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1. Introduction

The purpose of this talk is to present the notion of $\mathrm{C}$-algebra, a concept that appears

particularly suited in the discussion of various topics of current interest in mathematics

and mathematical physics: rational conformal field theories (rcft), topological field the-

ories, singularity theory and related problems. The concept was originally developed in

relation with finite groups and the algebras of their characters and classes (whence the
“

$\mathrm{C}$
” ): this exposes clearly one of the key features of these algebras, namely the pattern

of two dual algebras. More generally, (the precise definition will be given in sect. 3),
$\mathrm{C}$-algebras are associative, commutative algebras with a finite number of generators. They

come in dual pairs, endowed with different multiplication laws, one algebra being gener-

ated by the idempotents of the other. We shall illustrate and apply this concept in two

different contexts: the association between rational conformal field theories and graphs on

the one hand; the folding of root systems and Dynkin diagrams on the other. In both

cases, generalized Dynkin diagrams are the central objects, and pairs of algebras that are

naturally associated with these graphs are $\mathrm{C}$-algebras. The study of the $\mathrm{C}$ -subalgebras (to

be also defined below) then enables one to understand the relationship between rcft and

graph-how to construct one object from the other-and to understand the folding of root

systems, Dynkin diagrams and reflection groups.

Because certain positivity properties play an important role in the discussion of C-

algebras, we start with a presentation of such properties that are empirically observed in

different contexts but do not seem to have been given enough attention.

For the sake of brevity, all the discussion will be restricted to the simplest-and best

understood-case: rcft associated with $sl(2)$ , “minimal” topological field theories, simple

singularities, ordinary Coxeter-Dynkin diagrams, etc. There is ample evidence, however,

-and a few proofs-, that the present considerations extend to a much larger context.

2. Three empirical facts

Consider the prepotential $F(\mathrm{t})$ of one of the $ADE$ singularities. Here $\mathrm{t}=(t^{1}, \cdots , t^{n})$ ,

where $n$ is the rank of the associated $ADE$ algebra (the Milnor number of the singularity);

the $t^{j}$ are the flat coordinates in the versal deformation of the singularity. $F(\mathrm{t})$ satisfies the

Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations [1], which express the associativity

of the algebra with structure constants $C_{ij}k(\mathrm{t})$ , where $C_{ijk}( \mathrm{t})=\frac{\partial^{3}F}{\partial t^{t}\partial t^{j\partial}t^{k}}$ , and indices are

raised and lowered with the $t$-independent tensor $\eta_{kl}=C_{1kl}$ , and its inverse $\eta^{jk}$ . The
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prepotential $F$ is a quasihomogeneous polynomial of degree $2(h+1)$ if we assign to the
variables $t^{i}$ the degrees $\deg(t^{i})=(h+1-\lambda_{i})$ , where $\lambda_{i}$ is the i-th Coxeter exponent
of the $ADE$ algebra: these exponents are supposed to be labelled in increasing order:
$\lambda_{1}=1<\lambda_{2}\leq\cdots\leq\lambda_{n-1}<\lambda_{n}=h-1,$ $h$ the Coxeter number. It is convenient to change
notations, labelling the $t’ \mathrm{s}$ with the value of $\lambda_{i}$ , hence replacing $t^{i}$ with $t^{\lambda_{i}}$ , and accordingly
to denote the structure constants $C_{\lambda_{i}\lambda_{i^{\lambda}k}}$ or $C_{\lambda\mu\nu}$ , for $\lambda,$

$\mu,$ $\nu$ exponents. The expressions
of the prepotentials for the various $ADE$ cases have been listed in the literature ([2-3] and
further references therein).

Now, by inspection, we observe the following
Fact 1 : For the $A_{n},$ $D_{2n},$ $E_{6}$ and $E_{8}$ cases, th $\mathrm{e}re$ exists a choice of flat coordinates for
which all the coefficients of $F$ are real positi $\mathrm{v}e$ . For $D_{2n+1}$ an $dE_{7}$ there is no such choice.

Two remarks are in order.
First, why is it meaningful to look at reality and positivity properties in a problem that
looks intrinsically complex?
Secondly it is curious that this splitting of the $ADE$ classification scheme into the same
two sub-families appears also in other contexts. Let us quote

1) the structure of the modular invariant partition function of conformal field theories
with a $sl(2)\wedge$ current algebra. The latter are known to follow an $ADE$ classification
scheme $[4,5]$ . The question is to know if this partition function, which is a certain
sesquilinear form with non negative integer coeflicients, may or may not be written as
a sum of blocks

$Z= \sum N_{\lambda\overline{\lambda}}\chi\lambda\overline{x}_{\overline{\lambda}}$ $\Lambda_{\lambda\overline{\lambda}}’\in \mathbb{N}$ $(2.1a)$

$= \sum_{i}?|\sum_{\lambda\in\hat{\tau}_{\alpha}}\chi_{\lambda}|2$
$($ 2.1 $b)$

For example, the cases labelled by $D_{10}$ and $E_{7}$ read respectively

$Z^{(D_{1})}0=|x_{1}+x17|2+|x3+\chi 15|2+|x5+\chi_{1}3|^{2}+|x7+x11|^{2}+2|\chi 9|^{2}$ $(2.2a)$

$Z^{(E_{7})}=|\chi_{1}+\chi_{17}|2+|x5+x13|^{2}+|\chi_{7}+\chi_{11}|^{2}+|\chi_{9}|^{2}+$ ( $(\chi_{3}+\chi_{15})x_{9}^{*}+\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{X}$ conj.)

$=|\chi_{1}+\chi 17|2|x5+\chi_{1}3|^{2}+|x7+x_{1}1|2++|x_{9}+\chi_{3}+\chi 15|2-|x_{3}+x_{1}5|2(2.2b)$

(for more details and explanation of notations, see below sect. 5).
2) the positivity of the structure constants of the “Pasquier algebras” to be discussed

below;
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3) the existence or non-existence of a “flat connection” on the path algebra on the Dynkin

diagram [6];

4) the positivity of the coefficients of the prepotential just discussed;

5) the positivity properties of the coefficients of the factors of the Poincar\’e polynomial of

the local (or “chiral”) ring of the singularity. Let us discuss briefly this latest aspect,

as it does not seem to be generally known. For any of the $ADE$ singularities, let

$p$ denote the minimal number of non morsian variables $X_{i}$ . that enter the singular

polynomial. Let us write the Poincar\’e polynomial in the form

$P(t)= \prod_{i=1}^{p}\frac{(1-t^{h-}\deg(xi))}{(1-t^{\mathrm{d}\mathrm{e}}\mathrm{g}(X_{i}))}$ (2.3)

in terms of the degrees of the variables $X_{i}$ and of the Coxeter number $h$ , equal to the

degree of the singular polynomial.

$h$ $p$ $\{\deg(xi)\}$ exponents $\lambda$

$A_{n}$ $n+1$ 1 1 $1,2,$ $\cdots,$ $n$

$D_{l+2}$ $2(P+1)$ 2 2, $l$ 1, 3, $\cdots,$ $2P+1,l+1$
$E_{6}$ 12 2 3,4 1,4,5,7,8,11
$E_{7}$ 18 2 4,6 1, 5, 7, 9, 11, 13, 17
$E_{8}$ 30 2 6,10 1, 7, 11, 13, 17, 19, 23, 29

It is then an easy and amusing exercise to check that $P(t)$ may be written as a product

of $p$ factors with positive coefficients only in the first subfamily. (I owe this observation

to M. Bauer [7] $)$ . This is somehow the $\mathrm{m}\dot{\mathrm{u}}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ counterpart of the property 1)

mentionned above.

The interesting thing is that the simultaneous occurrence of several of these proper-

ties seem to extend beyond the $ADE$ case discussed here. The status of these various

occurences is however not the same. I think it is fair to say that 1) is the best understood,

as it is related to a structural property of the underlying conformal field theory. 2) is

related to 4) as we shall see soon, but I doubt that 4) may be extended beyond the case of

simple singularities, as the prepotential is then no longer a polynomial. Finally it seems

that 5) does not generalize: for some singularities believed to be in correspondence with

some conformal field theory, property 5) may fail while 1) and 2) are true (for example,

the singularity associated with the fusion potential of $sl(4)_{4}\wedge)$ .

In fact we are not going to make use of Fact 1 for generic $\mathrm{t}$ , but only for a particular

case, obtained by the so-called Chebishev specialization. This refers to the deformation of
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the $ADE$ singularity for which all the flat coordinates but the one, $t^{n}$ , with the smallest de-
gree $\deg(t^{n})=2$ , (the largest exponent $\lambda_{n}=h-1$ ), i.e. the “less relevant” in the language
of physics, is kept non zero. As it is the only parameter in the homogeneous deformed poly-
nomial $W(X_{1}, \cdots, X_{p}, tn)$ , one may rescale it to $t^{n}=1$ . The origin of the denomination is
that for the $A_{n}$ case, the deformed polynomial reads then $W_{A_{n}}(X_{1;}t^{n}=1)=T_{n+1}(x_{1})$ ,
with $T_{n+1}(x)$ the degree $n+1$ Chebishev polynomial of first kind, $T_{n+1}(x)=2\cos(n+1),\theta$

if $x=2\cos\theta$ .

We also need some notations on the $ADE$ Dynkin diagrams. Let $G_{ab}$ denote the
adjacency matrix of the Dynkin diagram under consideration: $a,$ $b=1,$ $\cdots,$ $n$ label the
vertices. The corresponding Cartan matrix is $C_{ab}=2\delta_{ab}-G_{ab}$ . The eigenvectors $\psi^{(\lambda)}$

and eigenvalues of these symmetric matrices are indexed by the Coxeter exponents $\lambda$ ,

$G_{ab} \psi^{(\lambda)}b=2\cos\frac{\pi\lambda}{h}\psi^{(\lambda)}a$ (2.4)

The $\psi^{(\lambda)}$ may be chosen orthonormal.

Then we can state the

Fact 2 : The structure constan $ts$ of the chiral ring in the Chebishev specialization $\mathrm{a}\mathrm{r}e$

$di$agonalized by the $\psi^{(\lambda)}$

$M_{\lambda\mu} \nu:=C_{\lambda\mu}\mathcal{U}(t^{n}=1)=\sum_{a}\frac{\psi_{a}^{(\lambda)()}\psi a\mu\psi_{a}*(\nu)}{\psi_{a}^{(1)}}$ (2.5)

Here I have introduced the notation $M$ to be used in the forthcoming discussion. In
the denominator of the right hand side, there appears the exponent 1, that yields the
largest eigenvalue of the matrix $G$ . By the Perron-Frobenius theorem, all the components
of $\psi^{(1)}$ are non vanishing and of the same sign.

Fact 2 is not a surprise in the $A_{n}$ case, where it follows from the combined work
of Verlinde [8] and Gepner [9]. Indeed the above structure constants reduce then to the
fusion coefficients of the $sl(2)\wedge$ algebra, for a value of the level (central extension) equal to
$k=n-1$ , and the latter are known to have an interpretation in terms of the chiral ring
of a topological field theory. For the other $D$ and $E$ cases, the observation was made (in
essence, not quite in these terms) by Lerche and Warner [10], and made more systematic
and extended in [3].
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The previous formula suggests to consider also the dual algebra (we shall see below

that the word “dual” is legitimate), with structure constants

$N_{ab}C:= \sum_{\lambda}\frac{\psi_{a}\psi(\lambda)(\lambda)b\psi_{C}^{(}\lambda)*}{\psi_{1}^{(\lambda)}}$ (2.6)

where the sum runs over the exponents $\lambda$ of the case at hand. This definition depends

on a choice of a vertex denoted 1 for which all the $\psi_{1}^{(\lambda)}$ are non-vanishing. Such a vertex

exists for all the $ADE$ cases. There may remain, however, some arbitrariness in the choice

of that vertex 1 and also, in the case $D_{2n}$ for which an exponent occurs with multiplicity

2, in the choice of the basis $\psi_{a}^{(\lambda)}$ . Now comes the

Fact 3 : For the $A_{n},$ $D_{2n},$ $E_{6}$ and $E_{8}$ cases, th $\mathrm{e}re$ exists a choice of vertex 1 and of the

$b$asis $\psi_{a}^{(\lambda)}$ such that the struct $\mathrm{u}re$ constants $M_{\lambda\mu}\nu$ and $N_{ab}c$ are all non negative. For the

cases $D_{2n+1}$ and $E_{7}$ , there exists no such choice.

Note that the non-negativity of the $M$ is a simple consequence of Fact 1 $\cap$ Fact 2.

For the $ADE$ cases, the numbers $N$ turn out to be integers (with an adequate choice of

1 and the basis). The interpretation of these numbers in the various contexts in which

they occur (conformal field theories, topological theories and singularities, lattice models)

has remained elusive so far. In contrast, the $M$ that are in general non integers but

rather algebraic numbers, have such an interpretation: they give the structure constants

of the chiral ring of the Chebishev specialization, as just explained; in the context of

conformal field theories and integrable lattice models, they give the coupling constants of

field operators [11], [8], [12]. It is in that context that this algebra was first introduced by

Pasquier [11], whence the name of Pasquier algebras that I give to the pair of $M$ and $N$

algebras.

3. C-algebras

3.1. Definitions and examples

The appropriate language to discuss these Pasquier algebras is that of $C$-algebras, (“ $\mathrm{C}$
”

for character), introduced in the $40’ \mathrm{s}$ by Kawada and recently reviewed and revived by

Bannai and Ito [13].

Definition : An alge $\mathrm{b}r\mathrm{a}$ ut over $\mathbb{C}$ with a given $b$asis $x_{1},$ $\cdots,$ $x_{n}$ , is a $C$-alge$\mathrm{b}ra$ if $it$

satisfies the following axioms:
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$i)$ it is a commutative and associative algebra with real structure constants $p_{ab^{C}},$ $i.e$ .
$Xa \cdot xb=\sum_{C}p_{ab}cx_{c}$ ;

$\mathrm{i}i)$ it has an identity element, denoted $x_{1},$ $i.e$ . $p_{1a}=\delta bab$ ;
$iii)$ there is an involution on the generators $x_{a}-+x_{\overline{a}}$ that is an automorphism of the

algebra, $i.e$ . $p_{ab}=p_{\overline{a}\overline{b}}c\overline{C}$ ;
$iv)p_{ab}1=k_{a}\delta_{a\overline{b}}$ , with $k_{a}$ a real positive number $k_{a}>0$ ;
v) the $k_{a}$ form a one-dimensional representation of the algebra.

Among the various consequences of these axioms, is the fact that $\mathfrak{U}$ is semi-simple.
There are $n$ one-dimensional representations of the algebra, that we label by an index $\lambda$

taking $n$ values: $x_{a}\mapsto p_{a}(\lambda)\in \mathbb{C}$. The value $\lambda=1$ refers to the special representation of
axiom v): $p_{a}(1)=k_{a}$ . If $e_{\lambda}$ denote the corresponding idempotents, one may decompose
$x_{a}= \sum_{\lambda}p_{a}(\lambda)e_{\lambda}$ The matrix $p_{a}(\lambda)$ is invertible, let $q_{\lambda}(a)$ denote the matrix such
that $\sum_{\lambda}p_{a}(\lambda)q_{\lambda}(b)=\kappa\delta_{ab},$ $\kappa:=\sum_{a}k_{a}$ . More explicitly, the matrices $P_{a}$ of elements
$(P_{a})_{b}^{c}=\sqrt{\frac{k_{c}}{k_{b}}}p_{ab^{C}}$ form a representation of the algebra $\mathfrak{U}$ . They are normal and commuting,
and thus diagonalizable in a common orthonormal basis $\psi_{a}^{(\lambda)}$ . All $\psi_{1}^{(\lambda)}$ and $\psi_{a}^{(1)}$ are non
vanishing and may thus be chosen real positive. One may write

$p_{ab}=c \sqrt{\frac{k_{a}k_{b}}{k_{c}}}\sum\frac{\psi_{a}^{(\lambda)}\psi^{(}b\psi_{\mathrm{C}}\lambda)(\lambda)*}{\psi_{1}^{(\lambda)}}\lambda$

$\sqrt{k_{a}}=\frac{\psi_{a}^{(1)}}{\psi_{1}^{(1)}}$

$p_{a}( \lambda)=\frac{\psi_{a}^{(\lambda)(1}\psi_{a})}{\psi_{1}^{(\lambda)}\psi^{()}11}$

(3.1)

$q_{\lambda}(a)= \frac{\psi_{a}*\psi_{1}(\lambda)(\lambda)}{\psi_{a}^{(1)}\psi^{()}11}$

and let $\hat{k}_{\lambda}$ be such that

$\sqrt{\hat{k}_{\lambda}}=\frac{\psi_{1}^{(\lambda)}}{\psi_{1}^{(1)}}$ (3.2)

One may then show that the dual $\hat{\mathfrak{U}}$ of Ut, defined as the set of linear maps from $\mathfrak{U}$ into $\mathbb{C}$ ,
is endowed with a structure of $\mathrm{C}$ -algebra: its basis is labelled by the $\lambda$ , its one dimensional
representations are provided by the $q_{\lambda}(a)$ , among which $q_{\lambda}(1)=\hat{k}_{\lambda}$ are positive, and the
structure constants of the algebra are

$q_{\lambda\mu}= \nu\sqrt{\frac{\hat{k}_{\lambda}\hat{k}_{\mu}}{\hat{k}_{\nu}}}\sum_{a}\frac{\psi_{a}^{(\lambda)}\psi^{(\mu)()}a\psi a*\nu}{\psi_{a}^{(1)}}$

(3.3)
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The $k_{a}$ and $\hat{k}_{\lambda}$ are called the Krein parameters of the algebras. They satisfy $\kappa=\sum_{a}k_{a}=$

$\sum_{\lambda}\hat{k}_{\lambda}=1/\psi_{1}(1)2$

Alternatively, one may regard this dual $\hat{\mathfrak{U}}$ as a second $\mathrm{C}$ -algebra structure on Ut, with

basis $\kappa e_{\lambda}$ and idempotents $x_{a}$ . To recapitulate, $\mathfrak{U}$ is endowed with a pair of dual C-

algebra structures, one with multiplication., structure constants $p_{ab}C$ in the basis $x_{a}$ , and

idempotents $e_{\lambda}$ , and the other with multiplication $0$ , structure constants $q_{\lambda\mu}\nu$ in the basis

$\kappa e_{\lambda}$ and idempotents $x_{a}$

$x_{a}.x_{b}= \sum_{C}p_{ab}x_{c}C$
, $e_{\lambda}.e_{\mu}=\delta_{\lambda\mu}e\lambda$

(3.4)
$\kappa e_{\lambda^{\circ\kappa e}\mu}=\sum q_{\lambda\mu}\nu\nu\kappa e_{\mathcal{U}}$

, $x_{a}\mathrm{o}x_{bb^{X_{a}}}=\delta a$

Examples:

1. Character and class algebras of a finite group. Let $\Gamma$ be a finite group, $C_{a}$ denote its

equivalence classes, $(\rho)$ its irreducible representations, $\chi^{(\rho)}$ their characters, $\chi_{a}^{(\rho)}$ the value

of these characters on class $a;a=1$ refers to the class of the identity, $\rho=1$ to the identity

representation; $d_{\rho}=\chi_{1}^{(\rho)}$ is the dimension of representation $\rho$ . One has two dual algebras

$C_{a}C_{b}=cbCacC$
$–(3.5)$

$xx=(\lambda)(\mu).I\mathrm{t}\chi(’\lambda\mu\nu\nu)$

Introducing the $\chi_{a}^{\lambda}\wedge=\sqrt{\frac{|C_{a}|}{|\Gamma|}}\chi_{a}^{(\lambda)},$ orthonorma! by virtue of the standard orthogonality and

completeness relations of characters, one may write

$p_{ab}=C_{ab}cc= \sqrt{\frac{|C_{a}||Cb|}{|.C_{C}|}}\sum$

.

$\frac{\chi_{a}^{(\lambda)}x_{b}\chi^{(\lambda)*}\wedge\wedge(\lambda)\wedge C}{\chi_{1}^{(\lambda\rangle}\wedge}\lambda$

(3.6)

$q_{\lambda\mu} \nu=\frac{d_{\lambda}d_{\mu}}{d_{\nu}}K^{\lambda\mu}\nu=\frac{d_{\lambda}d_{\mu}}{d_{\nu}}\sum_{a}\frac{\chi_{a}x\wedge(\lambda)\wedge(a\mu)\chi_{a}^{(}\wedge\nu)*}{\chi_{a}^{(1)}\wedge}$

The two dual algebras have integer Krein parameters $k_{a}=|C_{a}|,\hat{k}_{\lambda}=d_{\lambda}^{2}$ with the well

known relation $| \Gamma|=\sum k_{a}=\sum\hat{k}_{\lambda}=\sum d_{\lambda}^{2}$.

2. The Pasquier algebras introduced above are obviously a pair of dual $\mathrm{C}$-algebras. The

structure constants $p_{ab}C$ and $q_{\lambda\mu}\nu$ are respectively proportional to $N_{ab}c$ and $M_{\lambda\mu}\nu$ , as indi-

cated in (3.1) and (3.3). In that case, in contrast with example 1, the Krein parameters

are not integers. Among these Pasquier algebras, there are the fusion algebras of affine
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algebras $\hat{\mathrm{g}}$ . In that case, the two dual algebras are in fact isomorphic: this is due to the fact
that according to the Verlinde formula, the diagonalizing matrix is the symmetric unitary
matrix $S$ of modular transformations of the affine characters [8]. Also, in that case, the
Krein parameters are equal to $\hat{k}_{\lambda}=(\frac{s_{1\lambda}}{s_{11}})^{2}$ , that is $\hat{k}_{\lambda}=D_{\lambda}^{2}$ , the square of the quantum
dimension of the corresponding representation of $\hat{\mathrm{B}}$ . This is thus a quantum deformation
of the finite group situation of the previous example.

3.2. C-subalgebras

One then defines $\mathrm{C}$ -subalgebras of a C-algebra:

Definition : Given a $C$-algebra with a basis $\{x_{a}\},$ $a=1,$ $\cdots,$ $n$ , a $C$-subalgebra is a C-
alge $br\mathrm{a}$ genera$ted$ by a subset of the $x_{a},$ $a\in T,$ $T\subset\{1, \cdots, n\}$ , closed under multiplication,
$i.\mathrm{e}.$ if $a,$ $b\in T,$ $p_{ab}c\neq 0$ only if $c\in T$ .

Note that this condition implies that $T$ contains 1 and is stable under the involution
$a\mapsto\overline{a}[13]$ .

We shall be mainly interested in the situation where the two dual algebras have non
negative structure constants. Then there is a remarkable theorem that tells us that the
existence of a $\mathrm{C}$-subalgebra in $\mathfrak{U}$ implies the existence of a $\mathrm{C}$ -subalgebra in the dual. More
precisely, suppose $\mathfrak{U}$ has a $\mathrm{C}$-subalgebra $\mathfrak{U}_{T}$ associated with a subset $T$ . One may then
define an equivalence relation $a\sim b$ if $\exists c\in T$ : $p_{ac}b\neq 0$ , and there is a partition of the
set $\{1, 2, \cdots n\}$ into equivalence classes, $T_{i},\dot{i}=1,$ $\cdots,p,$ $T_{1}\equiv T$ . Let $\rho=\sum_{a\in T}k_{a}$ and let
$X_{i}:= \sum a\in\tau_{i}xa$ . One also defines $\mathrm{t}\mathrm{h}\mathrm{e}_{\vee}$ subset $\hat{T}$ of the dual basis by the decomposition of
$X_{1}= \sum_{T}x_{a}$ into idempotents $X_{1}= \rho\sum_{\lambda\in\hat{T}}e_{\lambda}$ .

Theorem (Bannai-Ito [13], theorem 9.9): Consider a $C$-algebra ut with non nega$ti\mathrm{v}e$

structure constants $p_{ab}C$ and $q_{\lambda\mu}\nu$ . With the notations just introduced,
$i)t \mathrm{A}e\frac{1}{\rho}X_{i},$ $i=1,$ $\cdots,\cdot p,$ $g$enera$te$ th $\mathrm{e}m\mathrm{s}$elves a $C$-alge $br\mathrm{a}$ , call$\mathrm{e}d$ the quotient C-algebra

$\mathfrak{U}/\mathfrak{U}_{T}$ , with a product $inh$erited from $\mathfrak{U},\cdot$

$ii)$ the $\kappa e_{\lambda}$ , for $\lambda\in\hat{T}$ , genera$t\mathrm{e}$ a C-su $b$algebra $\hat{\mathfrak{U}}_{\hat{T}}$ of the dual algebra $\hat{\mathfrak{U}}$ ;
$iii)$ these two $C$-algebras are $d\mathrm{u}al$ to one another.

Thus one has a dual pattern of subsets $T$ and $\hat{T}$ , of $\mathrm{C}$ -subalgebras $\mathfrak{U}_{T}$ and $\hat{\mathfrak{U}}_{\hat{T}}$ , and of
quotients $\mathfrak{U}/\mathfrak{U}_{T}$ and $\hat{\mathfrak{U}}/\hat{\mathfrak{U}}_{\hat{T}}$ with the isomorphisms $\overline{\mathfrak{U}/\mathfrak{U}_{T}}\cong\hat{\mathfrak{U}}_{\overline{T}}$ and vice versa $\hat{\mathfrak{U}}/\hat{\mathfrak{U}}_{\hat{T}}\cong\overline{\mathfrak{U}_{T}}$.
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One proves also that all $X_{i}$ may be expanded on the $e_{\lambda},$

$\lambda\in\hat{T}$ , and conversely.

Recalling that $x_{a}= \sum_{\lambda}p_{a}(\lambda)e_{\lambda}$ and $\kappa e_{\lambda}=\sum_{a}q_{\lambda}(a)Xa$
’ with expressions of $p_{a}(\lambda)$ and

$q_{\lambda}(a)$ given in (3.1), we find that

$\sum_{a\in T_{i}}p_{a}(\lambda)=0$
if $\lambda\not\in\hat{T}$

thus
$\sum_{a\in T_{i}}\psi^{(\lambda)}a\psi(a1)=0$

if $\lambda\not\in\hat{T}$

(3.7)

for $\lambda\in\hat{T}$ $q_{\lambda}(a)= \frac{\psi_{a}^{(\lambda)*}}{\psi_{a}^{(1)}}\frac{\psi_{1}^{(\lambda)}}{\psi_{1}^{(1)}}$ independent of $a\in T_{i}$ .

These two conditions may be conveniently assembled into a single one

$\forall\lambda,\forall T_{i},$ $\forall a\in\tau_{i}$ $\sum_{b\in Ti}\psi_{b}\psi_{b}^{(1})(\lambda)=\delta_{\lambda\in\hat{T}^{\frac{\psi_{a}^{(\lambda)}}{\psi_{a}^{(1)}}}}\sum_{b\in Ti}(\psi_{b}^{()})^{2}1$ , (3.8)

a form that will be useful in the sequel. It is also easy to write explicitly the expressions

of the structure constants of the quotient algebras. For example, from $X_{i}= \sum_{a\in T_{i}}Xa$ it

follows that $\frac{1}{\rho}X_{i}.\frac{1}{\rho}X_{j}=\sum_{k}\mathrm{p}_{ij^{k}}\frac{1}{\rho}X_{k}$ with

$\mathrm{p}_{ij}k=\frac{1}{\rho}\sum_{c\in Tk}pabC,$
$\forall a\in T_{i},$ $b\in T_{j}$ . (3.9)

In the following two sections, I shall present two applications of this theorem. The

first deals with reflection groups and their folding, the second with conformal field theories.

The first starts with $\mathrm{C}$ -subalgebras of the $M$ algebra (subject to an additional constraint),

the second with those of the $N$ algebra.

4. Folding of $ADE$ Dynkin diagrams

4.1. The problem

It is well known that non simply laced Dynkin diagrams (of type $B_{n},$ $c_{n},$ $F_{4},$ $G_{2}$ ) may be

obtained by folding the simply laced ones, using the symmetries of the original diagram.

The extension to Coxeter diagrams of $H$ or $I$ type, associated with the non-crystallographic
$\mathrm{c}_{\mathrm{o}\mathrm{X}\mathrm{e}}\mathrm{t}\mathrm{e}\mathrm{r}$ groups, seems more recent $[14,15]$ . In all these works, one is given a simply laced

Dynkin diagram describing the scalar products of a set of simple roots $\{\alpha_{a}\},$ $a=1,$ $\cdots$ , $n$ ,

according to
$(\alpha_{a}, \alpha_{b})=2\delta ab-G_{ab}$ (4.1)
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( $G$ the adjacency matrix as in (2.4)). Then a certain partition is found of this set into
subsets $\{\alpha_{a}, a\in T_{i}\}$ of mutually orthogonal roots

$(\alpha_{a}, \alpha_{b})=0$ if $a,$ $b\in T_{i}$ . (4.2)

Let $S_{a}$ denote the reflection in the hyperplane orthogonal to $\alpha_{a}$ through the origin, $\mathrm{a}\mathrm{n}\dot{\mathrm{d}}G$

the group generated by all the $S_{a},$ $a=1,$ $\cdots,$ $n$ . Then one forms the products

$R_{i}= \prod_{a\in T_{i}}s_{a}$ (4.3)

in which the order is immaterial, since the $\alpha$ are orthogonal within the same $T_{i}$ , and thus
the $S_{a}$ commute. The group $G’$ generated by the $R_{i}$ is clearly a subgroup of $G$ . Since
$G$ is a Coxeter group (of finite order), $G’$ is also of finite order, hence in the $A-I$ list.
The corresponding Coxeter diagram thus results from identifying the vertices of a same
block $T_{i}$ , while the superscript of an edge $i-j$ , which yields the order of the element $R_{i}R_{j}$

may be computed easily in terms of the original $S_{a}$ . One finds empirically the adequate
foldings of the $A,$ $D,$ $E$ diagrams necessary to manufacture all the others (see Fig. 1). For
example, the order 5 of the product $R_{2}R_{3}$ in the diagram $H_{3},\dot{i}.e$ . the smallest power $m$

$\mathrm{s}.\mathrm{t}$ . $(S_{2}S_{3}S4S_{6})^{m}=I$ is simply the order of the Coxeter element of the $A_{4}$ Coxeter group
generated by these four reflections.

As far as I can see, this procedure is, however, empiric, and doesn’t say which folding
does the job and in which subspace of the original $n$ -dimensional space the subgroup acts.
In the fairly different context of topological field theories $(\mathrm{t}\mathrm{f}\mathrm{t})$ , a parallel observation was
made. Starting from the so-called minimal $\mathrm{t}\mathrm{f}\mathrm{t}’ \mathrm{s}$ labelled by $ADE$ Dynkin diagrams, i.e.
solutions of the WDVV equations of the type mentionned in sect. 2, one finds that there
are other solutions obtained by restriction of the latter. In such a restriction, only a subset
of the flat coordinates $t$ is kept non-vanishing. These non-vanishing $t’ \mathrm{s}$ are labeled by the
Coxeter exponents of some non simply laced Coxeter groups $[16,17]$ . These restrictions are
consistent with the algebra of the $\mathrm{t}\mathrm{f}\mathrm{t}$ , in the sense that they correspond to a sub-algebra of
the $C_{\lambda\mu}\nu(\mathrm{t})$ . If we consider the Chebishev specialization and recall Fact 2 of sect. 2, this
means that the Pasquier algebra $M$ of the original $ADE$ diagram admits a sub-algebra,
whose generators are labelled by the exponents of a Coxeter group of type $B,$ $C,$ $F,$ $G-I$
[17].

In fact there is a strong connection between the two observations, and through the
theory of $\mathrm{C}$-algebras, one is able to answer the previous objection and determine the folding
through the study of the subalgebras of $M$ type.
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4.2. From a $M$ -subalgebra to a subgroup

Consider a simply laced $ADE$ Dynkin diagram such that the structure constants $M$ and
$N$ are non negative (see Fact 3 of sect. 2). Recall that all Dynkin diagrams may be

2-coloured, $\dot{i}.e$ . their vertices may be assignend a $\mathbb{Z}_{2}$ grading $\tau$ , the “colour”, such that
$G_{ab}--0$ if $\tau(a)=\tau(b)$ . Now suppose that a subalgebra of the $M$ algebra has been found,
$\dot{i}.e$ . a subset $\hat{T}$ of exponents such that

$\lambda,$ $\mu\in\hat{T}$ $M_{\lambda\mu}\nu\neq 0\Rightarrow\nu\in\hat{T}$ ; (4.4)

the subset $\hat{T}$ of exponents is assumed to be stable under $\lambda\mapsto h-\lambda$ . The positivity

condition tells us that we are in the conditions of the theorem of sect. 3.2. Because here

we start from a $\mathrm{C}$-subalgebra of the $M$ (or $q$ ) algebra, the theorem has to be transposed

to its dual version, namely

(i) there is a partition of the set of exponents into equivalence classes $\hat{T}_{\alpha}$ ,

$\mu\sim\nu$ if $\exists\lambda\in\hat{T},$
$M_{\lambda\mu}\nu\neq 0$ ; (4.5)

(ii) there exists a special subset $T$ of the dual set of vertices that contains 1;

(iii) the set $T$ enables one to define a dual equivalence relation: $b\sim c$ if $\exists a\in T$ such that
$N_{ab}C\neq 0$ , and hence a partition of the set of vertices into equivalence classes $T_{i;}$

(iv) the relation (3.8) is satisfied.

Now the assumption made above that $\hat{T}$ is stable under $\lambda\mapsto h-\lambda$ implies that:

(i) the same is true for each class $\hat{T}_{\alpha}$ ; (ii) the class $T$ contains only vertices $a$ satisfying
$\tau(a)=\tau(1))(\mathrm{i}\mathrm{i}\mathrm{i})$ more generally all the vertices within a same class $T_{i}$ have the same

colour $\tau$ and thus the corresponding roots are mutually orthogonal. These are trivial

consequences of the symmetry of the $\psi$

$\psi_{a}^{(h-\lambda)}=(-1)^{\mathcal{T}()}a\psi_{a}^{(}\lambda)$ (4.6)

I now claim that with this pattern of subalgebras one may associate a subgroup of
$G$ ; it is again described by a graph, whose vertices are in $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence with

the classes $T_{i}$ and whose set of exponents is $\hat{T}$ . This subgroup is generated by reflections

in the hyperplanes orthogonal to some $\beta$ , that are some linear (real) combinations of the

roots $\alpha$ :

$\beta_{i}=N_{i}\sum_{\tau a\in i}\psi_{a}(1)a\alpha$
; (4.7)
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the normalisation is adjusted so that $(\beta_{i}, \beta_{i})=2$ , namely

$N_{i}^{2} \sum_{a\in Ti}(\psi_{a}^{(1)})2=1$ (4.8)

(since the $\alpha_{a},$ $a\in T_{i}$ are mutually orthogonal). One verifies, using (3.8), that the product
$\prod_{a\in}\tau_{i}S_{a}$ has the same action as the reflection $R_{i}$ in the hyperplane orthogonal to $\beta_{i}$ , in
the subspace spanned by the $\beta[18]$ .

The scalar products of two distinct roots $\beta_{i}$ and $\beta_{j}$ is non positive, as follows from the
same property for the original simple positive roots $\alpha_{a}$ and from the positivity of the $\psi_{a}^{(1)}$

$( \beta_{i}, \beta_{j})=N_{i}N_{j}b\in T\sum_{a\in T_{ij}}(\alpha_{a}, \beta_{b})\psi_{a}(1)\psi_{b}(1)\leq 0$

.

The metric defined on the original roots may be diagonalized by the $\psi$

$g_{ab}=( \alpha_{ab}, \alpha)=\mathrm{o}\mathrm{n}\sum_{\exp \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}\lambda}g\psi_{a}\lambda)\psi_{b}^{(}(\lambda)(\lambda)*$
, (4.9)

with $g^{(\lambda)}=2-2 \cos\frac{\pi\lambda}{h}$ . From the expressions of the new roots $\beta_{i}$ it is easy to compute
the new metric, making use again of (3.8)

$g_{ij}=( \beta i, \beta_{j})=\Lambda_{i^{-}}^{\prime 1}N_{j}^{-}1\sum g^{(}\lambda\in^{\hat{\tau}}\lambda)_{\frac{\psi_{a}^{(\lambda)}}{\psi_{a}^{(1)}}}\frac{\psi_{b}^{(\lambda)*}}{\psi_{b}^{(1)}}$ $\forall a\in T_{i},$ $\forall b\in T_{j}$

(4.10)
$= \sum_{\lambda\in\hat{T}}g\Psi^{(}(\lambda)\lambda)\Psi_{j}(\lambda)*i$

in terms of the new eigenvectors

$\lambda\in\hat{T}$
$\Psi_{i}^{(\lambda)}=N_{i}^{-1}\frac{\psi_{a}^{(\lambda)}}{\psi_{a}^{(1)}}$ $\forall a\in T_{i}$

(4.11)
$= \Lambda_{i}’\sum_{a\in\tau i}\psi_{a}(\lambda)\psi(1)a$

These eigenvectors form an orthonormal system of rank $|\hat{T}|$ .
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or
$\mathrm{E}\mathrm{x}\mathrm{p}=\mathrm{t}\mathrm{l},2,$ $\ldots,\mathrm{k}+1\mathrm{I}$

$\mathrm{I}(\mathrm{k}+2)2\underline{\mathrm{k}+2}$ $\underline{\mathrm{k}+2}$ $\wedge \mathrm{T}=\{1, \mathrm{k}+1\}$

$\mathrm{E}\mathrm{x}\mathrm{p}=\{1,2,$ $\ldots,2\mathrm{k}+1\mathrm{I}$

$\mathrm{B}_{\mathrm{k}+1}\ovalbox{\tt\small REJECT}^{4}12\mathrm{k}+1$ $\wedge \mathrm{T}=\{1,3, \ldots,2\mathrm{k}+1\}$

$\mathrm{D}_{4}$
$\mathrm{E}\mathrm{x}\mathrm{p}=\{1,3,5,3\}$

$\mathrm{G}_{2}$

$\underline{6}$ $\wedge \mathrm{T}=\{1,5\mathrm{I}$

$\mathrm{D}_{6}$

$\mathrm{E}\mathrm{x}\mathrm{p}=\{1,3,5,7,9,5\}$

$\mathrm{H}_{3}$ $\underline{5}$ $\wedge \mathrm{T}=\{1,5,9\}$

$\mathrm{E}_{8}$

$\mathrm{E}\mathrm{x}_{\mathrm{P}^{=}\mathrm{t}\}}1,7,11,13,17,19,23,29$

$\mathrm{H}_{4}$ $\underline{5}$ $\wedge \mathrm{T}=i1,11,19,29\}$

$\mathrm{E}_{6}$ $\mathrm{E}\mathrm{x}\mathrm{p}=\{1,4,5,7,8,11\}$

$\mathrm{F}_{4}$ $\underline{4}$ $\wedge \mathrm{T}=\{1,5,7,11\}$

Fig. 1: The folding of ADE Dynkin diagrams of positive type. Classes $T_{i}$ of
vertices encompass nodes on the same vertical.
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4.3. Discussion

The reader may wonder what happens in (4.7) if the Perron-Frobenius eigenvector $\psi^{(1)}$ is
changed into another eigenvector. In fact, this has the effect of giving roots of the folded
diagram that are simple but not positive.

The result of the procedure is presented in fig. 1. For each simply laced Dynkin

diagram of type $A,$ $D_{2\ell},$ $E_{6}$ or $E_{8}$ , a systematic search of subalgebra of the $M$ algebra,
satisfying the invariance of $\hat{T}$ under $\lambda\mapsto h-\lambda$ has been carried out. All cases are not

exhibited in the Figures, as there is some redundancy. For example, any diagram of the
previous type admits a subalgebra associated with $\hat{T}=\{1, h-1\}$ . This corresponds to

folding all vertices of a given colour onto one another, resulting in a 2-vertex graph of type
$I_{2}(h)$ . This has been represented only for $A_{k+1}\mapsto I_{2}(k+2)$ or $D_{4}\mapsto G_{2}\equiv I_{2}(6)$ .

$\mathrm{E}\mathrm{x}\mathrm{p}=\mathrm{t}1,3,$
$\ldots,$

$4_{\mathrm{P}}+1,2\mathrm{p}+1\}$

$\mathrm{Q}_{\mathrm{p}+1}\overline{12}$ . .. $\frac{4}{2\mathrm{p}2\mathrm{p}}+1$ $\wedge \mathrm{T}=\mathrm{t}1,3,$

$\ldots,$
$4\mathrm{p}+1$ }

Fig. 2: A case of folding which is discarded by the assumption of positivity

By inspection of fig. 1, the reader may convince herself or himself that the procedure

is exhaustive, in the sense that all non simply laced Coxeter diagrams, or all Coxeter
groups, have been obtained. In fact, one possible folding of $D_{2p+2}$ into $C_{2p+1}$ (fig. 2) does

not appear in the present discussion. To expose the corresponding $M$ subalgebra of the
$D_{2p+2}$ diagram requires indeed to change the basis of eigenvectors $\psi$ into another one, in
which positivity is lost [12]. In the present case, because of the isomorphism of $B_{n}$ and
$C_{n}$ Coxeter-Weyl groups, this does not hinder the exhaustivity, but we may expect that

the extension of the method to more general cases may require relaxing the hypothesis of

positivity. We refer the reader to [18] for a discussion of the appropriate extension of the

present method.
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5. Dynkin diagrams and RCFT

I shall be more concise on this part as it has already been expounded elsewhere $[12,19]$ .

As recalled above in sect 2, conformal field theories with a $sl(2)\wedge$ current algebra have been

classified according to an $ADE$ scheme. This manifests itself first in the form of their

modular invariant genus 1 partition function, written as a sesquilinear form of characters
$\chi_{\lambda}(q),$ $q=e^{2i\pi\tau}$ , of the affine $sl(2)\wedge$ algebra at a given level $k$ , with the integrable weights
$\lambda$ labelled by integers $1\leq\lambda\leq k+1$ . One proves [4-5] that the possible expressions of that

partition function

$z= \sum N_{\lambda\overline{\lambda}\chi\lambda(}q)\overline{x}\overline{\lambda}(\overline{q})$ $N_{\lambda\overline{\lambda}}\in \mathbb{N}$ (5.1)

are such that the $d_{i}ag,onal$ terms $\lambda=\overline{\lambda}$ are the Coxeter exponents of one of the $ADE$

Dynkin diagrams of Coxeter number $h=k+2$ .

As alluded to in sect 2, the $A,$ $D_{2f},$ $E_{6}$ and $E_{8}$ cases-and only those-are such that
$Z$ is a sum of blocks $Z= \sum_{\alpha}|\sum_{\lambda\in\overline{T}_{\alpha}}\chi_{\lambda}|^{2}$ :

$Z^{(A_{n})}= \sum_{1\lambda=}^{n}|\chi_{\lambda}|2$ $k+2=n+1$ ,

$Z^{(D_{2t})}=$ $\sum$ $|\chi_{\lambda}+\chi_{4}l-2-\lambda|2+2|x_{2l}-1|2$ $k+2=4\ell_{-2}$
(5.2)

$\lambda=1,3,\cdots,2\ell-3$

$Z^{(E_{6})}=|\chi_{1}+\chi 7|2|+x4+x_{8}|2+|\chi_{5}+x11|^{2}$ $k+2=12$

$Z^{(E_{8})}=|\chi_{1}+\chi 11+x19+x_{2}9|^{2}+|\chi 7+\chi_{13}+\chi 17+\chi 23|^{2}$ $k+2=30$ .

This pattern reflects the existence of an underlying “extended” chiral algebra, containing

the current algebra $sl(2)\wedge$ as a subalgebra. The combinations $\hat{\chi}_{\alpha}=\sum_{\lambda\in\hat{T}_{\alpha}}\chi\lambda$ that appear

in (5.2) are characters of the extended algebra decomposed into irreducible characters of
$sl(2)\wedge$ . Let us denote $S_{\lambda\mu}$ , resp $\mathrm{S}_{\alpha\beta}$ , the matrices of modular transformations of the two

sets of characters

$x \lambda(\tilde{q})=\sum_{\mu}s\lambda\mu\chi\mu(q)$

(5.3)
$\hat{\chi}_{\alpha}(\tilde{q})=\sum_{\beta}\mathrm{s}_{\alpha}\beta\hat{x}_{\beta(q})$

,

where $\tilde{q}=e^{\frac{-2i\pi}{\tau}}$ One has $\mathrm{S}_{\alpha\beta}=\sum_{\lambda\in\hat{T}_{\alpha}}s_{\lambda}\mu’\forall\mu\in\hat{T}_{\beta}$ . The quantum dimensions of the

representations are the ratios $\mathrm{D}_{\alpha}=\mathrm{S}_{\alpha 1}/\mathrm{S}_{\mathrm{l}1}$ and $D_{\lambda}=S_{\lambda 1}/S_{11}$ .
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It has been observed in $[12,19]$ that there is a second manifestation of the $ADE$

diagrams hidden in the structure of the operator algebra. For the theories (5.2), one
proves that the fusion coefficients $\mathrm{N}_{\alpha\beta}\gamma$ of the extended algebra satisfy

$\mathrm{N}_{\alpha\beta}\gamma=\sqrt{\frac{\mathrm{D}_{\alpha}}{D_{\lambda}}}\sqrt{\frac{\mathrm{D}_{\beta}}{D_{\mu}}}\sum_{\mathcal{U}\in\hat{T}_{\gamma}}M\nu\sqrt{\frac{D_{\nu}}{\mathrm{D}_{\gamma}}}\lambda\mu$

’ $\forall.\lambda\in\hat{T}_{\alpha},$
$\mu\in\hat{T}_{\beta}.$ , (5.4)

where $M$ are the structure constants of the Pasquier algebra of the relevant Dynkin dia-
gram. (For the sake of simplicity, we assume here and in the rest of the discussion that
none of the exponents has a multiplicity larger than 1: this excludes the $D_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}$ case. The
cases with multiplicities require a more elaborated labelling, see [19] $)$ .

This equation has several interesting consequences. First, since the matrix $\mathrm{N}$ is
diagonalized by the $\mathrm{S}$ matrix, according to the Verlinde formula, it follows from (5.4)
that $Y_{\lambda}:= \frac{\mathrm{s}_{\alpha\delta}}{\mathrm{s}_{1\delta}}\sqrt{\frac{D_{\lambda}}{\mathrm{D}_{\alpha}}}$ , where $\hat{T}_{\alpha}$ is the blo.ck containing $\lambda$ and $\delta$ is any representation
of the extended algebra, forms a one-dimensional representation of the $M$ algebra, i.e.
$Y_{\lambda} \mathrm{Y}_{\mu}=\sum_{\nu}M_{\lambda\mu}\nu \mathrm{Y}_{\nu}$ , and may thus be identified with some $\frac{\psi_{d}^{(\lambda)}}{\psi_{d}^{(1)}}$ , for some vertex $d$

$\frac{\psi_{d}^{(\lambda)}}{\psi_{d}^{(1)}}=\frac{\mathrm{S}_{\alpha\delta}}{\mathrm{S}_{1\delta}}\sqrt{\frac{D_{\lambda}}{\mathrm{D}_{\alpha}}}$ . (5.5)

In particular, the Krein parameter of the Pasquier algebra reads

$\hat{k}_{\lambda}=D_{\lambda}\mathrm{D}_{\alpha}$ , if $\lambda\in\hat{T}_{\alpha}$ (5.6)

to be compared with the formula $\hat{k}_{\lambda}=D_{\lambda}^{2}$ of sect. 3.1, example 2, valid for the fusion
algebras, i.e. for the $A$ cases for which the blocks $T_{\alpha}$ contain only one exponent. Let $T$

denote the subset of vertices $d$ for which (5.5) holds. Each of them may be identified with
a weight $\delta$ of the extended algebra. Further analysis [19] reveals that:
1) $\forall d\in T,$ $\delta$ the corresponding extended weight, and for $\lambda\in\hat{T}_{\alpha}$ one has

$\frac{\psi_{d}^{(\lambda)}}{\psi_{1}^{(\lambda)}}=\frac{\mathrm{S}_{\delta\alpha}}{\mathrm{S}_{1\alpha}}$ and $\psi_{1}^{(\lambda)}=S_{1\lambda}\mathrm{S}_{1\alpha}$ ; (5.7)

2) one is precisely in the conditions of sect. 3.2: the set $T$ defines a $\mathrm{C}$ -subalgebra of the
$N$ algebra. In the cases of (5.2) discussed here, the $M$ and $N$ structure constants are non
negative (see Fact 3 of sect. 1). One may apply the theorem of Bannai and Ito: the dual
subalgebra is associated with a special set $\hat{T}$ which is the block of the identity representation
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and it defines a partition of the set of exponents into classes $T_{\alpha}$ . Finally equation (5.4) may

be seen to be equivalent to equation (3.9) (or rather its dual), if one takes into account the

change of normalization between the $q_{\lambda\mu}\nu$ and $M_{\lambda\mu}\nu$ structure constants and the explicit

expressions of the Krein parameters (5.6).

Thus behind the modular invariants (5.4), there is again a structure of C-algebras

and subalgebras. This had been first pointed out in [20], and then the more systematic

discussion of [19] has shown that this follows from the basic equation (5.4), and that

it yields a way to determine the expressions of some eigenvectors from conformal data

(quantum dimensions).

6. Conclusion and perspectives

The purpose of this lecture was to present the concept of $\mathrm{C}$-algebra and to illustrate its

utility in two contexts: the discussion of reflection groups and their foldings on the one

hand, and the structure of conformal field theories, on the other.

Note that these two seemingly disparate problems are in fact related in the framework

of 2-dimensional topological field theories. For those theories, or at least for those that are

obtained by twisting a $N=2$ superconformal coset field theory, one has two approaches at

one’s disposal: the discussion of the (super)conformal field theory following lines analogous

to the discussion of sect. 5; and the analysis of the Witten-Dijkgraaf-Verlinde-Verlinde

equations [1], for which Dubrovin [16] has shown the appearance of monodromy groups

generated by reflections. In fact the concept of $\mathrm{C}$-algebra seems to be underlying in a

natural way the whole discussion of topological field theories.

Note also that in the two discussions of the previous sections, the same C-algebras

(based on the Pasquier algebra of the Dynkin diagrams) have been used in two different

ways: in one case (folding), we have been looking at the $\mathrm{C}$ -subalgebras of the $M$ algebra

(subject to some constraint); in the other (rcft), it is rather some subalgebra of the $N$

algebra that has determined the special set $T$ of vertices, and by duality the blocks $T_{\alpha}$ .

One issue that requires clarification is the role of positivity. We have from the start

restricted our attention to the subcases of the $ADE$ list that have certain positivity prop-
$\mathrm{e}\mathrm{r}\mathrm{t}\dot{\mathrm{i}}\mathrm{e}\mathrm{s}$ (see sect. 2). The main benefit has been the possibility to use the theorem of Bannai

and Ito (sect. 3.2). It is possible to relax the positivity assumption in the discussion of

folding of graphs and groups: what is really crucial is eq. (3.8), see [18]. In the case of

rcft, it is less clear how to proceed and what replaces (5.4). In that case, however, we
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know that any theory with a non block diagonal modular invariant (e.g. $(2.2b)$ ) may be
obtained from a block diagonal one ( $(2.2a)$ in that case) by an automorphism of the fusion
algebra [21]. The proper incorporation of that fact in the present considerations remains
to be done.

As already mentionned, the very good news is that all this discussion is not limited to
the $sl(2)$-ADE cases to which I have restricted myself here for simplicity. On the contrary,
both the folding of generalized Dynkin diagrams associated with $sl(N)$ and the block
structure of $sl(N)\wedge$ RCFT may be discussed in quite general terms. The $\mathrm{C}$-algebra method
enables one to find in a fairly systematic way the possible foldings of these generalized
diagrams that respect some general properties, and in the second context, it gives non
trivial relations between conformal data (fusion coefficients and quantum dimensions) and
eigenvectors of the adjacency matrices. It may even enable one to construct the graph
from these data. See [18] for the former subject and [19] for the latter.
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