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1 Introduction.
Let us consider one-dimensional Schr\"odinger equations,

$(- \frac{d^{2}}{dz^{2}}+\eta^{2}Q(\cos Z))\phi=0$ , (1)

and
$(- \frac{d^{2}}{dx^{2}}+\eta^{2}(\frac{Q(x)}{1-x^{2}}-\eta^{-2_{\frac{x^{2}+2}{4(1-x^{2})^{2}}})})\psi=0$ , (2)

where $\eta$ is a large parameter, and $Q(x)$ is a polynomial in $x$ . These equations
are related via the transformation,

$x$ $=$ cosz, (3)
$\psi$ $=$ $\sqrt{\sin z}\phi$ . (4)

Because this transformation (3) is a singular one, that is, its first derivative
vanishes at $z=k\pi$ , there appear singularities in (2) at $x=\pm 1$ .

Our interest is to analyze these equations from the viewpoint of exact
WKB analysis, in which the Stokes geometry (turning points, Stokes curves,
singularities, . . .) plays an important role to grasp the global behavior of solu-
tions, and the interesting point in the above example is the Stokes geometry
of (1) could not correspond to that of (2) due to the singularities $x=\pm 1$ of
(2). To make a further reasoning, we need to clarify the role of $x=\pm 1$ in
WKB analysis. (1Ve already know the resurgent structure of (1) with respect
to $\eta$ due to the work given by E.Delabaere [D].)
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In this note, motivated by this example, we will mainly be concerned with

$(- \frac{d^{2}}{d\overline{x}^{2}}+\eta^{2}(\frac{A(\overline{x})}{\overline{x}}+\eta^{-2_{\frac{B(\overline{x})}{\overline{x}^{2}}}}))\overline{\psi}=0$, (5)

near $\overline{x}=0$ , where $A(\overline{x})$ and $B(\overline{x})$ are holomorphic functions at $\overline{x}=0$ , and
we also assume $A(\mathrm{O})\neq 0$ . Our purpose here is

(i) to confirm that we must consider $x\sim=0$ as a turning point (Hence one
Stokes curve emanates from $\overline{x}=0.$ );

(ii) to determine the connection formula at $x=0\sim$ ,

from a viewpoint of exact WKB analysis.

Thus $x=\pm 1$ are not only the singular points but also the turning points
of (2), while the corresponding points $z=k\pi(k\in \mathbb{Z})$ are not. Hence the
correspondence of the Stokes geometry between (1) and (2) does not hold at
all, which leads us to the expectation that the turning points $x=\pm 1$ may be
apparent. We can prove this expectation is true as a corollary of our result;
A turning point could become an apparent one if this point is a singular
point of the subleading term of the potential. This is the second point we
wish to emphasize in this note. We will explain its details in the last section,
together with some examples of Stokes curves for (1) and (2).

In what follows we will use the same notations and definitions as in
[AKTI], such as WKB solutions, their Borel sum, etc. See [AKTI] or [DP]
(and, of course, [V]) and the references cited there for the explanation of
exact WKB analysis.

2 A simple pole as a turning point.

2.1 The canonical equation.
Let us start with the following simple, but important equation, which is
called a canonical equation of (5) at $\overline{x}=0$ (just like Airy equation near a
simple turning point):

$(- \frac{d^{2}}{dx^{2}}+\eta^{2}\frac{1}{x}+\frac{b}{x^{2}})\psi=0$ , (6)
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where $b$ is some constant, independent of $\eta$ . WKB solutions of this equation
are

$\psi_{\pm}=\frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{0}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dX)$ . (7)

where $S_{\mathrm{o}\mathrm{d}\mathrm{d}}=\eta S_{-1}+\eta^{-1}S_{1}+\eta^{-3}S_{3}+\cdots$ , is the odd degree part of the
solution $S=\eta S_{-1}+S_{0}+\eta^{-1}S_{1}+\cdots$ , of the Riccati equation

$S^{2}+ \frac{dS}{dx}=\eta^{2_{\frac{1}{x}+}}\frac{b}{x^{2}}$ . (8)

Explicitly we obtain

$S= \eta\frac{1}{\sqrt{x}}+\frac{1}{4x}+\eta^{-1}\frac{16b+3}{32\sqrt{x^{3}}}+\eta^{-}2_{\frac{16b+3}{64x^{2}}+}\ldots$ . (9)

Note that we can show, by induction, that

$S_{j}=(const.)x- \frac{1}{2}j-1$ (10)

holds, namely, the degree of singularities of $S_{j}$ at $x=0$ becomes higher and
higher as $j$ tends to infinity, which is the common property with “usual”
turning points. This is the intuitive reason why we call $x=0$ as a turning
point.

In the following we will fix the branch of $\sqrt{x}$ such that

$\sqrt{x}>0$ for $x>0$ (11)

holds.
Now we show

Proposition 1 $WKB$ solutions $\psi_{\pm}$ of (6) are Borel summable except the
positive real axis. Let $\hat{\psi}_{\pm}$ be analytic continuation of $\psi_{\pm}$ across the positive
real axis from the lower half plane to the upper. Then we obtain

$\hat{\psi}_{+}$ $=$ $\psi_{+}+2i\cos\pi^{\sqrt{1+4b}\psi}-$ , (12)
$\hat{\psi}_{-}$

$=$ $\psi_{-}$ . (13)

We note here that $\sqrt{1+4b}$ is the difference of two characteristic expo-
nents of (6) at $x=0$ .
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Proof. The proof is a standard one (see [AKT2], [V]), but we shall fol-
low the proof in detail because of its importance to understand the meaning
of a turning point and a Stokes curve.

Because of (10), we can expand the WKB solutions $\psi_{\pm}$ as

$\psi_{\pm}=\sqrt{x}\exp(\pm\eta\int_{0}^{x}S_{-1}dX)\sum_{j=0}\psi\pm,j(\eta\sqrt{x})\infty-j-1/2$ , (14)

where $\psi_{\pm,j}$ are constants independent of $\eta$ and $x$ . Hence their Borel transform
are of the following form:

$\psi_{\pm,B}(x, y)=\sum_{j=0}^{\infty}\frac{\psi_{\pm,j}}{\Gamma(j+1/2)}(\frac{y}{\sqrt{x}}\pm 2)^{j-1}/2$ , (15)

that is, $\psi_{\pm,B}(X, y)$ depends on $x$ and $y$ through

$s= \frac{1}{4}(\frac{y}{\sqrt{x}}+2)$ , $1-s= \frac{1}{4}(-\frac{y}{\sqrt{x}}+2)$ , (16)

respectively. In addition, $\psi_{\pm,B}(x, y)$ satisfy

$(- \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{x}\frac{\partial^{2}}{\partial y^{2}}+\frac{b}{x^{2}}\mathrm{I}^{\psi}\pm,B(X, y)=0$ . (17)

Hence we find that

$(s(1-s) \frac{d^{2}}{dx^{2}}+(\frac{3}{2}-3s)\frac{d}{ds}+4b)\psi_{\pm,B}=0$ (18)

holds, which enables us to determine $\psi_{\pm,B}$ explicitly as follows:

$\psi_{+,B}(x, y)$ $=$ $\frac{1}{\sqrt{4\pi}}s^{-1/2}F(\alpha-\frac{1}{2},$ $\beta-\frac{1}{2},$
$\frac{1}{2};S\mathrm{I}|_{s=*_{x}+\frac{1}{2}}4$ , (19)

$\psi_{-,B}(x, y)$ $=$ $\frac{1}{\sqrt{-4\pi}}(1-s)^{-1/}2F(\frac{3}{2}-\alpha,$ $\frac{3}{2}-\beta,$
$\frac{1}{2};1-S)|_{s=_{\overline{4}\sqrt{x}}}\mathrm{A}-+\frac{1}{2}$

(20)
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$\llcorner \mathbb{C}_{x}$ $\llcorner \mathbb{C}_{y}$

$O$ ${\rm Re} x$

$\cross 2\sqrt{x}$

$\cross x$

Figure 1: If $x$ is below the positive real axis in $x$-plane (left), the location of
singularities (indicated by x) are as shown in the right figure. The
straight line in the right figure indicates the contour of Borel sum.

where $F$ denotes the Gauss hypergeometric function and a, $\beta$ are constants
satisfying

$\alpha+\beta$ $=$ 2, (21)
$\alpha\beta$ $=$ $-4b$ . (22)

Because the singularities of $\psi_{\pm,B}(X, y)$ are

$s=0,1$ $\Leftrightarrow$ $y=-2\sqrt{x},$ $2\sqrt{x}$, (23)

its Borel sum
$\psi_{\pm}(x, \eta)=\int^{\infty}\mp 2^{\cdot}\sqrt{x}’)e^{-}\psi_{\pm}\eta y(Bx,$$ydy$ , (24)

where the integral are performed in parallel with the positive real axis, are
well-defined except

${\rm Im}(2\sqrt{x})={\rm Im}(-2\sqrt{x})$ , (25)

namely, except the positive real axis, which is called a Stokes curve (or line)
emanating from a turning point $x=0$ . (See Fig. 1.)

Let $x$ be below the positive real axis as shown in the left of Fig.1. The
right of Fig.1 indicates the contour of the Borel sum of $\psi_{+}$ and the singular-
ities of $\psi_{+,B}(x, y)$ in the y-plane.

If $x$ moves to the upper half plane across the positive real axis as shown
in the left of Fig.2, we must deform the contour of Borel sum to $C$ as shown
in the right of Fig.2, because the singularities $y=\pm 2\sqrt{x}$ move as $x$ moves.
Hence we obtain

$\hat{\psi}_{+}(_{X}, \eta)=\int_{C}e^{-\eta y}\psi+,B(X, y)dy$ . (26)
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$\llcorner \mathbb{C}_{x}$

$|\mathbb{C}_{\underline{y}}--$

$\cross\prime r$.

Figure 2: If $x$ moves as in the left, the singularities also move. We must

deform the contour to $C$ .

$|\mathbb{C}_{y_{-}}$

Figure 3: The integration along $C$ is equal to sum of the integration along

the contours indicated in the right figure.

This is equal to (See Fig.3.)

$\int_{-2\sqrt{x}}^{\infty}e-\eta y\psi_{+},B(X, y)dy+\int_{C’}e^{-\eta y}\psi_{+},B(X, y)dy$ . (27)

By making use of the connection formula of hypergeometric functions

$s^{-1/2}F( \alpha-\frac{1}{2},$ $\beta-\frac{1}{2},$ $\frac{1}{2};S\mathrm{I}$

$=$ $\frac{\Gamma(\frac{1}{2})\Gamma(-\frac{1}{2})}{\Gamma(1-\alpha)\Gamma(1-\beta)}F(\alpha,$ $\beta,$ $\frac{3}{2};1-S)$

$+ \frac{\mathrm{I}^{\urcorner}(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(\alpha-\frac{1}{2})\Gamma(\beta-\frac{1}{2})}(1-s)^{-1/}2F(\frac{3}{2}-\alpha,$
$\frac{3}{2}-\beta)\frac{1}{2};1-s)$ ,

(28)
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we obtain

$\int_{C’}e^{-\eta y}\psi_{+},B(X, y)$

$=$ $2i \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(\alpha-\frac{1}{2})\Gamma(\beta-\frac{1}{2})}\int_{2\sqrt{x}}^{\infty}e^{-\eta y}\psi-,B(x, y)dy$ (29)

$=$ $2i\cos\pi^{\sqrt{1+4b}}\psi_{-}(_{X}, \eta)$ . (30)

This prove the proposition. $\square$

In the following, for simplicity, we denote (12) and (13) as

$\psi_{+}$ $\mapsto$ $\psi_{+}+2_{\dot{i}}\cos\pi\sqrt{1+4b}\psi-$ , (31)
$\psi_{-}$ ト\rightarrow $\psi_{-}$ . (32)

2.2 Connection formulae at a simple pole.

Let $\tilde{\psi}_{\pm}$ be WKB solutions of (5):

(33)

where
$\overline{S}=\eta\sqrt{\frac{A(\overline{x})}{\overline{x}}}+\frac{1}{4}(\frac{1}{x\sim}-\frac{A’(x\sim)}{A(\overline{x})})+\cdots$ . (34)

Here, for brevity, we use the following notation:

$\int_{0}^{\overline{x}}=\frac{1}{2}\int_{C_{\overline{x}}}$ , (35)

where $C_{\overline{x}}$ is the contour in $\overline{x}$-plane as shown in Fig.4. (Note that

$S_{\mathrm{o}\mathrm{d}\mathrm{d},j(^{\sim})}x=R_{j}(\overline{X})^{\sim}X^{-\frac{1}{2}}j-1$ (36)

holds, where $R_{j}(^{\sim}X)$ is a holomorphic function at $x\sim=0.$ )
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$\llcorner \mathbb{C}_{\overline{x}}$

Figure 4: The contour $C_{x}$ . We place a cut ($\overline{1}\mathrm{n}\mathrm{d}\mathrm{l}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ by the wiggly line) for
$S_{\mathrm{o}\mathrm{d}\mathrm{d}}$ .

Let $\Gamma$ be a (real one-dimensional) curve defined by

(37)

We call this curve as a Stokes curve emanating from $\overline{x}=0$ . In this subsection
we show the following:

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}-2$ Borel sum of $WKB$ solutions $\overline{\psi}_{\pm}$ of (5) are well-defined near
$x=0$ except $\Gamma$ . Crossing this curve $\Gamma$ in a counterclockwise manner with
respect to the center $\overline{x}=0$ , we obtain

$\overline{\psi}_{+}$
$\mapsto$

$\overline{\psi}_{+}+2i\cos\pi\sqrt{1+4B(0)}\overline{\psi}-$ , (38)
$\overline{\psi}_{-}$

$\mapsto$
$\overline{\psi}_{-}$ , (39)

when
${\rm Re} \int_{0}^{\overline{x}}\sqrt{\frac{A(\overline{x})}{\overline{x}}}d\overline{x}>0$. (40)

(In this case we call $\overline{\psi}_{+}$ is dominant on $\Gamma.$) In the case

${\rm Re} \int_{0}^{\overline{x}}\sqrt{\frac{A(\overline{x})}{\overline{x}}}d\overline{x}<0$, (41)

we replace $\psi_{\pm}$ to $\psi_{\mp}$ in (38) and (39) respectively.
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We note here that

(i) the Stokes multiplier $2_{\dot{i}\mathrm{c}\mathrm{o}}\mathrm{s}\pi\sqrt{1+4B(0)}$ is independent of $A(\overline{x})$ . Roughly
speaking, the leading term $A(\overline{x})/x$ of the potential determines the
shape of Stokes geometry, while the lower order term $B(\overline{x})/\overline{x}^{2}$ deter-
mines its Stokes multiplier;

(ii) $\sqrt{1+4B(0)}$ is the difference of two characteristic exponents at $\overline{x}=0$ .

We give the proof of Theorem 2 based on the transformation theory de-
veloped in [AKT2]. The first step in the proof is to show the following
proposition:

Proposition 3 There exists an infinite series

$x$ $=$ $x(\overline{x}, \eta)$

$=$ $x_{0}(\overline{x})+\eta^{-1_{X_{1}}}(\overline{x})+\cdots$ , (42)

such that

(i) each $x_{j}(\overline{x})$ are holomorphic at $\overline{x}=0$ , satisfying $x_{0}(0)=0$ and
$x_{0}’(0)\neq 0$ ;

(ii) The following relation holds:

$\frac{A(\overline{x})}{\overline{x}}+\eta^{-2}\frac{B(\overline{x})}{x^{2}\sim}=(\frac{\partial x}{\partial\overline{x}})^{2}(\frac{1}{x}+\eta^{-2_{\frac{B(0)}{x^{2}}}})-\frac{1}{2}\eta^{-2}\{x;\overline{X}\}$ . (43)

Here ’ denotes the differentiation with respect to $\overline{x}$ , and

$\{_{X;\overline{X}}\}=\frac{x’’’}{x’}-\frac{3}{2}(\frac{x’’}{x’})^{2}$ , (44)

the Schwartzian derivative.
Moreover we can show that $x=x(\overline{x}, \eta)$ is $pre- B_{ore}l_{-}summab\iota e$ and

$x_{j}(0)=0$ holds for $j=1,2,$ $\cdots$ .

This proposition enables us to reduce (5) to (6), e.g., we find

$\overline{\psi}_{\pm}(\overline{x}, \eta)=(\frac{\partial x}{\partial\overline{x}})^{-1/2}\psi\pm(X(\overline{x}, \eta),$ $\eta)$ . (45)
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Proof of the $\mathrm{p}$.roposition. First, we construct two infinite series (42) and

$b=b_{0}+\eta^{-1}b_{1}+\cdots$ , (46)

where $b_{j}$ are some constants, satisfying the condition (i) and

$\frac{A(\overline{x})}{\overline{x}}+\eta^{-2}\frac{B(\overline{x})}{\overline{x}^{2}}=(\frac{\partial x}{\partial\overline{x}})^{2}(\frac{1}{x}+\eta-2\frac{b}{x^{2}})-\frac{1}{2}\eta^{-2}\{X;\overline{x}\}$ . (47)

By substituting (42) into (47), and comparing both sides degree by degree,
we obtain

$\frac{A(\overline{x})}{\overline{x}}=(\frac{\partial x_{0}}{\partial\overline{x}})^{2}\frac{1}{x_{0}}$ (48)

for the O-th degree, and

$( \frac{2x_{0}’}{x_{0}}\frac{d}{d\overline{x}}-(\frac{x_{0}’}{x_{0}})^{2})Xj(_{\overline{X})=F_{j()-}}\overline{x}(\frac{x_{0}’}{x_{0}})^{2}b_{j-2}, (49.j)$

for the $j(\geq 1)$ -th degree, where $b_{-1}=0$ and

$F_{1}(x)$ $=$ $0$ , (50)

$F_{2}(x)$ $=$ $\frac{B(\overline{x})}{\overline{x}}-\frac{(X_{0}’X_{1})^{2}}{x_{0^{3}}}+2\frac{X^{J}X’x_{1}01}{x_{0^{2}}}+\frac{1}{2}\{_{X}0;x\}\sim$, (51)

and

$F_{n}(.x)$ $=$
$k_{1,\mu_{1^{+}\mu}}+k.2..+ \mu\sum_{\mu+\iota^{=}}(-1)^{l}+1X+\iota=n\frac{X\cdots X\mu_{1}+1\mu\iota+1}{x_{0^{l+1}}}JJk_{1}^{X_{k}}2$

$+ \sum_{\mu\mu 1+\cdots\mu l=}(-1)^{l}+1(\iota+1k_{1}+k_{2}+m+\mu=n-2)b_{m^{X’}}k_{1}^{X^{J}}k2\frac{x_{\mu_{1+}1}\cdots x\mu\iota+1}{x_{0^{l+2}}}$

$+ \frac{1}{2}\{_{X;\overline{x}}\}l+2$ . $(52.n)$

Here we denote by $\{x;\overline{x}\}_{n}$ the n-th degree part of $\{x;\overline{x}\}$ :

$\{x;\overline{x}\}=\sum_{n=0}\eta\infty-n\{X;\overline{x}\}_{n}$ . (53)
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The holomorphic solutions of (48) and (49.1) are

$x_{0}(\overline{x})$ $=$ $\frac{1}{4}(\int_{0}^{x}\sqrt{\frac{A(\overline{x})}{\overline{x}}}\sim d_{X}^{\sim})^{2}$ (54)

$=$ $A(0)_{X}+\cdots$ , (55)

$x_{1}(_{\overline{X})} = 0,$(56)

which satisfy the condition (i) and (ii).
The holomorphic solution of (49.2) is

$x_{2}(_{\overline{X})}= \sqrt{x_{0}}\int_{0}^{\overline{x}}\frac{\sqrt{x_{0}}}{2x_{0}},(\frac{B(\overline{x})}{\overline{x}^{2}}-(\frac{x_{0}’}{x_{0}})^{2}b_{0}+\frac{1}{2}\{X0;X\}\sim \mathrm{I}d_{X}^{\sim}.$ (57)

We chose $b_{0}=B(0)$ to ensure $x_{2}(0)=0$ ; Otherwise $x_{2}(\overline{x})$ does not vanish at
$\overline{x}=0$ , and $F_{4}(\overline{x})$ (or, at least, $F_{6}(X)\sim$ ) has a pole of degree $\geq 3$ . In this case
(49.4) (or (49.6)) does note have a solution which satisfies (i).

$)\eta$’ can solve $(49.j)(j\geq 3)$ recursively in a similar fashion:

$x_{j}( \overline{x})=\sqrt{x_{0}}\int_{0}^{\overline{x}}\frac{\sqrt{x_{0}}}{2x_{0}},(F_{j}(\overline{x})-(\frac{x_{0}’}{x_{0}})^{2}bj-2)d_{X}^{\sim}$ , $(58.j)$

and
$b_{j-2}=\overline{x}^{2}F_{j}(\overline{x})|_{\overline{x}=0}$ . $(59.j)$

Note that $F_{j}(x)$ has a (at most) double pole at the origin because $x_{0}(\overline{x}),$ $\cdots$ , $x_{j-1}(\overline{x})$

vanish at $\overline{x}=0$ . $\mathrm{V}^{\gamma}\mathrm{e}$ choose $(59.j)$ to ensure $x_{j}(\overline{x})$ vanish at $\overline{x}=0$ ; Oth-
erwise $F_{j+2}(\overline{x})$ has a pole of degree $\geq 3$ and (49) does note have a solution
which satisfies (i).

We have thus constructed $x(\overline{x}, \eta)$ and $b$ as desired.
Next, by multiplying both side of (47) by $\overline{x}^{2}$ , and taking the limit $\overline{x}$ tends

to $0$ , we obtain

$\eta^{-2}B(0)$ $=$ $\frac{1}{x}\mathrm{i}\mathrm{m}_{0}arrow(\frac{\partial x}{\partial\overline{x}})^{2}(\overline{\frac{x}{x}})^{2}\eta^{-2}b$ (60)

$=$ $\eta^{-2}b$ , (61)

because $x_{j}(0)=0$ . Hence we obtain

$b_{0}=B(0),$ $b_{j}=0$ for $j\geq 1$ . (62)
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What remains is to show the $\mathrm{p}\mathrm{r}\mathrm{e}- \mathrm{B}_{0}\mathrm{r}\mathrm{e}1_{-}\mathrm{S}\mathrm{u}\mathrm{m}\mathrm{m}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ of (42) we have con-
structed so far, and we can show that there exist constants $r,$ $C>0$ such
that

$| \overline{x}|\leq r-\sup|X_{n}(\overline{X}\epsilon)|,$ $| \sup_{\overline{x}|\leq r-\epsilon}|X_{n}(/\overline{X})|,$

$|^{\sim} \sup_{x|\leq r-\epsilon}|\frac{x_{n}(_{\overline{X})}}{x_{0}(\overline{x})}|\leq n!c^{n-1}\epsilon^{-n}$ , $(63.n)$

for any $\epsilon$ satisfying $0<\epsilon<r$ , but we omit the details here. (Cf. [AKT2].)
$\square$

We give one remark that we can show, by induction, that

$x_{2j+1}(_{\overline{X}})\equiv 0$ , (64)

holds for $j=0,1,2,$ $\cdots$ .

By expanding the right hand side of (45), we obtain

$\overline{\psi}_{\pm}(_{\overline{X}}, \eta)=(\frac{\partial x}{\partial\overline{x}})^{-1/}\sum_{n}^{2}\infty=0\frac{1}{n!}(_{j=}\sum_{1}^{\infty}xj\eta^{-})^{n}j(\frac{\partial}{\partial x})^{n}\psi_{\pm}(x, \eta)$ (65)
$x=x\mathrm{o}(\overline{x})$

Hence, after the Borel transform, we obtain,

$\overline{\psi}_{\pm,B}(\overline{x}, y)$ $=$
$( \frac{\partial x(\overline{x},\partial_{y})}{\partial\overline{x}})^{-1/2}$

$\cross\sum_{n=0}^{\infty}\frac{1}{n!}(_{j}=\sum_{1}^{\infty}Xj(\frac{\partial}{\partial y})^{-j}\mathrm{I}n(\frac{\partial}{\partial x})^{n}\psi_{\pm,B}(x, y)|_{x=x_{0}}(\overline{x})(66)$

By using this relation (together with the $\mathrm{P}^{\mathrm{r}\mathrm{e}- \mathrm{B}}\mathrm{o}\mathrm{r}\mathrm{e}$-summay of $x=x(\overline{x},$ $\eta)$ )
and Proposition 1, we can prove Theorem 2. (We omit the details here.)

3 Application to the periodic potential.

Let us now return to analyze (1) and (2) by making use of the result obtained
so far. In the following we will assume that $Q(\pm 1)\neq 0$ holds to ensure that
$x=\pm 1$ are simple poles of the leading term of the potential.
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Figure 5: The Stokes curves for (1) (left) and for (2) (right) when $Q(x)=$
x.These Stokes curves are degenerate.

First of all we will see some examples of the Stokes geometry of (1) and
(2).

As the first example, we take $Q(x)=x$ . In this case turning points of (1)
are

$z=(k+ \frac{1}{2})\pi$ : simple turning points (67)

where $k\in$ Z. See the left of Fig.5 for the Stokes curves of (1), which are
defined by

${\rm Im} \int_{a}^{z}\sqrt{\cos z}dZ=0$ , (68)

where $a$ is a turning point.
On the other hand, turning points of (2) are

$x=\{\pm 10$
.$\cdot$
.

$\mathrm{S}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{e}\mathrm{p}\mathrm{o}\mathrm{e}\mathrm{s}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{m}_{11}\mathrm{p}1\mathrm{e}\mathrm{t}\mathrm{u}\mathrm{r}.\mathrm{n}$

ing point,
(69)

See the right of Fig.5 for Stokes curves of (2), which are defined by

${\rm Im} \int_{a}^{x}\sqrt{\frac{x}{1-x^{2}}}dx=0$ , (70)
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Figure 6: We resolve the degeneracy in Fig.4 by changing $\eta$ to $e^{i\theta}\eta$ for $\theta=$

$-1/2$ .

where $a$ is a turning point.
These Fig.5 are, however, degenerate, namely, there are Stokes curves

connecting two turning points. (In this case, there appear singularities on
the contour of the Borel sum. See [DP].) We resolve this degeneracy by
changing $\eta$ to $e^{i\theta}\eta$ , where $\theta<0$ is sufficiently small. Then Stokes curves are
as in Fig.6.

By the transformation $x=\cos z$ , simple turning points of (1) are mapped
to a simple turning point (2), while the normal points $z=k\pi(k\in \mathbb{Z})$ of (1)
are mapped to $x=\pm 1$ . Hence the correspondence of the Stokes geometry
does note hold, as we observed in Introduction.

As the second example, we take $Q(x)=x+t$, where $t>1$ . In this case,
turning points of (1) are

$z=\pm\tau+(2k+1)\pi$ : simple turning points (71)

where $t=\cos\tau$ and $k\in$ Z. See the left of Fig.7 for the Stokes curves.
Turning points of (2) are
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Figure 7: The Stokes curves for (1) (left) and for (2) (right) when $Q(x)=$
$x+2.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{e}$ Stokes curves are degenerate.

$x=\{$
$-t$ : a simple turning pints,

$\pm 1$ : simples poles, (72)

and their Stokes curves are as in the right of Fig.7. These Stokes curves
are also degenerate. We try to resolve this degeneracy in the same manner
as in the above example. For generic $\theta<0$ , we find that we can resolve
this degeneracy of the Stokes geometry. But, what is interesting is that the
Stokes geometry becomes degenerate infinitely many times, as $\theta$ tends to $0$ .
(See Fig.8, 9.)

In any example, the correspondence of the Stokes geometry does note
hold between (1) and (2).
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Figure 8: We resolve the degeneracy in Fig.6 by changing $\eta$ to $e^{i\theta}\eta$ for $\theta=$

$-1$ .

Figure 9: We resolve the degeneracy in Fig.6 by changing $\eta$ to $e^{i\theta}\eta$ for
$\theta=-1/2$ . By comparing this figure with Fig.7, we find that
the Stokes geometry becomes degenerate between-l $<\theta<-1/2$ .
Furthermore, we find that the Stokes geometry becomes degenerate
infinitely many times as $\theta$ tends to $0$ .

37



Now we apply Theorem 2 to (2) at $x=\pm 1$ . We must note that

(i) the connection formula (2) depends only on the lower degree part of
the potential;

(ii) The lower degree part of the potential are independent of $Q(x)$ .

Thus the connection formulae at $x=\pm 1$ do not depend on $Q(x)$ .
Characteristic exponents of (2) at $x=\pm 1$ are

$\frac{3}{4}$ $\frac{1}{4}$ . (73)

Hence the Stokes multiplier which arises when we cross the Stokes curves
emanating from $x=\pm 1$ vanishes because

$2i \cos\pi(\frac{3}{4}-\frac{1}{4})=0$ (74)

holds, which implies the turning points $x=\pm 1$ are apparent, as we expected.
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