THE UNIQUE EXISTENCE OF A CLOSED ORBIT OF FITZHUGH－NAGUMO SYSTEM

日．本大学理工学部•林 誠（Makoto Hayashi）

1．Introduction

Our purpose is to give a parameter range for which the ordinary differential equa－ tions governing the FitzHugh－Nagumo system have a unique non－trivial closed orbit． It is wider than those already known．

To explicate the ion mechanism for the excitation and the conduction of nerve Hodgkin and Huxley（ $[\mathrm{H}-\mathrm{H}]$ ）developed the system of four nonlinear ordinary dif－ ferential equations as a model of nerve conduction in the squid giant axon（Loligo）． R．FitzHugh（［Fi］）and J．Nagumo et al．（［Na］）simplified the system by introducing the following two dimensional autonomous system of ordinary differential equations：

$$
\left\{\begin{array}{l}
\dot{w}=v-\frac{1}{3} w^{3}+w+I \tag{FHN}\\
\dot{v}=\rho(a-w-b v)
\end{array}\right.
$$

where the $\operatorname{dot}(\cdot)$ denotes differetiation and a, ρ, b are real constants such that

$$
\begin{equation*}
a \in \mathbb{R}, \quad \rho>0, \quad 0<b<1 \tag{C1}
\end{equation*}
$$

The variable w corresponds to the potential difference through the axon membrane and v represents the potassim activation．The quantity I is the current through the membrane．The system（FHN）for special values of I has been investigated by using numerical methods and phase space analysis in［Fi］or［ Na ］．

The system（FHN）has a unique equilibrium point（ x_{I}, y_{I} ）for each $I \in \mathbb{R}$ ，where

$$
\begin{aligned}
& x_{I}=\sqrt[3]{\left\{3(I+a / b)+\sqrt{9(I+a / b)^{2}+4(1 / b-1)^{3}}\right\} / 2} \\
&+\sqrt[3]{\left\{3(I+a / b)-\sqrt{9(I+a / b)^{2}+4(1 / b-1)^{3}}\right\} / 2}
\end{aligned}
$$

and

$$
y_{I}=\left(a-x_{I}\right) / b
$$

Instead of the parameter I we introduce a new parameter η. By the transformation $\eta=x_{I}, x=w-\eta$ and $y=v-a / b+\eta / b+\rho b(w-\eta)$, the system (FHN) is transformed to the following system:

$$
\left\{\begin{array}{l}
\dot{x}=y-\left\{\frac{1}{3} x^{3}+\eta x^{2}+\left(\eta^{2}+\rho b-1\right) x\right\} \tag{FNS}\\
\dot{y}=-\frac{\rho b}{3}\left\{x^{3}+3 \eta x^{2}+3\left(\eta^{2}+\frac{1}{b}-1\right) x\right\}
\end{array}\right.
$$

The system (FNS) is called the FitzHugh nerve system and has a unique equilibruim point $E(0,0)$. We shall give some results for the system (FNS) is equivalent to the system (FHN).

Note that, if $\rho b \geq 1$, then the system (FNS) has no non-trivial closed orbits. Thus instead of [C1], we can assume the condition

$$
\begin{equation*}
a \in \mathbb{R}, \quad 0<b<1, \quad 0<\rho<1 / b . \tag{C2}
\end{equation*}
$$

It was studied in such papers as $[\mathrm{H} 1],[\mathrm{K}-\mathrm{S}]$ and $[\mathrm{Su}]$ for the system (FNS) with the condition [C2]. Let $\eta_{0}=\sqrt{1-\rho b}$. The following is our main result.

Theorem. The system (FNS) has a unique non-trivial closed orbit if $\eta^{2}<\eta_{0}^{2}$.
This result improves those given in [K-S] and [H1]. In fact, the result that 'If either $\eta^{2} \leq 4^{-1} \eta_{0}^{2}$ or $\left\{\rho b^{2}-7 b+6<0\right.$ and $\left.\eta^{2}<\eta_{0}^{2}\right\}$, then the system (FNS) has a unique non-trivial closed orbit' was given in [K-S]. In [H1] the result that 'There is a positive constant $\eta_{1} \leq \eta_{0}$ such that the system (FNS) has a unique non-trivial closed orbit for $|\eta| \leq \eta_{1}$ ' was given. Therefore the result of the above theorem is clearly stronger than those in [$\mathrm{K}-\mathrm{S}$] and [H1].

2. Lemmas

In this section we prepare some lemmas to be used in the next section to prove the Theorem. We consider the Liénard system of the following form

$$
\left\{\begin{array}{l}
\dot{x}=y-F(x) \tag{1}\\
\dot{y}=-g(x),
\end{array}\right.
$$

where F is continuously differentiable and g is continuous. We assume the following conditions for the system (1):

$$
\begin{equation*}
x g(x)>0 \text { if } x \neq 0 \tag{C3}
\end{equation*}
$$

[C4] There exist $a_{1}<0$ and $a_{2}>0$ such that $F\left(a_{1}\right)=F\left(a_{2}\right)=0$, $x F(x) \leq 0$ for $a_{1}<x<a_{2}, F(x)$ is nondecreasing for $x<a_{1}$ and $x>a_{2}$,

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \int_{0}^{x}\left\{F^{\prime}(\xi)+|g(\xi)|\right\} d \xi= \pm \infty \tag{C5}
\end{equation*}
$$

To prove the Theorem we shall use the following three lemmas.
Lemma 1. Assume that the system (1) satisfies the conditions [C3], [C4], [C5] and besides
[C6] $\quad G\left(a_{1}\right)>G\left(a_{2}\right)$ and there exists a constant $\alpha \geq 0$ such that $\frac{F(x)}{G^{\alpha}(x)}$ is
nondecreasing for $x \in\left(a_{1}, x_{1}\right) \cup\left(a_{2},+\infty\right)$; moreover, there exists a constant $\delta>0$ such that $\frac{F(x)}{G^{\alpha}(x)}$ is strictly increasing in x with $0<|x|<\delta$,
where $G(x)=\int_{0}^{x} g(\xi) d \xi$ and $x_{1}<0$ is a number satisfying the equation $G\left(a_{2}\right)=$ $G\left(x_{1}\right)$.

Then the system (1) has a unique non-trivial closed orbit.
Proof of Lemma 1. Under the conditions [C3], [C4] and [C5] the system (1) has at least one non-trivial closed orbit. See [H1]. Moreover, by [Ze], under the conditions [C3], [C4] and [C6] the system (1) has at most one non-trivial closed orbit.

We can assume that the condition $\eta^{2}<\eta_{0}^{2}$ in the Theorem holds with $\eta \geq 0$. The proof for the case $\eta<0$ is essentially the same.

Lemma 2. Let

$$
\begin{gathered}
\Gamma(x)=\left\{2 \eta_{0}^{2}+3\left(\frac{1}{b}-1\right)\right\} x^{2}+\eta\left\{2\left(\eta_{0}^{2}-\eta^{2}\right)+3\left(\eta_{0}^{2}+\frac{1}{b}-1\right)\right\} x \\
-3\left(\eta^{2}-\eta_{0}^{2}\right)\left(\eta^{2}+\frac{1}{b}-1\right) . \\
\text { Then } \Gamma\left(\epsilon\left(\eta-\eta_{0}\right)\right)>0 \text { if } \eta^{2}<\eta_{0}^{2}, \text { where } \epsilon=\frac{3\left(\eta+\eta_{0}\right)\left(\eta^{2}+\frac{1}{b}-1\right)}{2 \eta_{0}\left\{2\left(\eta_{0}^{2}-\eta^{2}\right)+3\left(\eta_{0}^{2}+\frac{1}{b}-1\right)\right\}} .
\end{gathered}
$$

Proof of Lemma 2. If $\eta^{2}<\eta_{0}^{2}$, we have

$$
\begin{aligned}
\Gamma\left(\epsilon\left(\eta-\eta_{0}\right)\right)= & \epsilon^{2}\left(\eta-\eta_{0}\right)^{2}\left\{2 \eta_{0}^{2}+3\left(\frac{1}{b}-1\right)\right\} \\
& +\epsilon \eta\left\{2\left(\eta_{0}^{2}-\eta^{2}\right)+3\left(\eta_{0}^{2}+\frac{1}{b}-1\right)\right\}\left(\eta-\eta_{0}\right)-3\left(\eta^{2}-\eta_{0}^{2}\right)\left(\eta^{2}+\frac{1}{b}-1\right) \\
= & \epsilon^{2}\left(\eta-\eta_{0}\right)^{2}\left\{2 \eta_{0}^{2}+3\left(\frac{1}{b}-1\right)\right\}+3\left(\frac{\eta}{2 \eta_{0}}-1\right)\left(\eta^{2}-\eta_{0}^{2}\right)\left(\eta^{2}+\frac{1}{b}-1\right)>0 .
\end{aligned}
$$

Lemma 3. Let

$$
g(x)=\frac{\rho b}{3}\left\{x^{3}+3 \eta x^{2}+3\left(\eta^{2}+\frac{1}{b}-1\right) x\right\} \text { and } G(x)=\int_{0}^{x} g(\xi) d \xi
$$

Then $G(a)-G(-a) \geq 0$ for every $a>0$.
Proof of Lemma 3. Since $G(a)-G(-a)=\frac{2}{3} \rho b \eta a^{3} \geq 0$, the proof is completed.

3. Proof of Theorem

We shall prove the Theorem by using the above three lemmas. We set $F(x)=$ $(1 / 3) x^{3}+\eta x^{2}+\left(\eta^{2}-\eta_{0}^{2}\right) x$. Then, if $\eta^{2}<\eta_{0}^{2}$, we see easily that the system (FNS) satisfies the conditions [C3], [C4] and [C5]. We shall check the condition [C6] in Lemma 1. We have for $\eta^{2}<\eta_{0}^{2}$

$$
a_{1}=\frac{-3 \eta-\sqrt{12 \eta_{0}^{2}-3 \eta^{2}}}{2}<0 \quad \text { and } \quad a_{2}=\frac{-3 \eta+\sqrt{12 \eta_{0}^{2}-3 \eta^{2}}}{2}>0
$$

Then we get

$$
G\left(a_{1}\right)-G\left(a_{2}\right)=\frac{\rho b}{4}\left\{\eta^{3}+2 \eta_{0}^{2}+6\left(\frac{1}{b}-1\right)\right\} \sqrt{12 \eta_{0}^{2}-3 \eta^{2}}>0 .
$$

If $\eta^{2}<\eta_{0}^{2}$, since $0<\epsilon<1$, we have $a_{2}>\frac{3}{2}\left(\eta_{0}-\eta\right)>\epsilon\left(\eta_{0}-\eta\right)$. Let $x_{1}<0$ be a number satisfying the equation $G\left(a_{2}\right)=G\left(x_{1}\right)$. From the above fact, the monotonicity of G and Lemma 3, it follows that

$$
G\left(x_{1}\right)=G\left(a_{2}\right)>G\left(\epsilon\left(\eta_{0}-\eta\right)\right) \geq G\left(\epsilon\left(\eta-\eta_{0}\right)\right)
$$

Using the fact that $a_{1}<x_{1}<\epsilon\left(\eta-\eta_{0}\right)<0$, we shall show that $F(x) / G^{\alpha}(x)$ is nondecreasing for $x \in\left(a_{1}, \epsilon\left(\eta-\eta_{0}\right)\right) \cup\left(a_{2},+\infty\right)$. This means that $F^{\prime}(x) G(x)-$ $\alpha F(x) g(x) \geq 0$ for $x \in\left(a_{1}, \epsilon\left(\eta-\eta_{0}\right)\right) \cup\left(a_{2},+\infty\right)$.

From the calculation in [H1] we see that the above claim means that

$$
\begin{aligned}
& \Phi(x, \alpha) \\
& =(3-4 \alpha) x^{4}+6 \eta(3-4 \alpha) x^{3}+3\left\{5(3-4 \alpha) \eta^{2}-(1-4 \alpha) \eta_{0}^{2}+2(3-2 \alpha)\left(\frac{1}{b}-1\right)\right\} x^{2} \\
& \quad+12 \eta\left\{2(2-3 \alpha) \eta^{2}-(1-3 \alpha) \eta_{0}^{2}+3(1-\alpha)\left(\frac{1}{b}-1\right)\right\} x+18\left(\eta^{2}-\eta_{0}^{2}\right)\left(\eta^{2}+\frac{1}{b}-1\right)(1-2 \alpha) \\
& \geq 0
\end{aligned}
$$

for $x \in\left(a_{1}, \epsilon\left(\eta-\eta_{0}\right)\right) \cup\left(a_{2},+\infty\right)$.
Let $\alpha=\frac{3}{4}$. Thus we get the following expression which is of degree 2 in x.
$\Phi\left(x, \frac{3}{4}\right)$
$=3\left[\left\{2 \eta_{0}^{2}+3\left(\frac{1}{b}-1\right)\right\} x^{2}+\eta\left\{2\left(\eta_{0}^{2}-\eta^{2}\right)+3\left(\eta_{0}^{2}+\frac{1}{b}-1\right)\right\} x-3\left(\eta^{2}-\eta_{0}^{2}\right)\left(\eta^{2}+\frac{1}{b}-1\right)\right]$ $=3 \Gamma(x)$.

If $\eta^{2}<\eta_{0}^{2}$, from the fact that Γ is a function of the degree 2 , the inequality $\Gamma(0)>0$ and Lemma 2, we conclude that $\Phi\left(x, \frac{3}{4}\right) \geq 0$ for $x \in\left(a_{1}, \epsilon\left(\eta-\eta_{0}\right)\right) \cup\left(a_{2},+\infty\right)$. Therefore the condition [C6] in Lemma 1 is satisfied.

4. A numerical example

We shall present the phase portrait of the following system as an example illustrating the application of the Theorem. We consider the system (FNS) with $b=1 / 2$, $\rho=1$ and $\eta^{2}=3 / 8$:

$$
\left\{\begin{array}{l}
\dot{x}=y-\left(\frac{1}{3} x^{3}+\frac{\sqrt{6}}{4} x^{2}-\frac{1}{8} x\right) \tag{2}\\
\dot{y}=-\frac{1}{6}\left(x^{3}+\frac{3 \sqrt{6}}{4} x^{2}+\frac{33}{8} x\right)
\end{array}\right.
$$

In this case, since $\eta_{0}^{2}=1-\rho b=1 / 2>\eta^{2}$, the system (2) satisfies the condition in the Theorem. Thus we see that the system (2) has a unique non-trivial closed orbit(see the Figure below). We note that this system does not satisfy the condition in [H1] nor that of $[\mathrm{K}-\mathrm{S}]$, either.

Figure

5. Appendix

Recently, in [H-T] the result that the system (FNS) has a unique non-trivial closed orbit if $\eta^{2}=\eta_{0}^{2}>\frac{1}{b}-1$ was given by using some Lyapunov-type functions.

In $[\mathrm{Su}]$ it was shown that the system (FNS) has no non-trivial closed orbits if it satisfies the condition

$$
\eta^{2} \geq \eta_{0}^{2} \text { and } \eta^{4}-4 \eta^{2} \eta_{0}^{2}+\eta_{0}^{4}+2\left(\frac{1}{2}-1\right) \eta^{2}-4\left(\frac{1}{b}-1\right) \eta_{0}^{2}+4\left(\frac{1}{b}-1\right)^{2} \geq 0
$$

or

$$
2\left\{\eta_{0}^{2}+\left(\frac{1}{b}-1\right)\right\}^{3}<\dot{\eta}^{2}\left\{\eta^{2}+3\left(\frac{1}{b}-1\right)\right\}^{2}
$$

We do not know yet what happens in the region in the (η, η_{0})-plane in which $\eta^{2}>\eta_{0}^{2}$, but the condition of [Su] is not satisfied. But some numerical experiments
tell us that the system may have two non-trivial closed orbits if $\left(\eta, \eta_{0}\right)$ is in the above mentioned region. Thus we have a conjecture:
'The system (FNS) has either exactly two non-trivial closed orbits or no non-trivial closed orbits in the above mentioned region.'

References

[Fi] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophy. J., 1 (1961), 445-466.
[H1] M. Hayashi, On the uniqueness of the closed orbit of FitzHugh-Nagumo system, Math. Japon., 46 (2) (1997), 331-336.
[H-T] M. Hayashi and M. Tsukada, A uniqueness theorem on the Liénard system with a nonhyperbolic equilibrium point, submitted.
[K-S] E. Kaumann and U. Staude, Uniqueness and nonexistence of limit cycles for the FitzHugh equation, Lecture Notes in Math. 1017, Springer-Verlag, New York, (1983), p. 313-321.
[Na] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE., 50 (1962), 2061-2070.
[Su] J. Sugie, Non-existence of periodic solutions for the FitzHugh nerve system, Quart. Appl. Math., 49 (1991), 543-554.
[Ze] X. Zeng and others, On the uniqueness of the limit cycle of the generalized Liénard equation, Bull. London Math. Soc., 26 (1994), 213-247.

Department of Mathematics,
College of Science and Technology, Nihon University,
Narashinodai, Funabashi, 274-8501, Japan

E-mail address: mhayashi@penta.ge.cst.nihon-u.ac.jp

