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1. Introduction

Recently we have proposed an algorithm for solving nonlinear least squares problems with linear

constraints [15]. The method proposed there successively constructs trust region constraints, which

are ellipsoids centered at the iterative points, in such a way that they lie in the relative interior

of the feasible region. The purpose of this paper is to generalize the results of [15] to nonlinear

equality constrained problems with non-negative variables.

Over the last decade, various methods using a trust region strategy have been studied for

constrained nonlinear optimization problems, including box constrained problems [5, 6, 11, 14, 16]

and nonlinear equality constrained ploblems [2, 4, 7, 8, 9, 13, 17, 19]. In particular, when dealing

with equality constraints, adding a trust region constraint directly to the problem may result in an

infeasible subproblem. To overcome this difficulty, two approaches have been introduced. The first

approach, which was first proposed by Vardi [17], and later used by Byrd, Schnabel and Shultz

[2] and M. ELAlem [7], relaxes the linearized equality constraints so as to intersect a trust region

constraint. Specffically we first compute the vertical component of a trial step in the range space

of the matrix of equality constraint gradients at each iteration and then the horizontal (tangential)

component in the null space. The second approach, which was introduced by Celis, Dennis and

1This work was supported in part by the Scientific $\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}-\mathrm{i}\mathrm{n}$-Aid C-59 from Aichi University.

数理解析研究所講究録
1079巻 1999年 1-14 1



Tapia [4] and later studied by Powell and Yuan [13], iteratively solves quadratic programming

subproblems with some additional constraints using a $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\dot{\mathrm{r}}\mathrm{d}$ trust region strategy. We adopt

the second approach in this paper.

In this paper, we consider the following nonlinearly constrained optimization problem:

minimize $f(x)$ subject to $c(x)=0$, $x\geq 0$ , (1.1)

where $x\in R^{n}$ and $c(x)=(c_{1}(x), C2(X),$
$\ldots,$

$\mathrm{q}_{n}(X))^{T}$ . We assume that $f$ : $R^{n}arrow R$ and $c_{j}$ : $R^{n}arrow$

$R$ , $j=1,$ $\ldots,$
$m$ , are continuously differentiable. Note that any optimization problem involving

inequality constraints can be transformed into the form (1.1) by using slack variables.

The main aim of this paper is to extend the methods presented in $[14, 15]$ to the general

constrained optimization problem (1.1). Similar to the methods of $[14, 15]$ , the proposed method

constructs trust region constraints that are ellipsoids centered at the iterative points, in such a way

that they lie in the interior of the non-negative orthant. Thus the method belongs to the class of

interior point methods. However, since solutions of the problem are usually on the boundary of

the non-negative orthant, the trust region ellipses may tend to be arbitrarily thin and, as a result,

we eventually suffer from numerical instability. To avoid this difficulty, we incorporate the idea

of active set strategy into the method. With such a modification, we may stil expect that the

method retains the advantage of the interior point method, as observed in our previous papers

$[14, 15]$ for problems with simple bound constraints on the variables, and problems with linear

inequality constraints and non-negative variables.

The paper is organized as follows. Section 2 describes the algorithm. In Section 3, we report

some computational results.

2. Description of the Algorithm

Suppose that $x$ is a current point such that $x>0$ . Let $p$ denote the vector which determines the

next point $x^{+}$ ffom the current point $x$ , that is, $x^{+}=x+p$ .

We consider the folowing subproblem involving a trust region constraint:

$\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{z}\mathrm{e}_{p}$ $g(x)^{\tau_{p}}+ \frac{1}{2}p^{T}Wp$ (2.1a)
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subject to $||c(X)+A(_{X)^{T}||}p\leq\theta$ , (2.1b)

$||D(X)p||\leq\Delta$ , (2.1c)

where $g(x)=\nabla f(X),$ $A(x)=\nabla c(x),$ $D(x)=diag(1/x_{i}),$ $\theta$ and $\Delta$ are parameters such that $\theta>0$

and $0<\Delta<1$ , and $W$ is an $n\mathrm{x}n$ symmetric matrix. Note that $\theta,$
$\Delta$ and $W$ are dependent on

the iteration. In particular, $\theta$ is supposed to satisfy the inequalities

$\min_{||D(x)p|}|\leq b1\Delta||c(x)+A(X)^{\tau}p||\leq\theta\leq\min_{||D(x})_{\mathrm{P}}||\leq b_{2}\Delta||c(x)+A(x)^{\tau_{p}}||$ , (2.2)

where $b_{1}$ and $b_{2}$ are given constants such that $0\leq b_{2}\leq b_{1}\leq 1$ . Note that if $p$ satisfies (2.1c) then

$x^{+}:=x+p$ remains in the positive orthant, i.e., $x^{+}>0$ (see [1]).

The role of the constraint (2.1b) may be explained as folows. When using the trust region

constraint $||D(x)p||\leq\Delta$ , the linearized constraints $c(x)+A(x)^{T}p=0$ may have no solution

within the trust region. Attempts to overcome this difficulty have been made by several authors

[13, 17, 2, 4]. In particular, introducing the parameter $\theta$ satisfying (2.2) was $p$roposed by Powel

and Yuan [13]. Note that, if we assume $b_{1}=1$ and $b_{2}=0$ , then (2.2) reduces to

$\min_{||D()||}xp\leq\Delta||c(x)+A(x)^{\tau_{p}}||\leq\theta\leq||c(x)||$ ,

which ensures the existence of a feasible solution to (2.1)

The trust region constraint $||D(x)p||\leq\Delta$ in (2.1) represents an ellipsoid, which is centered at the

current point $x$ and strictly contained in the interior of the non-negative orthant $\{x\in R^{n}|x\geq 0\}$ .
However, when the current point is close to the boundary of the non-negative orthant, the trust

region ellipsoid becomes thin and solution of (2.1) suffers from numerical instability. To overcome

this dificulty, we modify (2.1) using the idea of active set strategy [10] in constrained optimization.

For a current point $x>0$ , we define the set of indices

$I=\{i|_{X}i\geq\epsilon_{1}\}$ , (2.3)

where $\epsilon_{1}$ is a sufficiently small positive constant. We also denote $\overline{I}=\{1,2, \ldots, n\}-I$ . According to

the above definition, we partition the vectors $x,p,g(x)$ and the matrices $W,$ $A(x)$ as

$x=$ , $p=\{$
$p_{I}$

$p_{\overline{I}}$

’ $g(x)=$ , $W=$ , $A(x)=\ovalbox{\tt\small REJECT} A_{\overline{I}}(_{X)}A_{I}(_{X})\ovalbox{\tt\small REJECT}$
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By adding the extra constraints $p_{\overline{I}}=0$ to (2.1), we get the folowing problem:

$\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{z}\mathrm{e}_{p_{I}}$
$g_{I}(X)^{\tau_{p_{I}}}+ \frac{1}{2}p_{I}^{\tau_{W_{I}}}IPI$ (2.4)

subject to $||c(x)+A_{I}(x)^{\tau_{p_{I}}}||\leq\theta$ ,

$||D_{I}(x)p_{I}||\leq\Delta$ ,

where $\theta$ is chosen, similar to (2.2), to satisfy the condition

$\min_{||D_{J}(x)}p_{I}||\leq b_{1}\Delta||c(X)+A_{I}(x)^{T}pI||\leq\theta\leq\min_{||D_{I}(x)pJ}||\leq b_{2}\Delta||C(X)+A_{I(x)}\tau_{p_{I}}||$, (2.5)

and $b_{1},$ $\mathrm{h}$ and $\Delta$ are parameters such that $0\leq b_{2}\leq b_{1}\leq 1$ and $0<\Delta<1$ , and $D_{I}(x)$ is the

diagonal submatrix of $D(x)$ with elements $1/x_{i},$ $i\in I$ .

Let $p_{I}$ be a solution of (2.4). To test whether we should accept the trial step $p=(p_{I}, 0)^{T}$ , we

use Fletcher’s differentiable exact penalty function

$\phi(x;\sigma)=f(X)-\lambda(X)\tau C(X)+\sigma||c(x)||^{2}$ , (2.6)

where $\sigma>0$ is a penalty parameter and $\lambda(x)$ is an estimate of the vector of Lagrange multipliers

defined by

$\lambda(x)=(A_{I}(x)\tau_{AI}(X))^{+}AI(X)^{\tau}g_{I}(x)$ , (2.7)

where $A^{+}$ is the generalized inverse of the matrix $A$ . The vector $\lambda(x)$ minimizes the sum of squared

residuals of the Kuhn-Tucker conditions for (2.4), that is,

$\lambda(x)=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}\lambda\in R^{m}||gI(X)-A_{I}(X)\lambda||^{2}$ .

We define the predicted reduction of $\phi(x+p_{)}\sigma)-\phi(X;\sigma)$ by

$\psi_{I}(x,p)$ $=$ $(g_{I}(X)-A_{I(X}) \lambda(x))TpI+\frac{1}{2}p_{II}^{\tau_{W}}I\hat{\mathrm{P}}I$ (2.8)

$-[ \lambda(x+p)-\lambda(x)]^{\tau}[c(x)+\frac{1}{2}AI(X)^{T]}p_{I}$

$+\sigma(||c(x)+A_{I}(_{X)}\tau p_{I}||2-||c(x)||^{2})$ ,

where $\hat{p}_{I}$ is the orthogonal projection of $p_{I}$ onto the nul space of $A_{I}(x)^{T}$ . Note that a similar

formula for the predicted reduction has been used in [13] and [7]. Here the parameter $\sigma$ needs to
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be chosen so that $\psi I(x, p)<0$ . More specificaly, if the inequality

$\psi_{I}(x,p)\leq\frac{1}{2}\sigma(||c(x)+A_{I}(x)\tau_{pI}||^{2}-||c(x)||^{2})$ (2.9)

is satisfied, then $\sigma$ remains the same. Otherwise, increase $\sigma$ to the value

$\sigma:=2\sigma+\max\{0,$ $\frac{2\psi_{I}(x,p)}{||c(_{X)}||2-||c(X)+A_{I}(X)\tau_{p_{I}}||2}\}$ , (2.10)

which ensures that $\psi_{I}(x,p)$ with the updated $\sigma$ satisfies (2.9). Note that the right-hand side of

(2.9) is negative whenever $p_{I}\neq 0$ . This can be shown in a way similar to Lemma 3.3 in [13].

Next we compute the ratio

$\rho\equiv\frac{\phi(x+p,\sigma)-\phi(X\sigma)}{\psi_{I}(x,p)},$ . (2.11)

If $\phi(x+p_{1}\sigma)$ is sufficiently smaler than $\phi(x;\sigma)$ , then we accept $p$ to determine the next point.

Otherwise, we halve $\Delta$ and solve subproblem (2.4) again. More precisely, let $0<\mu<\eta<1,$ $\gamma>1$

and $0<\Delta_{\max}<1$ be given constants. Compute the ratio $\rho$ defined by (2.11). If $p<\mu$ , then put

$x^{+}:=x$ and $\Delta^{+}:=1/2\Delta$ , and then solve subproblem (2.4); if $\mu\leq\rho<\eta$ , then put $x^{+}:=x+p$

and $\Delta^{+}:=\Delta$ ; if $\rho\geq\eta$ , then put $x^{+}:=x+p$ and $\Delta^{+}:=\min(\gamma\Delta, \Delta_{\max})$ . To test whether the

new point $x:=x^{+}$ is an approximate optimal solution associated with the current index set $I$ , we

check the inequality

$||c(x)||+||g_{I}(x)-A_{I}(X)\lambda(X)||<\epsilon_{2}$ , (2.12)

where $\epsilon_{2}>0$ is a predetermined positive number significantly smaller than $\epsilon_{1}$ . If (2.12) is not

satisfied, we update the index set $I$ from the new iterative point $x$ . As a result, we have subproblem

(2.4) corresponding to the new index set $I$ . In this manner, we repeatedly solve subproblems (2.4)

as long as (2.12) does not hold. On the other hand, if (2.12) is satisfied, then we proceed to

examine optimality of the $p$oint $x$ for the original problem (1.1). Namely, we compute an estimate

of Lagrange multipliers $\lambda(x)$ by (2.7) and check if $\lambda(x)$ satisfies the inequality

$g_{\overline{I}}(x)-A_{\overline{I}}(X)\lambda(x)>-\epsilon_{3}e$ , (2.13)

where $\epsilon_{3}$ is a sufficiently smal positive constant and $e$ is a vector of appropriate dimension whose

components are an unity. When the condition (2.13) is violated, we choose an index $i$ from $\overline{I}$ such

5



that

$i:=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}\{|(g_{\overline{I}}(X)-A_{\overline{I}(}x)\lambda(X))i||(g_{\overline{I}}(X)-A_{\overline{I}}(X)\lambda(X))_{i}\leq-\epsilon_{3}, i\in\overline{I}\}$ , (2.14)

add it to the current inactive index set $I$ , namely,

$I:=I\cup\{i\}$ , $\overline{I}:=\overline{I}-\{i\}$ ,

and try to improve the current solution by solving subproblem (2.4) with the updated index set $I$ .
If the point $x$ satisfies both conditions (2.12) and (2.13), then we $\mathrm{c}\mathrm{a}\mathrm{l}$ it an $\epsilon$-optimal solution

for problem (1.1), with $\epsilon=(\epsilon_{1}, \epsilon_{2}, \epsilon_{3})$ .

We are now ready to state an algorithm for finding an $\epsilon$-optimal solution of (1.1).

Algorithm

Initialize: Choose sufficiently smal positive constants $\epsilon_{i},$ $i=1,2,3$ and parameters $\mu,$ $\eta,$ $\gamma$ and

$\Delta_{\max}$ such that $0<\mu<\eta<1,$ $\gamma>1$ and $0<\Delta_{\max}<1$ . Also, choose parameters $b_{1}$ and $b_{2}$

with $0<b_{2}\leq b_{1}<1$ to get $\theta$ in subproblem (2.4). Let $x\geq\epsilon_{1}e,$ $\Delta\in(0,1)$ , and $\sigma>0$ be an

initial feasible interior point, an initial trust region radius, and an initial penalty parameter,

respectively. Let $I$ be the index set defined by (2.3) and $\overline{I}$ be the complement of $I$ .

while $x$ is not $\epsilon$-optimal do $/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}$ while $1\mathrm{o}\mathrm{o}p/$

begin

1 while $||c(x)||+||g_{I}(X)-A_{I}(X)\lambda(x)||\geq\epsilon_{2}$ do $/\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}$ while $1\mathrm{o}\mathrm{o}\mathrm{p}/$

begin

2 Solve subproblem (2.4) to find $p_{I}$ ;

3 $p_{\overline{I}}:=0$ ;

4 Compute $\psi I(x,p)$ by (2.8)

5 if (2.9) does not hold then

begin

6 Update $\sigma$ by (2.10);

end

endif

7 Compute $\rho$ by (2.11)
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8 if $\rho\geq\mu$ then

begin

9 $x:=x+P$

10 Update matrix $W$

11 if $p\geq\eta$ then

12 $\Delta:=\min(\gamma\Delta, \Delta_{\max})$

endif

end

13 $I:=I-\mathrm{t}i\in I|x_{i}<\epsilon_{1}$ }

else

14 $\Delta:=\frac{1}{2}\Delta$

go to 2

endif

end

endwhile $/\mathrm{e}\mathrm{n}\mathrm{d}$ inner while $1\mathrm{o}\mathrm{o}\mathrm{p}/$

15 if (2.13) is violated then

(Comment: if (2.13) holds, the whole algorithm is terminated with an $\epsilon$-optimal solution.)

begin

16 $i:= \arg\max\{|(g_{\overline{I}}(_{X)}-A_{\overline{I}}(x)\lambda(X))_{i}||(g_{\overline{I}}(X)-A_{\overline{I}}(X)\lambda(X))i<-\epsilon_{3}, i\in\overline{I}\}$ ;

17 $I:=I\cup\{i\}$

end

endif

end

endwhile $/\mathrm{e}\mathrm{n}\mathrm{d}$ outer while $1\mathrm{o}\mathrm{o}\mathrm{p}/$

Note that the sequence of iterates $x$ generated by this algorithm lies in the positive orthant.

Here, the inner loop tries to find the solution of the equality constrained optimization problem with

some index set $I$ .
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3. Numerical Experiments

We executed numerical experiments with the algorithm proposed in Section 2. In this algorithm,

the most time consuming task is to solve subproblem (2.4) at each iteration, which is the problem

of minimizing a convex quadratic function subject to two quadratic constraints. To solve (2.4) we

used the approach by Zhang [18] to reformulate the problem into a univariate nonlinear equation

which is continuous, at least piecewise differentiable and monotone.

The program of the algorithm was coded in Fortran77. The computation was carried out using

double precision arithmetic on a FACOM-M382 Computer at the Data Processing Center of Kyoto

University.

In order to examine performance of the proposed algorithm, we have solved the folowing four

test problems. These test problems except Example 3 have been constructed by modifying the

problems in [3]. In particular, the last problem is an expansion of the large scale problem No.7

in [3]. Throughout the experiments, we set the parameter values as follows: $\epsilon_{1}=$ 0.001, $\epsilon_{2}=$

$0.01,$ $\epsilon_{3}=0.001,$ $\mu=0.2,$ $\eta=0.6,$ $\gamma=1.2$ and $\Delta_{\max}=0.99$ . Also we set $b_{1}=0.8$ and $b_{2}=0.2$ ,

and let $\theta$ be the mean value of the both sides of (2.5). The symmetric matrix $W_{II}$ in subproblem

(2.4) was updated by BFGS formula.

Example 1.

minimize $f(x)$ $=$ $(x_{1}-1)^{2}+(x_{1}-x_{2})^{2}+(x_{2}-x_{3})^{2}+(x_{3}-x_{4})^{4}+(x_{4}-x_{5})^{4}$

$+(x_{5}-X_{6})^{4}+(X_{6}-x_{7})^{4}+(X_{7}-x_{8})^{4}+(x_{8}-x_{9})^{4}+(x_{9}-x_{10})^{4}\backslash$

subject to $c_{1}(x)$ $=$ $x_{1}+x_{2}^{2}+x_{3}^{3}-2-\sqrt{18}=0$

$c_{2}(x)$ $=$ $x_{2}-x_{3}^{2}+x_{4}+2-\sqrt{8}=0$

$c_{3}(x)$ $=$ $x_{1}x_{5}-2=0$

$c_{4}(x)$ $=$ $x_{2}x_{6}-3=0$

$c_{5}(x)$ $=$ $x_{3}X_{7}-4=0$

$c_{6}(x)$ $=$ $x_{4}x_{8}-5=0$

$c_{7}(x)$ $=$ $x_{5}x_{9}-6=0$
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$c_{8}(x)$ $=$ $x_{6}x_{10}-7=0$

$x_{i}$
$\geq$ $0,$ $i=1,2,$ $\ldots,$

$10$ .

The numerical results for several initial points $x^{0}$ are shown given in the folowing table.

CPU time $=\mathrm{C}\mathrm{P}\mathrm{U}$ time in msec

Example 2.

minimize $f(x)$ $=$ $x_{1}x_{2^{X_{3}}}+x_{3}x_{45}x+x_{5}x6X_{7}+\cdots+Xn-2x_{n}-1x_{n}$

subject to $c_{1(x)}$ $=$ $x_{1}x_{n}-1=0$

$c_{2}(x)$ $=$ $x_{21}x_{n-}-2=0$

$c\mathrm{s}(_{X)}$ $=$ $x_{3^{X}n-2^{-30}}=$

.$\cdot$.

$c_{m-1(x)}$ $=$ $xm-1xm+1-(m-1)=0$

$c_{m}(x)$ $=$ $x_{m}^{2}-m=0$

$x_{i}$ $\geq$ $0,$ $i=1,2,$ $\ldots,$
$n$ ,

where $n$ is odd, $m=[ \frac{n}{2}]+1$ and $[k]$ is the maximum integer not exceeding $k$ . We experimented

with an initial vector $x^{0}\in R^{n}$ whose elements are au 2.0. The numerical results are shown

in the folowing table.
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$1\iota \mathrm{c}\mathrm{r}$ . $-\mathrm{u}\mathrm{u}\mathrm{l}\mathrm{U}\cup \mathrm{G}\mathrm{r}\cup 11\iota \mathrm{c}\mathrm{r}\mathrm{a}\iota \mathrm{l}\mathrm{U}\mathrm{n}\mathrm{b}$

CPU time $=\mathrm{C}\mathrm{P}\mathrm{U}$ time in msec

Example 3.

minimize $f(x)$ $=$ $(x_{1}-1)2+(x_{1}-X_{2})^{2}+\cdots+(x_{n-1}-x_{n})^{2}$

subject to $c_{1}(x)$ $=$ $x_{1}+x_{2}+\cdots+x_{n-1}-5n=0$

$c_{2}(x)$ $=$ $x_{1}^{2}+x_{2}^{2}+\cdots+x_{\frac{n}{2}-2}-20n=0$

$c_{3}(x)$ $=$ $x_{\frac{2_{n}}{2}+3}+\cdots+x_{n}^{2}-20n=0$

$x_{i}$
$\geq$ $0,$ $i=1,2,$ $\ldots n)$ ’

where $n$ is even. We $\mathrm{e}\mathrm{x}p$ erimented with an initial vector $x^{0}\in R^{n}$ whose elements are all 5.0.

The numerical results are shown in the following table.
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lLer. $=$ nuuluer ul lLerablous

CPU time $=\mathrm{C}\mathrm{P}\mathrm{U}$ time in msec

$|I|=\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}$ of indices $i$ such that $x_{i}\geq\epsilon_{1}$ .

Example 4.

minimize $f\{x)$ $=$ $\frac{100}{2}\sum_{j=1}^{L}(x_{5}j+2-x^{22}5j+1)+\frac{1}{2}\sum_{j=1}^{L}(1-X_{5}j+1)^{2}$

subject to $c_{3k-2}(X)$ $=$ $x_{5k-4^{X}}5k-3-1.0+x_{5k-2}^{2}=0$

$c_{3k-1}(X)$ $=$ $x_{5k-3}^{2}+x_{5k-}4-x-1=05k2$

$c_{3k}(x)$ $=$ $-x_{5k-4^{-}}x^{2}5k+0.5=0,$ $k=1,2,$ $\ldots,$

$L$

$x_{i}$
$\geq$ $0,$ $i=1,2,$ $\ldots,$

$n$ ,

where $L$ is a positive integer, $n=5L$ and $m=3L$ .

The numerical results are summarized in the following table.
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$1l$er. $=$ $\mathrm{u}$ UIU $\mathrm{U}$ el ul $1l$er $u$ UUUb

CPU time $=\mathrm{C}\mathrm{P}\mathrm{U}$ time in msec to get an $\epsilon$-solution

$A=\mathrm{C}\mathrm{P}\mathrm{U}$ time to get an $\epsilon$-solution

$B=\mathrm{C}\mathrm{P}\mathrm{U}$ time to recover an accurate solution from an $\epsilon$-solution

For this example, we considered a correction phase that recovers more accurate solution from

the obtained $\epsilon$-optimal solution, because the proposed method merely finds $\epsilon$-optimal solutions.

The CPU time spent $(B)$ in the correction phase was always less 1% of the CPU time $(A)$ spent to

obtain an $\epsilon$-solution. Moreover the ratio $B/A$ decreases as the problem size increases. Over an, the

proposed method solved successfuly the above test problems even if a starting point was far from

the solution or the problem size were large, though it consumed relatively large computation time.
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