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Remarks on Controllability of Membranes Systems
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1 Introduction

In 1970s, J.P. Quinnn and D.L. Russell solved a control problem of a membrane system
where the control area is limited in a rectangle. In their case, they put two control functions
upon the segments of the rectangle for one membrane. It seems that the condition which
they apply is little strong. In this paper we would like to consider a control system of a
coupled vibrating membranes system with a single control function applied at one segment.
You can see the condition which we use is the weakest in such a case. We define Q,Q; and
Q, with their boundaries I',T; and T'5, respectively, as follows:

Q={(z,y) €eR?| 0<z<1,0<y<l1}
O ={(z,y) € R} 0<z<c0<y<1}
Q= {(z,y) € R} c<zr<1,0<y<1}
I =00, = 00,1y = 09,.

The evolution of the system is given by the following coupled equations:

u}t(rv%t) 2(“;1.(33, y,t) + u;y(xa y,t))=0 on Q1 x (O7T)

—
itz g ) — oAb,y t) + (e, y,t) =0 on D x (0,T) (1)

with boundary conditions

u!|r,or = @ |rpr =0 (2)
and initial conditions
W(e,0) = u(ey) (By) €D, w(rp0)=uley) @YEhD g
ul(z,y,0) = vi(z,y) (2,9) €N, ui(z,y,0)=2v3(z,y) (2.y) €D
In (1) a= E(z‘ = 1,2) is a positive constant, where o; and 7; are mass density and
o; ‘

tension, respectively. We call T'3 := T';y N T’y the coupled segment.  On I'; an admissible

control f(y,t) € L*(0,T; L*(T'3)) is applied as follows:

u1|I‘-; - uzlf"s =0 '
s 4
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We assume that H = L*(Q,;) @ LZ(Qz) with an inner product

<<Z> ( )> // z,y)v ‘”ydzder// v¥(z, y)dedy.

1
We identify u = <u2) € H with a function
u

=l v@y) (@y)en
u(z,y) = { u(z,y) (z,y) € Ny,

We will consider exact controllability for the system (1)-(4) in a Hilbert space U x V C
V x H, where U and V are also Hilbert spaces with a dense and continuous imbedding
U C V such that for T > 0 and any initial data (uo,vo) € U x V and f € L%(0,T; L*(Ts))
there exists a solution u(z,y,t) of the system (1)-(4) with (u,u;) € C([0,T];U x V). The
definition of the exact controllability is given as follows:

Definition 1 Let T > 0. The system (1)-(4) is called ezactly controllable in U x V if for
every initial data (ug,vo) € U x V there exists a control f € V := L*(0,T; L*(Ts)) such that
the corresponding solution of (1)-(4) satisfies:

u(x7va) = ut(xayaT) =0. (5)

Control problems for the partial differential equations have been studied by many re-
searchers since 1970s (see [2],[3],4],5],(8],[9],[11]). In recent years the coupled vibrating
systems have been treated by several authors but mainly in strings and beams (see S.Ohnari
[6][7]; J.P.Ma [10]; L.F.Ho [12] and G.Chen, M.C.Delfour, A.M.Krall, G.Payre [13]). Ac-
cording to our knowledge it is the first time for us to deal with the control problem of
the coupled vibrating membranes system. The main theorem of this paper will give us a
sufficient condition for the system (1)-(4) to be exactly controllable in U x V.

2 Solutions of the system (1)-(4).

In this section we discuss the solutions of the system (1)-(4). First we introduce a strict
solution for the system (1)-(4) and we try to define a mild solution based on it. Now, let us
define an operator A with domain D(A) in H as follows:

1
D(A) = { Z2> € HZ(QI) X Hz(QZ)l uIF = 0; ulif‘a = uzll":n u;:’ra = u:-lFs}
ul —aéAul (6)
A(zﬂ) - —a2Au2)'

Obviously the operator A is positive and self-adjoint in H with a compact resolvent. Let

A={m*+n* me N ne N} (7)
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Then, the eigenvalues of the operator A and the corresponding eigenspaces are given by

M = ka’n? (k€ A) (8)
and
Zi = span{ @y m(z,y) = (2 S‘“"”““"’”) *ymP=k nmeN},  (9)
2sinnmwe sinmmy
respectively.

We see that the eigenfunctions {®, ,,; n,m € N} of the operator A satisfy
Bpn L By e for (n,m) # (n',m) (10)
and @, ,, form a complete orthoﬁbrmal base in H, in particular, | |
Z=UZ keA 11)

is dense in D(A). _
From (6), we see that D(A) is a closed subspace of H2(Q ) ® H?*(Q;) and becomes a Hilbert
space U with the inner product '

(u,v)p(ay = (Au, Av)y for u,v € D(A).

Since A is self-adjoint and positive, A has a unique positive square root AZ, so that D(A) C
D(A?), Asz € D(A?) for all z € D(A), and A7 Az = Az for z € D(A).
Also D(A%) becomes a Hilbert space V with the inner product

(u,v)D(A%) = (A%u,A%v)H for u,v € D(A%).

For the purpose of seeking a strict solution for the system (1)-(4) we first assume f(y,t)
be given in HJ[0,T; H*(T's) N Hy(Ts)] for fixed T > 0 and (uo,v0) € U x V. Then, the
solution u(z,y,t) of the system (1)-(4) can be expressed formally as follows:

)-(4)
ul(z,y,t) =y (z,y,t) +p*(2)fly,t) (0<er<c0<y<l,0<t<T),
t) = pi(=)f

(2, y,t) = y2 2,9, 8) + (@) F(y,t) (c<e<1,0<y<1,0<t<T). (12)
Here
pl(z) = —cx+z, pYz)=—czx+c
and y'(z,y,t)(: = 1,2) are solutions of the following system:
yét(xayvt) - a2Ayi(xay7t) = _pi(w)ftt(yat) + azfyy(yat)
(z,y) €Qy fori=1, (z,y) €N fori=2, 0<t<T), (13)

ylr =0,
v (e, y,t) = y¥(c,y,t),  yale,y,t) =y2(c,y,t),

with
y(xvyvo) = uO("Ea y)? yt(l', y,O) = 'UO(xay)' (14)
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We see that the system (1)-(4) can be replaced by the system (12)-(14). If we put

v= () 5= () e 1
(- (9)
(;/) - ( Yo ) (;/) ’ (Bﬁ(t)) (16)

with

then (12)-(14) become

with ¥(0) v
0
= : 17
(K(O)) (YQO) ()
where Bf(t) = —fuP + a®f,y.
Thus, we consider (16)-(17) in a Hilbert space V x H with an inner product
U U. L L
<< l)a ( 2)> = (A2U17A2U2)H+(V'17V'2)H (18)
Vi V2 VxH
for (gﬁ), (g";) eV xH.
Let A = ( __OA é > be an operator in V' x H with domain D(A) defined by

w-vv al)-(%)

for (3,:) € D(A).
It is easy to prove that A is an infinitesimal generator of a semigroup in V x H. Now we
give the definition of strict solutions for the system (16)-(17) as follows:

Definition 2 For (;,:‘:)) € D(A) and Bf(t) € C([0,T); V x H), we say that

(28;) 0,T] > V x H

is a strict solution to (16)-(17) if and only if

(1)(R®) € ([0, TV x H).

(2) For any t € [0,T), (1) € U x V; A(R) € C([0,T);V x H).
(3) (}}%gg) satisfies (16)-(17) on [0, T).
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From semigroup theory, we know that, for any ( ) €U xV and given
f(y,t) € Hy[0,T; H(Ts) N Hy(T's)]

for fixed T' > 0, there exists a unique strict solution Y()) of (16)-(17) expressed as
Yi(t) P

G- Lo

Now, let us consider the following homogeneous problem which correponds to the system

(1)-(4): | |
wh, —a’Aw' =0 on Q; x[0,T] (1 =1,2) (21)

with homogeneous boundary conditions
w|p,ar = w?|p,ar = 0
w1|F3 = w2|F3 ' (22)
wilrs = w3-|F3
and initial conditions:
w(0) = wo, we(0) = wr. (23)
For any fixed (wo,w;) € Z x Z CU x V, where |

= i i a/nmq)n‘ma wy; = i Z bnménma

n=1m=1 n=1m=1

we know that there exists a unique solution

1
9 nm n mt + bn . A'n« mt @nm
(z,y,t nz:l mz: Apyn COS m \/m sin mt) (24)

(Anm = @?(n? + m*)n%;, n,m =1,2,3 - )

for the system (21)-(23).
Now, let u be a strict solution of the system (1)-(4). We multiply the corresponding solution

of (21)-(23) by u. Integrating by parts we obtain for fixed T > 0 the equality
/T / (wy — « Aw)u dzdydt = /Q(wt(T)u(T) — w(T)u(T) + wovo — wiug) dzdy
+/ / o’ f(y, tyw' (¢, y, t)dydt.
Hence, we have

[ D)T) — (T yu(T)dady = [ (g + wiuo)ddy — [ [ a?Fly, 0wt e,n, )d?:t)
6

(25)

This permits us to define a mild solution as follows:

Definition 3 For any given (uo,v) € U x V and f(y,t) € L*(0,T; L*(T'3)), we say that
(u,u;) is a mild solution of the system (1)-(4) if (u,u;) € C([0,T;U x V) and if (26) is
satisfied for every (wo,w;) € Z x Z.

The definiton is justified by ‘ ‘

Lemma 1 For any (ug,v,) € UxV and f € L*(0,T; L*(T3)), there is a untque mild solution
for the system (1)-(4). -
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3 The Main Result

Now, under any initial data (uo,vo) € U x V, we assume u(z,y,T) = ws(z,y,T) = 0 and try
to seek an f € V in the form of

= 3 fult)sinmy, 1)
m=1
where .
fm(t) = / f(y,t)sinmrydy fort e [0,T). _ (28)

(
We expand uo(z,y), vo(z,y) in the following ways:

u ('Tay) = Z Z anmq)nm z y) UO r y Z Z ﬂn,mq)nm z y)

n=1m=1 n=1m=1

with

11
Oy = s / 2uo(z,y) sinnwe sin mrydedy = (ug, Prm)n

Bam = / / 2v9(z, y) sinnre sinmrydedy = (vo, Pnm)H-

Substituting (24) into (26) and making use of the above expansions, we have:

0o oo 0o 00 T bn,m .
Z Z (_an,mﬂn,m + bn,man,m) = n;lmX::l/(; 77Lfm(t)(an,m COS /\n,mt + \/—X;;n- sin /\n,mt)dt (29)

n=1m=1
where
Y =2a*sinnme forn =1,2,-.-. (30)

Thus, (33) reduces to an infinite collection of moment problems for functions f,,(t) €

L*0,7):

T b I
'—an,mﬂn,m + bn,man,m = / ’)/nfm(t)(an,m COs /\n,mt + i SiIl /\n,mt)dt
0 V /\n,m (31)

(n,m=1,2,3,--").

If we assume ~,, # 0, then we can rewrite (35) in the following manner:

Lo =/ cos \/Ammt fru(?)
< "manm _/ sin Mt fm(t) (32)

f01nm—123

This is a double moment problem; one moment problem for each fixed m.

We see that v, # 0 becomes a necessary condition for the system (1)-(4) to be exactly
controllable. By (34) we have v, # 0 if and only if c is irrational.

From now we try to use a well-known result from [3] (K.D.Graham, D.L.Russell, page 189)
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to deal with the moment problem (36).
Let

Anm@
. ﬂnmu d _ n,m&n,m
Com = —7_ n,m .

For every fixed m, we note that the sequence {y/A,m} possesses an asymptotic gap © such
as

0 = liminf(Ad;, — M) = o, (33)
Also the density D of the same sequence {;/A, .} is given by

D= lim -1

?
n—oo An’m oT

' 1
hich satisfies © = —.
which satisfies © D

Using the result from Lemma 6.3 in [3] (K.D.Graham and D.L.Raussell page 189), we know
that, if any T > 27D and if any sequences {cnm}; {dnm}(n =1,2,3 - for every fixed m)
satisfy

o0 o0
Z lcmn]2 < 400 2 |dpm|? < +o00,
n=1 n=1

then the moment problem (36) has a solution fn(t) € L*(0,T) with constant K; and K,
independently of n,m satisfying

I{l(z lcn.mlz + Z Idn,m‘z) < Hfm( )HL2(0 T) Z |cn m|2 + Z ‘dn m'
n=1 n=1 '

for every fixed m (m = 1,2, - -+). Here K;, K, are determined by the gap © and the positive
number T — 27 D.

Now, we introduce a set E which plays a very important role in our control problem (see [9],
M.Tucsnak, page 923). For a real number p, we denote by |||p[|| the distance from Z;

llplll = min |p — n].

Let us denote by E the set of all irrationals p € (0,1) such that if [0,a1,a2, -, an,- -] is
the expansion of p as a continued fraction, then {a,}5, is bounded. From a proposition in
[9],(M.Tucsnak, page 923) we have that an irrational number p € (0,1) is in E if and only if
there is a constant C > 0 such that |||gp||| > C for any positive integer g.

As a consequence of these results, we obtain the following theorem concerning the exact
controllability of the system (1)-(4):

Theorem 1 Let ¢ € E. Assume T > 2 and (ug,vo) € U x V, then the system (1)-(4) is
« ‘
exactly controllable in U x V.
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Proof. i
Note ¢ € E. For any n, there exists k € Z, such that |nc — k| < 5"
Since [nc — k|r < g, we have
2 20
|sinnwe| = |sinw(ne — k)| > =|w(nc — k)| = 2|nc — k| = 2|||nc||| > —
. T
for a constant C' > 0. Thus, we obtain that
n
~|< —1,2,3,.-).
17n| —_— 400/2 (n Y 73? )
On the other hand, for any (ug,v) € U x V, we have
Z Z nmlo‘nm|2 <
no=o m; (34)
2 AmlBaml? < oo
n=1m=1
Note
/\n m%n,m
el = P22 and [dy 2 = | S22
Hence, we have, for any fixed m,
E |Cn m| < My(ae, C)(Z Z ’\n,mlﬁn,m|2) < +oo .
= g (35)
Z | n,m[2 < My(a, C)(Z Z ’\:,mlan,mlz) < o0,
n=1 n=1m=1

for positive constants M;(a,C) and M,(a, C).
Thus, if T > —, then there exist functions f,,(t) € L%0,T)(m = 1,2,3,---,) which are
a

solutions of the moment problems (36). For each m, we also know there is a K > 0, which
is independent of m, such that

| ||fm|‘§32(0,T) < I((Z |cn,ml2 + Z |dn,ml2)v (36)
n=1 n=1

that is, for a constant M3(K,C,a) > 0, we get
“me%?(O,T) S M3(I{’ C’ a) Z( nmlan wzl2 + ’\n mlﬂn m| ) (37)

n=1

Therefore, we finally obtain
k2 1 k2
| Z fm(t) Slnm?”/HLz(OTLz (T3)) Z || fm(2) ”L20T)

m—lq - m=k, (38)

< = Z M3 IX C o Z(/\i,mlan,mlz+)‘n,m[ﬁn,m|2)'

m= kl n=1
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The left-hand side of (42) converges to 0 as k; — oo, k3 — oo by using (38).
This completes our proof of Theorem 1.
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