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1. Introduction. In this paper the second order half-linear ordinary differential
equation

(1.1) $(p(t)|X|^{\alpha-}\prime 1X)’’+\lambda q(t)|x|^{\alpha-}1x=0$ , $a\leq t\leq b$ ,

is considered together with the boundary conditions

(1.2) $Ax(a)-A’x(\prime a)=0$ , $Bx(b)+B_{X}’’(b)=0$ .

In equation (1.1) we assume that $\alpha>0$ is a positive constant, $p$ and $q$ are real-valued
continuous functions for $a\leq t\leq b$ , and $p(t)>0$ (a $\leq t\leq b$), and $\lambda\in R$ is a real
parameter. In the boundary conditions (1.2), $A,$ $A’,$ $B$ and $B’$ are given real numbers such
that $A^{2}+A^{J2}\neq 0$ and $B^{2}+B^{\prime 2}\neq 0$ .

If $\alpha=1$ , then equation (1.1) reduces to the linear equation

(1.3) $(p(t)_{X’})^{;}+\lambda q(t)x=0$ , $a\leq t\leq b$ ,

and the reduced problem is the Sturm-Liouville eigenvalue problem. This topic is one
of the most important subjects in the theory of second order linear equations. In the
special case that $q(t)>0(a\leq t\leq b)$ , very complete treatments can be developed
([7, 9, 16, 17]), and it is well known that there exists a sequence of real numbers (which
are called eigenvalues) $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}<\cdots$ with $\lim_{narrow\infty}\lambda_{n}=+\infty$ such that (i)
$(1.3)-(1.2)$ has a nontrivial solution (which is called eigenfunction) if and only if $\lambda=\lambda_{n}$

for some $n=0,1,2,$ $\cdots$ ; (ii) the eigenfunction $x=x(t;\lambda_{n})$ associated with $\lambda=\lambda_{n}$ has
exactly $n$ zeros in the open interval $(a, b)$ .

Moreover, in the case where $q(t)$ changes signs in $(a, b)$ , the following is known ([9, 16]):
Let $AA’\geq 0,$ $BB’\geq 0$ and $A^{2}+B^{2}\neq 0$ . Then there exist a sequence of.. positive
eigenvalues $\lambda_{0}^{+}<\lambda_{1}^{+}<\cdot\cdot.\cdot<\lambda_{n}^{+}<\cdots$ with $\lim_{narrow\infty}\lambda_{n}^{+}=+\infty$ and a sequence of
negative eigenvalues $\lambda_{0}^{-}>\lambda_{1}^{-}>,$ $..>\lambda_{n}^{-}>\cdots$ with $\lim_{narrow\infty}\lambda_{n}^{-}=-\infty$ such that (i)
$(1.3)-(1.2)$ has a nontrivial solution (eigenfunction) if $\mathrm{a}\mathrm{n}\grave{\mathrm{d}}$ only if $\lambda=\lambda_{n}^{+}$ or $\lambda_{n}^{-}$ for some
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$n=0,1,2,$ $\cdots$ ; (ii) the eigenfunctions $x=x(t;\lambda_{n}^{+})$ and $x(t;\lambda_{n}-)$ associated with $\lambda=\lambda_{n}^{+}$

and $\lambda_{n}^{-}$ have exactly $n$ zeros in $(a, b)$ .
The main purpose of this paper is to extend the above rerults for (1.3) in a natural

way to the more general equation (1.1). By a solution $x$ of (1.1) it is meant a real-valued
function $x$ such that $x\in C^{1}[a, b],$ $p|x|’\alpha-1x’\in C^{1}[a, b]$ , and $x$ satisfies (1.1) at every point

of $[a, b]$ . A local solution of (1.1) is similarly defined, and it is known [15] that all local

solutions of (1.1) can be continued on the whole interval $[a, b]$ . Equation (1.1) has the
half-linear property in the sense that if $x(t)$ is a solution of (1.1), then, for any constant $c$ ,
$cx(t)$ is also a solution of (1.1). Equation (1.1) always has the trivial solution $x(t)\equiv 0$ for

all $\lambda\in R$ . As in the linear case, if there is a nontrivial solution $x$ of (1.1) satisfying (1.2)

for a certain value of $\lambda\in R$ , then $\lambda$ is called an eigenvalue of the problem $(1.1)-(1.2)$ ,

and the solution $x$ is called an eigenfunction associated with $\lambda$ .
Qualitative properties of solutions of the half-linear equation (1.1) were studied first

by Mirzov [15] and Elbert [3]. Further analysis on (1.1) was made by several authors

including Del Pino et al. [2], Elbert $[4, 5]$ , Hoshino et al. [8], Kusano et al. [10, 11, 13] and

Li and Yeh [14]. Their study shows that most of the basic results for the linear equation
(1.3) can be completely extended to the half-linear equation (1.1).

For eigenvalue problems of the form $(1.1)-(1.2)$ , a natural extension of the results
for $(1.3)-(1.2)$ is given by Elbert [3] and Kusano, Naito and Tanigawa [12]. However, in
$[3, 12]$ , the case where $q(t)>0(a\leq t\leq b)$ is considered. Therefore in this paper we
pay our attention to the case where $q(t)$ may change signs in $(a, b)$ , and give a complete
generalization of the results for the Sturm-Liouville eigenvalue problem $(1.3)-(1.2)$ .

The main theorem is as follows:

Theorem 1.1. Consider the problem $(1.1)-(1.2)$ . Let $AA’\geq 0,$ $BB’\geq 0$ and $A^{2}+$

$B^{2}\neq 0$ , and suppose that $q(t)$ has a $p_{\mathit{0}\mathit{8}it}ive$ value at some point $t\in[a, b]$ . Then the
totality of the positive eigenvalues of $(1.1)-(1.2)$ is composed of a sequence $\{\lambda_{n}^{+}\}_{n}^{\infty}=0$ such
that

$\lambda_{0}^{+}<\lambda_{1}^{+}<\cdots<\lambda_{n}^{+}<\cdots$ , $\lim_{narrow\infty}\lambda_{n}^{+}=+\infty$ .

The eigenfunction $x=x(t;\lambda_{n}^{+})$ associated with $\lambda=\lambda_{n}^{+}$ has exactly $n$ zeros in $(a, b)$ , where
$n=0,1,2,$ $\cdots$ .

It should be noticed that, in the above theorem, the positive property of $q(t)$ on the
whole interval $[a, b]$ is not assumed.

Equation (1.1) can be rewritten as

(1.4) $(p(t)|_{X}’|^{\alpha-}1)’x’+(-\lambda)(’-q(t))|X|^{\alpha}-1_{X=}0$ , $a\leq t\leq b$ .

Therefore we get the next result corresponding to Theorem 1.1.

Theorem 1.2. Consider the problem $(1.1)-(1.2)$ . Let $AA’\geq 0,$ $BB’\geq 0$ and $A^{2}+$

$B^{2}\neq 0$ , and suppose that $q(t)$ has a negative value at some point $t\in[a, b]$ . Then the
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totality of the negative eigenvalues of $(1.1)-(1.2)$ is composed of a sequence $\{\lambda_{n}^{-}\}_{n=}^{\infty}0$ such
that

$\lambda_{0}^{-}>\lambda_{1}^{-}>\cdots>\lambda_{n}^{-}>\cdots$ , $\lim_{narrow\infty}\lambda_{n}^{-}=-\infty$ .

The eigenfunction $x=x(t;\lambda_{n}-)$ associated with $\lambda=\lambda_{n}^{-}$ has exactly $n$ zeros in $(a, b)$ , where
$n=0,1,2,$ $\cdots$ .

We can show without difficulty that the value $\lambda=0$ is not an eigenvalue of $(1.1)-(1.2)$ .
Thus Theorems 1.1 and 1.2 yield the following theorem.

Theorem 1.3. Consider the problem $(1.1)-(1.2)$ . Let $AA’\geq 0,$ $BB’\geq 0$ and $A^{2}+$

$B^{2}\neq 0$ , and suppose that $q(t)$ takes both a positive value and a negative value on $[a, b]$ .
Then the totality of eigenvalues of $(1.1)-(1.2)$ consists of two sequences $\{\lambda_{n}^{+}\}_{n}^{\infty}=0$ and

$\{\lambda_{n}^{-}\}_{n=}^{\infty}0$ such that

.. . $<\lambda_{n}^{-}<\cdots<\lambda_{1}^{-}<\lambda_{0}^{-}<0<\lambda^{++}0<\lambda_{1}<\cdots<\lambda_{n}^{+}<\cdots$

and
$\lim_{narrow\infty}\lambda_{n}^{+}=+\infty$ , $\lim_{narrow\infty}\lambda_{n}^{-}=-\infty$ .

The eigenfunctions $x=x(t;\lambda_{n}^{+})$ and $x(t;\lambda_{n}-)a\mathit{8}SoCiated$ with $\lambda=\lambda_{n}^{+}$ and $\lambda_{n}^{-}$ have exactly
$n$ zeros in $(a, b)$ , where $n=0,1,2,$ $\cdots$ .

Remark. In Theorems 1.1, 1.2 and 1.3, the eigenvalues of $(1.1)-(1.2)$ are simple, i.e.,
for each eigenvalue, the associated eigenfunction is unique up to a multicative constant.

For the proof of Theorems 1.1, a variant of the generalized Pr\"ufer transformation
for the half-linear equation (1.1) plays a crucial role. This transformation involves the
generalized sine function and the generalized cosine function. The definition and the
basic properties of these generalized trigonometric functions are briefly stated in the next
Section 2.

The fundamental theorems (such as the existence, uniqueness and continuous depen-
dence on paprameters of solutions) and the Sturmian theorems (such as comparison and
separation properties concerning the zeros of solutions) are also important tools in this
paper. These are also formulated in Section 2. The proof of Theorem 1.1 is given lin
Section 3.

2. Preparatory Results. We begin by formulating a fundamental theorem on
existence, uniqueness and continuous dependence on parameters for solutions of the half-
linear equation (1.1).

It is easy to see that $x(t)$ is a solution of (1.1) if and only if

$(u_{1}(t), u_{2}(t))=(x(t),p(t)|X’(t)|\alpha-1X(\prime t))$
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is a solution of the first order system

(2.1) $\{$

$u_{1}’=r_{1}(t)|u2|\lambda 1-1u_{2}$ ,

$u_{2}’=r_{2}(t)|u1|\lambda 2-1u_{1}$ ,

where $\lambda_{1}=1/\alpha,$ $\lambda_{2}=\alpha,$ $r_{1}(t)=1/(p(t))^{1/\alpha}$ and $r_{2}(t)=-\lambda q(t)$ . In this sense, the second
order equation (1.1) and the first order system (2.1) is the same.

Fundamental theorems on the initial value problem for equation (1.1) or system (2.1)

are given in the papers of Mirzov [15] and Elbert [3]. By a result in [15], we have the

following theorem.

Lemma 2.1. Let $c\in[a, b],$ $\xi\in R,$ $\eta\in R$ and $\lambda\in R$ be any given constants, and

consider equation (1.1) under the initial condition

(2.2) $x(c)=\xi$ , $x’(c)=\eta$ .

Then the solution $x(t)=x(t;c, \xi, \eta, \lambda)$ of the initial value problem $(1.1)-(2.2)$ exists on
$[a, b]$ and is unique.

Since the initial value problem $(1.1)-(2.2)$ has a unique solution, we find that, for

each $\lambda\in R$ , every nontrivial solution of (1.1) has at most a finite number of zeros in $[a, b]$ .
Further we find that, for each $\lambda\in R$, the solution of (1.1) which satisfies

$Ax(a)-A\prime x’(a)=0$ [resp. $Bx(b)+B’x’(b)=^{\mathrm{o}]}$

is uniquely determined up to a multicative constant.
Applying a standard continuous dependence result (e.g., [1, pp. 18-19]) in the theory

of ordinary differential equations, we see that the solution $x(t;c, \xi, \eta, \lambda)$ in Lemma 2.1 is
a continuous function of $(t, c, \xi, \eta, \lambda)\in[a, b]\cross[a, b]\cross R\cross R\cross R$. Further, if a sequence

{( $c_{i},$
$\xi_{i,\eta_{i},\lambda_{i})\}}$ tends to $(c, \xi, \eta, \lambda)$ as $iarrow\infty$ , then the corresponding sequence of solutions

{ $x$ ( $t$ ; ci, $\xi_{i},$
$\eta_{i},$

$\lambda_{i}$ )} tends to $x(t;c, \xi, \eta, \lambda)$ uniformly for $a\leq t\leq b$ as $iarrow\infty$ .
For the half-linear equation (1.1), the Sturm comparison theorem is still valid as

follows:

Lemma 2.2. Consider the two equations

(2.3) $(p_{1}(t)|X’|^{\alpha-1}x’)’+q_{1}(t)|X|\alpha-1=x0$ , $a\leq t\leq b$ ,

and

(2.4) $(p_{2}(t)|X|/\alpha-1)’X’+q_{2}(t)|_{X|^{\alpha-}X=0}1$ , $a\leq t\leq b$ ,

where $p_{i}(t)$ and $q_{i}(t)$ are continuous functions on $[a, b]$ and $p_{i}(t)>0(a\leq t\leq b),$ $i=1,2$ .
Suppose that

(2.5) $p_{1}(t)\geq p_{2}(t)$ and $q_{1}(t)\leq q_{2}(t)$ for $a\leq t\leq b$ .
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If a nontrivial solution of (2.3) has two zeros $t_{1}$ and $t_{2}(a\leq t_{1}<t_{2}\leq b)$ , then every
nontrivial solution of (2.4) has at least.one zero in $[t_{1}, t_{2}]$ .

The proof of Lemma 2.2 is found in $[3, 15]$ . As an immediate corollary of Lemma 2.2
we get the following result: Suppose that (2.5) holds, and let $x_{1}(t)$ and $x_{2}(t)$ be nontrivial
solutions of (2.3) and (2.4), respectively. If $x_{1}(t)$ has zeros at $t=t_{1}$ and $t_{2}$ , then either
$x_{2}(t)$ has a zero in $(t_{1}, t_{2})$ or $x_{2}(t)$ is a constant multiple of $x_{1}(t)$ . A further corollary $1\mathrm{S}\circ$ the
following extension of the well-known Sturm separation theorem: The zeros of linearly
independent solutions of the same equation (2.3) separate each other.

Now let us define the generalized trigonometric functions $S(\tau),$ $C(\tau)$ and $T(\tau)$ which
generalize the classical trigonometric functions $\sin\tau,$ $\cos\tau$ and $\tan\tau$ , respectively. The
generalized trigonometric functions are used to extend in a natural way the notion of
the Pr\"ufer tarnsformation, known for the Sturm-Liouville equation (1.3), to the half-
linear equation (1.1). These generalized functions are introduced by Elbert [3]. For the
properties stated below, see [3].

The generalized sine function $S=S(\tau)$ is defined as the solution of the specific
half-linear equation

(2.6) $(|\dot{S}|^{\alpha}-1\dot{S})+\alpha|S|^{\alpha}-1S=0$ $( \cdot=\frac{d}{d\tau})$

satisfying the initial condition

(2.7) $S(0)=0$ , $\dot{S}(0)=1$ .

The generalized sine function $S(\tau)$ has the same properties as the classical sine func-
tion $\sin\tau$ . First of all it is defined on $R$ and is periodic with period $2\pi_{\alpha}$ , where

(2.8) $\pi_{\alpha}=\frac{2\pi}{\alpha+1}/\sin\frac{\pi}{\alpha+1}$ .

Further, $S(\tau)$ is an odd function having zeros at $\tau=j\pi_{\alpha},$ $j\in Z$ ; it is positive on the
intervals $2j\pi_{\alpha}<\tau<(2j+1)\pi_{\alpha},$ $j\in Z$ , and negative on the intervals $(2j+1)\pi_{\alpha}<\tau<$

$2(j+1)\pi_{\alpha},$ $j\in Z$ .
The generalized cosine function $C(\tau)$ is the derivative $\dot{S}(\tau)$ of $S(\tau):C(\tau)=\dot{S}(\tau)$ .

The $C(\tau)$ is periodic with period $2\pi_{\alpha}$ , and is an even function. It has zeros at $\tau=$

$(j+ \frac{1}{2})\pi_{\alpha},$ $j\in Z$ , and is positive for $(2j- \frac{1}{2}\mathrm{I}^{\pi}\alpha<\tau<(2j+\frac{1}{2})\pi_{\alpha},$ $j\in Z$ , and

negative for $(2j+ \frac{1}{2})\pi_{\alpha}<\tau<(2j+\frac{3}{2})\pi_{\alpha},$ $j\in Z$ .
We have

$S(\tau+\pi_{\alpha})=-S(\tau)$ and $C(\tau+\pi_{\alpha})=-C(\tau)$ for all $\tau\in R$ .

Moreover, the generalized Pythagorean theorem holds for $S(\tau)$ and $C(\tau)$ :

(2.9) $|S(\tau)|\alpha+1+|C(\tau)|^{\alpha+}1=1$ for all $\tau$ .
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The generalized tangent function $T(\tau)$ is defined by

(2.10) $T( \tau)=\frac{S(\tau)}{C(\tau)}$ for $\tau\neq(j+\frac{1}{2})\pi_{\alpha},$ $j\in Z$ .

It is periodic with period $\pi_{\alpha}$ and satisfies

(2.11) $\dot{T}=1+|T|^{\alpha+1}>0$ for $\tau\neq(j+\frac{1}{2})\pi_{\alpha},$ $j\in Z$ ,

so that $T(\tau)$ is strictly increasing for $(j- \frac{1}{2})\pi_{\alpha}<\tau<(j+\frac{1}{2})\pi_{\alpha},$ $j\in Z$ . We have

$\lim T(\tau)=..-$
.

$\infty$ as $\tauarrow(j-\frac{1}{2}\mathrm{I}^{\pi}\alpha+0$ , and

$\lim T(\tau)=+\infty$ as $\tauarrow(j+\frac{1}{2})\pi_{\alpha}-\mathrm{o}$ .

There exists the inverse function $T^{-1}(\tau)$ of $T(\tau)$ , which is multivalued and the principal
value, denoted by $T_{p}^{-1}(\mathcal{T})$ , can be taken as

$- \frac{1}{2}\pi_{\alpha}<T_{p}^{-1}(\mathcal{T})<\frac{1}{2}\pi_{\alpha}$ for all $\tau$ .

Then, any value $T^{-1}(\tau)$ is expressed as $T^{-1}(\tau)=T_{p}^{-1}(\tau)+j\pi_{\alpha}$ for some $j\in Z$ . It is easy
to see that $T^{-1}(\tau)$ is strictly increasing for $\tau\in R$ and

$\lim_{\tauarrow-\infty}T^{-1}(\mathcal{T})=(j-\frac{1}{2})\pi_{\alpha}$ , $\lim_{\tauarrow+\infty}T-1(\tau)=(j+\frac{1}{2})\pi_{\alpha}$ .

3. Proof of the Main Theorem. In this section we give the proof of Theorem 1.1.
We assume throughout this section that $AA’\geq 0,$ $BB’\geq 0$ and $A^{2}+B^{2}\neq 0$ , and that
$q(t)$ takes a positive value at some point $t\in[a, b]$ .

For each $\lambda\in R$ , let $x(t;\lambda)$ be the solution of (1.1) satisfying the initial condition

(3.1) $x(a)=A’$ , $X^{J}(a)=A$ .

By the underlying hypothesis $A^{2}+A^{J2}\neq 0$ , this solution $x(t;\lambda)$ is nontrivial. Note that
$x(t;\lambda)$ satisfies the first part of the boundary conditions (1.2):

(3.2) $Ax(a)-A\prime\prime X(a)=0$ .

As mentioned in the preceding section, $x(t;\lambda)$ exists on $[a, b]$ and is continuous for $(t, \lambda)\in$

$[a, b]\cross R$ . In addition, if $\{\lambda_{i}\}_{i=1}^{\infty}$ tends to $\lambda\in R$ as $iarrow\infty$ , then the corresponding
sequence of solutions $\{x(t;\lambda_{i})\}$ tends to $x(t;\lambda)$ uniformly on $[a, b]$ as $iarrow\infty$ .
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It is clear that if $x(t;\lambda)$ satisfies the second part of the boundary conditions (1.2):

(3.3) $Bx(b)+B’x’(b)=0$

for some $\lambda\in R$ , then the $\lambda$ is an eigenvalue and $x(t;\lambda)$ is an eigenfunction for the problem
$(1.1)-(1.2)$ .

For $\lambda=0,$ $x(t;0)$ is explicitly given by

(3.4) $x(t;0)=A’+(p(a))^{/}1 \alpha A\int^{t}a\frac{ds}{(p(S))1/\alpha}$, $a\leq t\leq b$ .

Using the conditions on $A,$ $A’,$ $B$ and $B’$ , we easily see that the value $\lambda=0$ is not an
eigenvalue of $(1.1)-(1.2)$ .

In what follows we discuss the case $\lambda>0$ . For the solution $x(t;\lambda),$ $\lambda>0$ , we perform
the next transformation, which consists in associating with $x(t;\lambda)$ the polar functions
$\rho(t;\lambda)$ and $\theta(t;\lambda)$ defined by

(3.5) $x(t;\lambda)=\rho(t;\lambda)s(\theta(t;\lambda))$ , $(p(t))^{1}/\alpha_{X’}(t;\lambda)=\lambda 1/\alpha(\rho t;\lambda)c(\theta(t;\lambda))$ .

Here, $S(\tau)$ and $C(\tau)$ are the generalized sine and cosine functions, respectively, which
are introduced in Section 2. The transformation (3.5) is a variant of the generalized
Pr\"ufer transformation. Note that (3.5) is slightly different from the standard generalized
Pr\"ufer transformation, in which the polar functions $\tilde{\rho}(t;\lambda)$ and $\tilde{\theta}(t;\lambda)$ are defined by
$x(t;\lambda)=\tilde{\rho}(t;\lambda)s(\tilde{\theta}(t;\lambda)),$ $(p(t))^{1}/\alpha X’(t;\lambda)=\tilde{\rho}(t;\lambda)c(\tilde{\theta}(t;\lambda))$ .

In view of (2.9) we have

$\rho(t;\lambda)=\{|x(t;\lambda)|^{\alpha+1}+(\frac{p(t)}{\lambda})^{(\alpha+1})/\alpha|_{X’}(t;\lambda)|\alpha+1\}^{1/\mathrm{t}^{\alpha}1}+)$

Therefore the nontrivial property of $x(t;\lambda)$ implies

$\rho(t;\lambda)>0$ for $a\leq t\leq b$ and $\lambda>0$ .

It can be shown that $(\rho, \theta)=(\rho(t;\lambda), \theta(t;\lambda))$ is determined as the solution of the
system of differential equations

(3.6) $\rho’=\rho\{(\frac{\lambda}{p(t)}\mathrm{I}^{1/\alpha}-\frac{q(t)}{\alpha}\}|S(\theta)|\alpha-1S(\theta)C(\theta)$ ,

(3.7) $\theta’=(\frac{\lambda}{p(t)})^{1/\alpha}|C(\theta)|\alpha+1\frac{q(t)}{\alpha}+|s(\theta)|^{\alpha}+1$ ,

under the initial condition
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(3.8) $\rho(a;\lambda)=\{|A’|^{\alpha+1}+(\frac{p(a)}{\lambda})^{(1)/}\alpha+\alpha|A|^{\alpha}+1\}^{1/(\alpha+1)}$ ,

(3.9) $\theta(a;\lambda)=\tau^{-}1((\frac{\lambda}{p(a)})^{1/}\alpha\frac{A’}{A}\mathrm{I}$ ,

where $T^{-1}$ denotes the inverse of the generalized tangent function $T=S/C$ . We have
$\rho(a;\lambda)>0$ . Further, since $AA’\geq 0$ , we may assume with no loss of generality that

(3.10) $0 \leq\theta(a;\lambda)<\frac{\pi_{\alpha}}{2}$ for the case $A\neq 0$ , and

(3.11) $\theta(a;\lambda)=\frac{\pi_{\alpha}}{2}$ for the case $A=0$ .

Observe that $\theta=\theta(t;\lambda)$ can be solved, independently of $\rho=\rho(t;\lambda)$ , as the solution
of the initial value problem $(3.7)-(3.9)$ , and that if $\theta(t;\lambda)$ is known, then $\rho(t;\lambda)$ can be

explicitly determined as the initial value problem $(3.6)-(3.8)$ :

$\rho(t;\lambda)=\rho(a;\lambda)\exp[\int_{a}^{i}\{(\frac{\lambda}{p(\mathit{8})})1/\alpha-\frac{q(\mathit{8})}{\alpha}\}|S(\theta(s;\lambda))|\alpha-1S(\theta(S;\lambda))c(\theta(s;\lambda))ds]$ .

Thus it is quite important to discuss the initial value problem $(3.7)-(3.9)$ . We denote by
$f(t, \theta, \lambda)$ the right-hand side of (3.7):

$f(t, \theta, \lambda)=(\frac{\lambda}{p(t)})^{1/\alpha}|C(\theta)|\alpha+1\frac{q(t)}{\alpha}|S(\theta)|^{\alpha}++1$ .

It is clear that, for each fixed $\lambda>0,$ $f(t, \theta, \lambda)$ is bounded on $a\leq t\leq b\mathrm{a}\mathrm{n}\mathrm{d}-\infty<\theta<+\infty$.
In view of (2.9), $f(t, \theta, \lambda)$ is rewritten as

$f(t, \theta, \lambda)=(\frac{\lambda}{p(t)})^{1/\alpha}+\{-(\frac{\lambda}{p(t)})^{1/\alpha}+\frac{q(t)}{\alpha}\}|S(\theta)|\alpha+1$ .

Since $|S(\theta)|^{\alpha+}1$ has a bounded continuous derivative $(\alpha+1)|S(\theta)|\alpha-1S(\theta)C(\theta)\mathrm{o}\mathrm{n}-\infty<$

$\theta<+\infty$ , we see that, for each $\lambda>0,$ $f(t, \theta, \lambda)$ satisfies a Lipschitz condition with respect
to $\theta$ on $a\leq t\leq b\mathrm{a}\mathrm{n}\mathrm{d}-\infty<\theta<+\infty$ . Consequently we conclude that, for each $\lambda>0$ ,

the problem $(3.7)-(3.9)$ has a unique solution $\theta=\theta(t;\lambda)$ on $a\leq t\leq b$ . By a standard
continuous dependence result in the theory of ordinary differential equations, $\theta(t;\lambda)$ is a

continuous function of $(t, \lambda)\in[a, b]\rangle\langle(0, \infty)$ .
It is easy to see that $\lambda>0$ is an eigenvalue of $(1.1)-(1.2)$ if and only if $\lambda$ satisfies

(3.12) $\theta(b;\lambda)=^{\tau^{-}}1(-(\frac{\lambda}{p(b)}\mathrm{I}^{1/\alpha}\frac{B’}{B})+(n+1)\pi_{\alpha}$

for some $n\in Z$ . Here, by virtue of $BB’\geq 0$ , we assume without loss of generality that
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$- \frac{\pi_{\alpha}}{2}<T^{-1}(-(\frac{\lambda}{p(b)}\mathrm{I}^{1/\alpha}\frac{B’}{B})\leq 0$ for the case $B\neq 0$ , and,

$T^{-1}(-( \frac{\lambda}{p(b)}\mathrm{I}^{1/\alpha}\frac{B’}{B})=-\frac{\pi_{\alpha}}{2}$ for the case $B=0$ .

Lemma 3.1. The function $\theta(b;\lambda)$ is strictly increasing for $\lambda\in(0, \infty)$ .

Proof. As before, let us denote by $f(t, \theta, \lambda)$ the right-hand side of (3.7). Then,
$f(t, \theta, \lambda)$ satisfies a Lipshitz condition with respect to $\theta$ on $a\leq t\leq b\mathrm{a}\mathrm{n}\mathrm{d}-\infty<\theta<+\infty$ .
Clearly, $f(t, \theta, \lambda)$ is a nondecreasing function of $\lambda\in(0, \infty)$ , and, since $AA’\geq 0$ , the
initial value $\theta(a;\lambda)$ given by (3.9) is also nondecreasing for $\lambda\in(0, \infty)$ . Then a standard
comparison theorem for the first order scalar differential equations implies that $\theta(t;\lambda)$ is
a nondecreasing function of $\lambda\in(0, \infty)$ for each fixed $t\in[a, b]$ .

Let $0<\lambda<\mu$ be fixed. Then, $\theta(t;\lambda)\leq\theta(t;\mu)$ for $t\in[a, b]$ . Assume that
$\theta(t;\lambda)\equiv\theta(t;\mu)$ for all $t\in(a, b)$ . Then, $\theta’(t;\lambda)\equiv\theta’(t;\mu)$ , and so we have $f(t, \theta(t;\lambda),$ $\lambda)\equiv$

$f(t, \theta(t;\mu),$ $\mu)$ , from which it follows that $C(\theta(t;\lambda))\equiv C(\theta(t;\mu))\equiv 0$. This implies that
$\theta(t;\lambda)\equiv(m+\frac{1}{2})\pi_{\alpha}$ for some integer $m\in Z$ , and hence, by equation (3.7), $q(t)\equiv 0$ for
all $t\in(a, b)$ . This is a contradiction to the assumption that $q(t)>0$ for some $t\in[a, b]$ .
Therefore we have

$\theta(c;\lambda)<\theta(c;\mu)$ for some $c\in(a, b)$ .

Then, applying a standard compar.ison theorem again,. we conclude that $\theta(b;\lambda)<\theta(b;\mu)$ .
The proof of Lemma 3.1 is complete.

Now we claim that $x(t;\lambda)$ has no zeros in the interval $(a, b]$ for all sufficiently small
$\lambda>0$ . As stated before, $x(t;\lambda)arrow x(t;0)$ as $\lambdaarrow 0$ uniformly on $[a, b]$ . We note that
$x(t;\lambda)$ satisfies

$x(t; \lambda)=A’+\int_{a}t|\frac{p(a)}{p(s)}|A|^{\alpha}-1A-\frac{\lambda}{p(s)}I(s;\lambda)|(1/\alpha)-1\{\frac{p(a)}{p(s)}|A|^{\alpha-1}A-\frac{\lambda}{p(s)}I(s;\lambda)\}d_{S}$

for $a\leq t\leq b$ , where

$I( \mathit{8};\lambda)=\int_{a}^{s}q(r)|X(r;\lambda)|\alpha-1(Xr;\lambda)dr$ , $a\leq s\leq b$ .

Then it is easy to find that if $A=0$ or $AA’>0$ , then $x(t;\lambda)$ has no zeros in the closed
interval $[a, b]$ for all sufficiently small $\lambda>0$ , and that if $A\neq 0$ and $A’=0$ , then $x(t;\lambda)$

has no zeros in the interval $(a, b]$ for all sufficiently small $\lambda>0$ . Further, since

$p(t)|X’(t; \lambda)|^{\alpha}-1x’(t;\lambda)=p(a)|A|^{\alpha-1}A-\lambda\int_{a}^{t}q(S)|X(s;\lambda)|\alpha-1x(S;\lambda)d_{S}$
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for $a\leq t\leq b$ , we see that if $A\neq 0$ , then $x’(t;\lambda)$ has no zeros in $[a, b]$ for all sufficiently
small $\lambda>0$ .

Next we claim that the number of zeros of $x(t;\lambda)$ in $[a, b]$ can be made as large as
possible if $\lambda>0$ is chosen sufficiently large. To this end, we consider the equation

$(|X’|\alpha-1xJ)’\mu^{\alpha}+\alpha|_{X1x}+1\alpha-1=0$,

where $\mu>0$ is a constant. Clearly, $S(\mu t)$ is a solution of the above equation, and has
zeros at $t=j\pi_{\alpha}/\mu,$ $j$

.
$\in Z$ , where $S(\tau)$ is the generalized sine function introduced in

Section 2. By the assumption that $q(t)$ is positive at some $t\in[a, b]$ , there is an interval
$[a’, b’]\subset[a, b]$ such that $q(t)>0$ for all $t\in[a’, b’]$ . Let $k\in N$ be any given positive
integer and take $\mu>0$ so that $S(\mu t)$ has at least $k+1$ zeros in $[a’, b’]$ . Let $p^{*}>0$ and
$\lambda_{*}>0$ be numbers such that

$p^{*}= \max,,’ p([ab]t)$ and $\lambda_{*}\min_{[ab]},,’ q(t)=\alpha p^{*}\mu^{\alpha+1}$ .

Then, comparing the equation (1.1) with $\lambda>\lambda_{*}$ and the equation

$(p^{*}|X’|^{\alpha}-1\prime x)’+\alpha p^{*}\mu^{\alpha+}1|X|^{\alpha-1}x=0$ , $a’\leq t\leq b’$ ,

we conclude by Lemma 2.2 that all solutions of (1.1) with $\lambda>\lambda_{*}$ have at least $k$ zeros
in $[a’, b’]$ , hence in $[a, b]$ . In particular, $x(t;\lambda)$ with $\lambda>\lambda_{*}$ has at least $k$ zeros in $[a, b]$ .
Since $k$ is an arbitrary positive integer, this shows that the number of zeros of $x(t;\lambda)$ in
$[a, b]$ can be made as large as possible if $\lambda>0$ is chosen sufficiently large.

Since $\rho(t;\lambda)>0(a\leq t\leq b, \lambda>0)$ , it follows from (3.5) that $x(t;\lambda)$ has a zero
at $t=c\in[a, b]$ if and only if there exists $j\in Z$ such that $\theta(c;\lambda)=j\pi_{\alpha}$ . Moreover, if
$\theta(c;\lambda)=j\pi_{\alpha}(c\in[a, b], j\in Z)$ , then, by (3.7), $\theta’(c;\lambda)=(\lambda/p(c))1/\alpha>0$ . Therefore we
easily see that if $\theta(c;\lambda)=j\pi_{\alpha}(c\in[a, b],j\in Z)$ , then $\theta(t;\lambda)>j\pi_{\alpha}$ for $c<t\leq b$ .

Thus the above results about the number of zeros of $x(t;\lambda)$ may be restated as the
following way:

Lemma 3.2. (i) For all sufficiently small $\lambda>0$ ,

$\{$

$0< \theta(b;\lambda)<\frac{\pi_{\alpha}}{2}$ in the case $A\neq 0$ , and

$0<\theta(b;\lambda)<\pi_{\alpha}$ in the case $A=0$ .

(ii) $\lim\theta(b;\lambda)=+\infty$ as $\lambdaarrow+\infty$ .

PROOF OF THEOREM 1.1. We are now ready to prove Theorem 1.1. We seek
$\lambda>0$ satisfying (3.12) for some $n\in Z$ . The left-hand side $\theta(b;\lambda)$ of (3.12) is a continuous
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function of $\lambda\in(0, \infty)$ , and it is strictly increasing for $\lambda\in(0, \infty)$ by Lemma 3.1, and
moreover it has the following properties by Lemma 3.2:

$\{$

$0 \leq\lim_{\lambdaarrow 0+}\theta(b;\lambda)<\frac{\pi_{\alpha}}{2}$ in the case $A\neq 0$ , and

$0 \leq\lim_{\lambdaarrow 0+}\theta(b;\lambda)<\pi_{\alpha}$ in the case $A=0$ ,

and
$\lim_{\lambdaarrow+\infty}\theta(b;\lambda)=+\infty$ .

On the other hand, by virtue of $BB’\geq 0$ , the right-hand side of (3.12) is a nonincreasing
function of $\lambda\in(0, \infty)$ for each $n\in Z$ . More precisely, in the case $BB’>0$ , it is strictly

decreasing and varies from $(n+1)\pi_{\alpha}$ to $(n+ \frac{1}{2})\pi_{\alpha}$ as $\lambda$ varies from $0\mathrm{t}\mathrm{o}+\infty$ . In the case
$B’=0$ , it is the constant function $(n+1)\pi_{\alpha}$ ; and in the case $B=0$ , it is the constant

function $(n+ \frac{1}{2})\pi_{\alpha}$ .
From what was observed in the above we find that, for each $n=0,1,2,$ $\cdots$ , there

exists a unique $\lambda_{n}^{+}>0$ such that

(3.13) $\theta(b;\lambda_{n}^{+})=T-1(-(\frac{\lambda_{n}^{+}}{p(b)}\mathrm{I}^{1/\alpha}\frac{B’}{B})+(n+1)\pi_{\alpha}$ .

Then, each $\lambda_{n}^{+}$ is an eigenvalue of $(1.1)-(1.2)$ , and the associated eigenfunction $x(t;\lambda_{n}^{+})$

has exactly $n$ zeros in the open interval $(a, b)$ , where $n=0,1,2,$ $\cdots$ . It is clear that

$\lambda_{01}^{+}<\lambda^{+}<\cdots<\lambda_{n}^{+}<\cdots$ , $\lim_{narrow\infty}\lambda_{n}^{+}=+\infty$ .

The proof of Theorem 1.1 is complete.

Theorems 1.2 and 1.3 can be easily derived from Theorem 1.1.
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