0, (1.1)

where z € R" and c(z) = (c1(x), ca(), ..., em(z))T. We assume that f: R® > R and ¢j : R® —
R, j=1,...,m, are continuously differentiable. Note that any optimization problem involving
inequality constraints can be transformed into the form (1.1) by using slack variables.

The main aim of this paper is to extend the methods presented in [14, 15] to the general
constrained optimization problem (1.1). Similar to the methods of [14, 15], the proposed method
constructs trust region constraints that are ellipsoids centered at the iterative points, in such a way
that they lie in the interior of the non-negative orthant. Thus the method belongs to the cléss of
interior point methods. However, since solutions of the problem are usually on the boundary of
the non-negative orthant, the trust region ellipses may tend to be arbitrarily thin and, as a result,
we eventually suffer from numerical instability. To avoid this difficulty, we incorporate the idea
of active set strategy into the method. With such a modification, we may still expect that the
method retains the advantage of the interior point method, as observed in our previous papers
[14, 15] for problems with simple bound constraints on the variables, and problems with linear
inequality constraints and non-negative variables.

The paper is organized as follows. Section 2 describes the algorithm. In Section 3, we report

some computational results.

2. Description of the Algorithm

Suppose that x is a current point such that = > 0. Let p denote the vector which determines the
next point z* from the current point z, that is, z+ = = + p.

We consider the following subproblem involving a trust region constraint:

minimize, 9(z)Tp+ LpTWp (2.1a)



subject to || c(z) + A(z)Tp || < 4, ' : (2.1b)

| D()p || < A, (2.1c)

where g(z) = Vf(z), A(z) = Ve(z), D(z) = diag(1/z;), § and A are parameters such that § > 0
and 0 < A < 1, and W is an n X n symmetric matrix. Note that §, A and W are dependent on

the iteration. In particular, 8 is supposed to satisfy the inequalities

minpaypl<ha | o@) +A@)Tp || < 0 < minypp<oa ll @) + Az)Tp |, (2.2)

where b; and by are given constants such that 0 < bp < by < 1. Note that if p satisfies (2.1c) then

zt := x 4+ p remains in the positive orthant, i.e., z+ > 0 (see [1]).

The role of the constraint (2.1b) may be explained as follows. When using the trust region
constraint ||D(z)p|| < A, the linearized constraints c¢(z) + A(z)"p = 0 may have no solution
within the trust region. Attempts to overcome this difficulty have been made by several authors
(13, 17, 2, 4]. In particular, introducing the parameter 8 satisfying (2.2) was proposed by Powell

and Yuan [13]|. Note that, if we assume b; = 1 and by = 0, then (2.2) reduces to
minyppsa ll e(z) + A@)pl < 0 <l e@) |,

which ensures the existence of a feasible solution to (2.1)

The trust region constraint [|[D(z)p|| < A in (2.1) represents an ellipsoid, which is centered at the
current point z and strictly contained in the interior of the non-negative orthant {z € R"{x > 0}.
However, when the current point is close to the boundary of the non-negative orthant, the trust
region ellipsoid becomes thin and solution of (2.1) suffers from numerical instability. To overcome
this dificulty, we modify (2.1) using the idea of active set strategy [10] in constrained optimization.

For a current point x > 0, we define the set of indices

I = {’il.’l‘,‘,,; > 61}, (23)

where €1 is a sufficiently small positive constant. We also denote I = {1,2,...,n} — I. According to

the above definition, we partition the vectors z,p, g(z) and the matrices W, A(z) as
xr pr g1(x) Wi Wir ,  Ar(z)

T = y D= ) g(l'): , W= s A(Q}):
4 Pr 95(x) Wir Wiz Af(z)



By adding the extra constraints pj = 0 to (2.1), we get the following problem:
| _ 1 |
minimize,, gr(z) pr + Ep?WHpI (2.4)
subject to || e(z) + Ar(z)Tpr || < 6,

| Dr(@)pr || < A,
where 0 is chosen, similar to (2.2), to satisfy the condition
minp, e li<hia | €@) + Ar@)Tpr I < 6 < minyp,@pr<ha Il e@) + Ar@) Pl (25)

and by, by and A are parameters such that 0 < by < by < 1 and 0 < A < 1, and Dy(z) is the

diagonal submatrix of D(z) with elements 1/x;, i € I.

Let p; be a solution of (2.4). To test whether we should accept the trial step p = (pr,0)%, we

use Fletcher’s differentiable exact penalty function
¢ (z;0) = f(z) — Mz)Te(z) + olle(@)]?, (2.6)

where o > 0 is a penalty parameter and A(z) is an estimate of the vector of Lagrange multipliers

defined by
T + T ’

A=) = (A1) Ar(@) " Ar@) gr(e), (27)
where A7 is the generalized inverse of the matrix A. The vector A(z) minimizes the sum of squared
residuals of the Kuhn-Tucker conditions for (2.4), that is,

M) = argminycpm|lg2(2) — Ar(2)]?.

We define the predicted reduction of ¢(z + p; o) — ¢(z; o) by

Yr@p) = (o)~ AleN@) pr+ 5o Wirs 28)

1
- e+ p) = M@ [e@) + 5410
+0 (lle(@) + Ar(@) il = fle()I?)
where p; is the orthogonal projection of p; onto the null space of ,AI(a:)T. Note that a similar

formula for the predicted reduction has been used in [13] and [7]. Here the parameter o needs to



be chosen so that ;(z,p) < 0. More specifically, if the inequality
1
- i(2,p) < 50 (lle(@) + Ar@) el - lle(@)I) (29)

is satisfied, then o remains the same. Otherwise, increase o to the value

— 90 + max 2¢I(x?p)
=20 {0’ @) = (@) +A1<x>TpI||2} ! (210

which ensures that v¥r(z,p) with the updated o satisfies (2.9). Note that the right-hand side of

(2.9) is negative whenever pr # 0. This can be shown in a way similar to Lemma 3.3 in {13].

Next we compute the ratio

, ¢ (z+p;0)—9(20)
¢1(CU,P) ‘

If ¢(z + p;o) is sufficiently smaller than ¢(z; o), then we accept p to determine the next point.

(2.11)

I

Otherwise, we halve A and solve subproblem (2.4) again. More precisely, let 0 < p <7 <1, v>1
and 0 < Apmaer < 1 be given constants. Compute the ratio p defined by (2.11). If p < u, then put
zt =z and AT :=1/2A, and then solve subproblem (2.4); if u < p < 7, then put ¥ =z +p
and At := A; if p > n, then put z* := z + p and AT := min(yA, Amaz). To test whether the
new point z := =t is an approximate optimal solution associated with the current index set I, we

check the inequality
le@)Il + llgz() — Ar(z)A(z)|| < ez, (2.12)

where €3 > 0 is a predetermined positive number significantly smaller than ¢;. If (2.12) is not
satisfied, we update the index set I from the new iterative point z. As a; result, we have subproblem
(2.4) corresponding to the new index set I. In this manner, we repeatedly solve subproblems (2.4)
as long as (2.12) does not hold. On the other hand, if (2.12) is satisfied, then we proceed to
examine optimality of the point z for the original problem (1.1). Namely, we compute an estimate

of Lagrange multipliers A\(z) by (2.7) and check if A(z) satisfies the inequality
91(@) — Ap(@)A(2) > —ese, (2.13)

where €3 is a sufficiently small positive constant and e .is a vector of appropriate dimension whose

components are all unity. When the condition (2.13) is violated, we choose an index ¢ from I such



that

i == argmax {| (47(z) — A;@M@); | | (97(z) - A;@A@)); S —es, i€ T}, (2.14)
add it to the current inactive index set I, namely,

I:=T1u{i}, I:=1-{i},

and try to improve the current solution by solving subproblem (2.4) with the updated index set I.
If the point z satisfies both conditions (2.12) and (2.13), then we call it an e-optimal solution
for problem (1.1), with € = (€1, €2, €3).

We are now ready to state an algorithm for finding an e-optimal solution of (1.1).

Algorithm

Initialize: Choose sufficiently small positive constants ¢;, ¢ = 1,2,3 and parameters u,n,y and
Amaz such that 0 < g <7 < 1,7> 1 and 0 < Apar < 1. Also, choose parameters b; and by
with 0 < b < b1 < 1 to get # in subproblem (2.4). Let > ¢1e, A € (0,1), and o > 0 be an
initial feasible interior point, an initial trust region radius, and an initial penalty parameter,

respectively. Let I be the index set defined by (2.3) and I be the complement of I.

while z is not e-optimal do Jouter while loop/
begin
1 while |lc(z)]| + |lgr(z) — Ar(z)A(z)]| > €2 do /inner while loop/
begin
2 Solve subproblem (2.4) to find py ;
3 pr:=0;
4 Compute r(x, p) by (2.8)
5 if (2.9) does not hold then
begin
6 Update o by (2.10);
end
endif

7 Compute p by (2.11)



8 if p > p then
begin
9 T:=x+p
10 Update matrix W
11 if p > n then
12 A = min(yA, Apaz)
endif
end
13 I:=1-{i€l|r; < €1}
else
14 A= 3A
go to 2
endif
end
endwhile /end inner while loop/

15 if (2.13) is violated then

(Comment: if (2.13) holds, the whole algorithm is terminated with an e-optimal solution.)

begin
16 i i= arg max {| (97(2) — Af@N@);] | (97@) — Ax@)A@)); < ~¢5, i € T} ;
17 1:=1U{i}
end
endif
end
endwhile /end outer while loop/

Note that the sequence of iterates z generated by this algorithm lies in the positive orthant.
Here, the inner loop tries to find the solution of the equality constrained optimization problem with

some index set 1.



3. Numerical Experiments

We executed numerical experiments with the algorithm proposed in Section 2. In this algorithm,
the most time consuming task is to solve subproblem (2.4) at each iteration, which is the problem
of minimizing a convex quadratic function sub ject to two quadratic constraints. To solve (2.4) we
used the approach by Zhang [18] to reformulate the problem into a univariate nonlinear equation
which is continuous, at least piecewise differentiable and monotone.

The program of the algorithm was coded in Fortran77. The computation was carried out using
double precision arithmetic on a FACOM-M382 Computer at the Data Processing Center of Kyoto
University.

In order to examine performance of the proposed algorithm, we have solved the following four
test problems. These test problems except Example 3 have been constructed by modifying the
problems in [3]. In particular, the last problem is an expansion of the large scale problem No.7
in [3]. Throughout the experiments, we set the parameter values as follows: €1 = 0.001, e =
0.01, €3 =0.001, =02, 7=0.6, v=12 and Apmgr = 0.99. Also we set by = 0.8 and by = 0.2,
and let @ be the mean value of the both sides of (2.5). The symmetric matrix Wy in subproblem

(2.4) was updated by BFGS formula.

Example 1.

minimize f(z) = (21— 1)2+ (21 — 22)° + (x2 — 23)* + (23 — z0)* + (T4 - zs5)*
+(z5 — 6)* + (w6 — 20)* + (w7 — z8)* + (g — 29)* + (29 — 220)"
subject to c1(z) = 1 +xi4ad-2-v18=0

Cg(m) = $2~$§+$4+2—\/§:0

cs(z) = x5 —2=0
ca(z) = x2x6—3=0
cs(z) = z3x7y—4=0
c(z) = x428—5=0

cr(x) = zsTg—6=0



cg(z) = zer10—7=0

v
L
-
fl
=
ul\')
-
=]
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The numerical results for several initial points z° are shown given in the following table.

z0 iter. CPU time
(1,...,1) 11 92
(2,...,2) 9 54
(3,...,3) 13 70
(4,...4) 13 86
(5,...,5) 17 104
(6,..6) | 18 100
(7,0,7) 19 99
8,..8) | 20 116

iter. = number of iterations

CPU time = CPU time in msec

Example 2.
minimize f(z) = 212273+ T3T4Z5 + T5L6Z7 + -+ Ta—2Tn-1Tn
subject to c1(z) = Z1Zp—1=0
co(z) = zotp1—2=0
c3(z) = z3Tp2-3=0
em-1() = Tm-1Tm41—(m—1)=0
em(z) = 2, -m=0
> 0, i=12,.,n,

where n is odd, m = [%]+1 and [k] is the maximum integer not exceeding k. We experimented
with an initial vector 20 € R™ whose elements are all 2.0. The numerical results are shown

in the following table.
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n m iter. CPU time
9 5 5 17
11 6 5 21
13 7 5 27
15 8 6 43
17 9 6 60
19 10 7 98
21 11 7 152
23 12 8 241
25 13 8 339
29 15 9 675
31 16 7 414

iter. = number of iterations

CPU time = CPU time in msec

Example 8.

minimize f(z) = (z1- 12+ (21— 22)* + - + (Tn-1 — Zn)?
subject toey(z) = xyt x4+ Tp1—5n =0
co(z) = x?+m§+--«+m%_2—20n:0

es(x) = x2%+3+--«+x,2,-—20n:0

v

i 0, i=12,..,n,

where n is even. We experimented with an initjal vector 2% € R™ whose elements are all 5.0.

The numerical results are shown in the following table.



n iter. CPU time ||
10 77 243 8

20 80 969 14
30 54 1898 21
40 78 6365 27
50 75 10424 34
60 82 18882 40
70 89 33071 46
80 87 39488 53
85 92 57826 56
90 99 57907 59

iter. == number of iterations
CPU time = CPU time in msec

|[I| = number of indices 7 such that x; > €.

Example 4.
100 & 1
minimize f(z) = - jzzl(%ﬂz —z3i1)° + 2 jz::l(l — z5541)°
subject to cgx_o(x) = @sp_4aTsp-3— 1.0+ mgk_2 =0
cak-1(z) = T g+ Tok-a—Th_1 =0
cap(z) = —Zsp_g— 2o +05=0, k=12,...,L
x> 0, 1=1,2,..,n,

where L is a positive integer, n = 5L and m = 3L.

The numerical results are summarized in the following table.
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L n m x0 iter. CPU time B/A

25 15 | (0.5,...,0.5) | 34 1055
(0.6,...,0.6) | 34 1048 0.0019

(1.0,...,1.0) | 37 1256

(1.5,..,1.5) | 37 1415

(2.0,..,2.0) | 38 1239

10 | 50 30 | (0.5,...,05) | 44 8547
(0.6,...,0.6) | 44 7813 0.0008

(1.0,..,1.0) | 47 9102

(1.5,...,1.5) | 49 9942

(1.9,..,1.9) | 51 11442

20 | 100 60 | (0.5,...,0.5) | 57 80684
(0.6,...,0.6) | 56 82920 0.0003

(0.9,...,0.9) | 58 90307

50 | 250 150 | (0.5,...,05) | 77 1834208
(0.6,...,0.6) | 76 1822075 0.0001

(0.8,...,0.8) | 77 1892914
60 | 300 180 (0.6,..,0.6) | 81 3374823 0.0001

iter. = number of iterations
CPU time = CPU time in msec to get an e-solution
A = CPU time to get an e-solution

B = CPU time to recover an accurate solution from an e-solution

For this example, we considered a correction phase that recovers more accurate solution from
the obtained e-optimal solution, because the proposed method merely finds e-optimal solutions.
The CPU time spent (B) in the correction phase was always less 1% of the CPU time (A) spent to
obtain an e-solution. Moreover the ratio B/A decreases as the problem size increases. Over all, the
proposed method solved successfully the above test problems even if a starting point was far from

the solution or the problem size were large, though it consumed relatively large computation time.
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