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Abstract
Evolutionary mechanisms for protein evolution
have been intensively studied in the past 30
years. Recent advances in DNA technology
provided means to analyze variation at the
DNA level and many polymorphism data have
been accumulated. These new data provide
much more information than protein data and
enable us to examine the mechanisms of pro-
tein evolution in more detail. Here, I first re-
view what have been learned from these molec-
ular analysis. Then, multicodon nearly neutral
mutation models are presented as candidate
models for protein evolution and an analysis
on one of them is described.

1 Introduction

Since KIMURA (1968) proposed the neu-
tral theory of molecular evolution, evolution-
ary mechanisms at the molecular level have
been much debated (see LEWONTIN, 1974;
KIMURA, 1983; OHTA, 1996; KREITMAN,
1996). The neutral theory postulates that
the main cause of evolutionary change at the
molecular level is random fixation of selectively
neutral or very nearly neutral mutations rather
than Darwinian selection. Especially contro-
versial were the mechanisms for substitutions
and maintenance of variation of amino acids.
The opposite view to the neutral theory is
that of the selectionists in which most amino
acid changes are considered to involve adap-

tive significance (see, for example. GILLESPIE.
1991). As long as just allozyme frequencies
were observed, it is difficult to resolve the con-
troversy because the neutral and at least one
selection model give the same sampling distri-
bution of gene frequencies in the equilibrium
(EWENS, 1972; GILLESPIE, 1977). Also di-
rectly measuring differences of fitness within
species was very difficult because differences
must be very small, say, less than 0.1 % (see
MUKAI, ICHINOSE AND TACHIDA. 1981 and
DYKHUIZEN AND HARTL, 1980). This was
very frustrating for evolutionary biology be-
cause proteins are building blocks of organisms
and how they evolve and what significance is
there among different amino acids have been
important questions.

Advances in molecular biology give some
hope to break this impasse. In $1970\mathrm{s}$ and
$80\mathrm{s}$ , techniques to deal with DNA. the ge-
netic material itself, have been developed and
now it is possible to obtain DNA sequences of
genes fairly easily with the PCR (polymerase
chain reaction) and direct sequencing meth-
ods. Using these techniques, many data con-
cerning variation between and within species
have been obtained. These data stimulated
developments of the genealogy theory in $\mathrm{P}^{\mathrm{O}}1$)$-$

ulation genetics resulting in various lleutralitv
tests based on DNA data (HUDSON. 1990).
In the present paper, I review these $\mathrm{d}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{l}$ )$-$

ments first and explain what discrepancies to
the predictions of the neutral theory are now
observed. Then, as one candidate model for
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explaining the DNA data, multicodon nearly
neutral mutation models are stated and recent
analyses on them will be explained..

2 DNA data and the neu-
trality tests

First. I briefly explain the organization of
genomes, the genetic materials of organisms. A
genome is composed of sequences of DNA. For
our purposes., it is enough to recognize them as
sequences of characters called bases, $\mathrm{A},$ $\mathrm{G},$

$\mathrm{T}$

and $\mathrm{C}$ , corresponding to different nucleotides
(for more details, see texts of molecular ge-
netics). For example, the human genome con-
sists of about 3 $\cross 10^{9}$ bases and the genome
of a bacteria, E. coli. is about 5 $\cross 10^{6}$ bases.
Only a portion of the genome codes for pro-
teins or RNAs and other parts are called non-
coding regions. Usually a protein is encoded
by stretches of DNA called exons. They are in-
terrupted by non-coding regions called introns.
Three consecutive bases code for one amino
acid and this unit is called a codon. Since there
are 20 kinds of amino acids used in organisms
and a codon can specify $4^{3}=64$ kinds, some
base changes do not result in changes of amino
acids. Such changes are called silent changes.
Those changes causing amino acid changes are
called replacement changes.

As far as population genetics is concerned,
the improvements brought up by the DNA
technologies are two-fold. First, by knowing
the sequence. we can classify changes between
and within populations as either silent (cod-
ing or non-coding) or replacement. Second.
multiple changes in a gene can be identified.
Such information was not at hand in the pro-
tein polymorphism era of $60’ \mathrm{s}$ and $70’ \mathrm{s}$ in pop-
ulation genetics. Changes at multiple sites
in a gene enable us to infer the genealogical
structure of genes in populations (see Fig. 1)
and promoted the development of the geneal-
ogy theory (see reviews TAVARE, 1984; HUD-
SON. 1990). In this theory, descents of multiple
genes are followed in the direction to the past

$\mathrm{N}$

genes

Past Present

Figure 1: Gene genealogy in a random mating
population. Circles represent genes.

and the genealogical structure (i.e.. topology
and times to coalescences) is probabilistically
characterized. If we just look at gene frequen-
cies in the present generation, the data types in
Fig. 1 is (2/8, 3/8, 3/8). This corresponds to to
the data type in the protein polymorphism era
utilizing the electrophoresis. However. if we
can sequence these genes and know the differ-
ences among genes at multiple sites. the shape
of the genealogy of the sampled genes can be
estimated. Bellow I explain several neutrality
tests developed to utilize such informatioll.

The first test is that based on the variance
of numbers of substitutions. Assume that se-
quences of a gene from multiples species (one
from each species) are known. By comparing
them, we can estimate the numbers of sub-
stitutions on the branches of the genealogical
tree. For simplicity, consider $n$ species that di-
verged at the same time in the past. Let $X$

be the number of substitutions that occurred
in one lineage after the diversification of the
species. In this case, we can estimate the aver-
age. $\mathrm{E}[X]$ , and variance, $\mathrm{V}\mathrm{a}\mathrm{r}[X]$ . of the $\mathrm{n}\mathrm{u}\ln-$

ber of substitutions in the gene after the di-
versification of the species. Under the neutral-
ity assumption, the number of substitutions on
each branch is expected to have approximately
a Poisson distribution. Thus. the ratio of the
variance to the average., called the dispersion
index, $I=\mathrm{V}\mathrm{a}\mathrm{r}[x]/\mathrm{E}[X]$ , is expected to be one
(For a general account of the dispersion index
in molecular evolution, see TAKAHATA. 1987).
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$\mathrm{A}_{]}$ $\mathrm{A}2$ $\mathrm{A}3$ $\mathrm{A}4$ $\mathrm{A}5$ $\mathrm{A}6$ $\mathrm{A}7$

Figure 2: Tajima’s test statistics. The geneal-
ogy of sampled sequences $A_{1},$

$\ldots,$
$A_{7}$ is shown.

GILLESPIE (1989) and OHTA (1995) estimated
the dispersion index of replacement substitu-
tions using 20 and 49 mammalian genes and
they obtained estimates of 6.95 and 5.6, re-
spectively, significantly larger than one. They
both concluded from these data that some
selection is at work for replacement substi-
tutions in mammals. Recently, ZENG et al.
(1998) estimated $I$ using 24 genes of fruit flies,
Drosophila, and obtained 1.6 as an estimate of
$I$ for replacement substitutions. At present es-
timates of dispersion indices for other species
are not available.

The second test is based on population
polymorphism data. Assume that there are
infinitely many sites and there is no recom-
bination among them (the infinite site model
without recombination of WATTERSON 1975).
Consider that we sampled $m$ sequences from
a population (see Fig. 2). If a site is vari-
able, that is, there are variant nucleotides in

some sequences at the site, the site is called
a segregating site. Let $S_{m}$ be the number of
segregating sites in $m$ sampled sequences. In
the infinite site model without recombination.
$S_{m}$ is the number of mutations in the whole
genealogy (see Fig. 2). In a randoln mating
equilibrium population with size N. if muta-
tions are all neutral with respect to selection
and mutation rate is $u$ , the expected number.
$\mathrm{E}[S_{m}]$ , of segregating sites is expressed as

$\mathrm{E}[S_{m}]=a_{m}\theta$ .
where $a_{m}$ $=$ $\sum_{i=1}^{m-1}1/i$ and $\theta$ $=$ $4Nu$

(WATTERSON, 1975). Next let $k_{ij}$ be the
number of different sites between sequences $i$

and $j$ . Its expected value is $\mathrm{E}[S_{2}]$ and thus
$\mathrm{E}[k_{ij}]=\theta$ . TAJIMA (1989a) introduced a
neutrality test noting that $S_{m}/a_{m}$ and $k=$
$(1/m(m-1)) \Sigma_{i}\sum j\neq ikij$ both estimate $\theta=$

$4Nu$ . His statistics called Tajima $\mathrm{s}D$ is de-
fined as

$D= \frac{k-S_{m}/a_{m}}{\sqrt{u_{T}S_{m}+v_{\tau}S\mathit{2}m}}$ .

where the denominator of the right-hand side
of the equation is an estimator of the vari-
ance of the numerator (see TAJIMA. $1989\mathrm{a}$ . for
the expressions of $u_{T},$ $v_{T}$ ). This statistics was
shown to be approximately distributed as Beta
with mean zero and variance one (TAJIMA.
$1989\mathrm{a})$ and he proposed to use this statistics to
test the neutrality (see SIMONSEN et al.. 1996.
for distributional properties and power of the
test). If there are more rare variants than ex-
pected under the neutrality, $k$ is not $\mathrm{m}\mathrm{u}\mathrm{C}\mathrm{l}\mathrm{l}$ af-
fected but $S_{m}$ is expected to increase. Thus.
the numerator is likely to be minus. On the
other hand, if there are more high-frequency
variants, $k$ increases and $S_{m}$ decreases result-
ing in plus $D$ . The former situation occurs if
mutations are deleterious or there was a recent
bottleneck of population $\cdot$ size. The latter situ-
ation is expected if there is balancing selection
keeping the variant frequencies at high levels or
isolation of populations (see TAJIMA. $1989\mathrm{b}.\mathrm{c}$ ).
TAJIMA $\mathrm{S}$ test was applied to many DNA poly-
morphism data of Drosophila. At two out of 38
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Figure 3: MK test. The genealogy of sam-
pled sequences $A_{1},$

$\ldots,$
$A_{3}$ from species A and

$B_{1_{\mathit{1}}}\ldots$ . $,$

$B_{4}$ form species $\mathrm{B}$ is shown with mu-
tations.

loci. $D$ was significantly minus at the 5% level.
Another neutrality test based on a similar idea
is that of FU AND LI (1993). They utilize the
number. $\eta_{S}$ . of singleton sites and defined two
statistics,

$D^{*}$ $=$ $\frac{S_{a}/a_{m}-\eta s(\frac{n-1}{n})}{\sqrt{u_{D*}S_{a}+v_{D*}s2}}$

$F^{*}$ $=$ $\frac{k-\eta_{s}(\frac{n-1}{n})}{\sqrt{u_{F*}S+v_{F*}s2}}$ .

The expectation of the numerator is zero be-
cause $\mathrm{E}[\eta_{S}]=n\theta/(n-1)$ . The expressions for
$u_{D*}.v_{D*},$ $u_{F}*’ vF*\mathrm{a}\mathrm{r}\mathrm{e}$ listed in SIMONSEN et al.
(1996).

The third type of tests utilizes DNA vari-
ation between and within populations. Here,
I explain the MK test proposed by MCDON-
$\mathrm{A}\mathrm{L}\mathrm{D}$ AND KREITMAN (1991). In this test, mul-
tiple sequences are sampled from more than
one species (see Fig. 3). In the figure, three
and four sequences are sampled from species A
.and B. respectively. After an alignment of the

$\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}\mathrm{S}_{\backslash ,}$ sites are classified by two criteria.
For simplicity. we assume that there is no re-
combination among sites and at most only one
change occurs at each site in the whole geneal-

$\mathrm{o}\mathrm{g}\mathrm{y}$. The latter condition is mostly satisfied
unless the two species are not distantly related.
First, a site is called fixed if there are no vari-
ants within species but different nucleotides
are fixed in the two species. In terms of the
genealogy, mutations having occurred in the
branch connecting the genealogies of the two
species (circles in the figure) are those at fixed
sites. If the site has a variant in either species.
it is called polymorphic (squares in the fig-
ure). Second, a site is called replacement if the
change causes a change of amino acid. Other-
wise, it is called silent. All segregating sites are
classified by these two criteria and we obtain
a $2\cross 2$ table (see the lower part of the figure).
Under the neutrality, the ratios of replacement
substitutions to silent substitutions at fixed
and polymorphic sites are expected to be the
same. We can test this by applying a goodness
of fit test to the table. In the MK test. re-
placement and silent sites are assumed to have
the same genealogy as depicted in Fig. 3 since
there is no recombination. If two types of sites
recombine freely, we need to take into account
the difference of genealogies. In another test
called the HKA test (HUDSON. KREITMAN
AND AGUADE 1987), variations within and be-
tween two populations (species) at two inde-
pendent loci, within which there is no recombi-
nation, are compared. Because genealogies of
the two independent loci differ. we need to take
into account this stochastic factor for the good-
ness of fit test as was done by HUDSON, KRE-
ITMAN AND AGUADE (1987). These two tests
of the neutrality were applied to Drosophila
nuclear DNA data and it was found that about
one-half of the loci examined did not conform
to the expectation of the neutral hypothesis
by either one of the test (MORIYAMA AND

POWELL 1996). In addition. the MK test
was applied to the mitochondrial DNA data in
Drosophila (BALLARD AND KREITMAN. 1994:
RAND et al., 1994), mouse (NACHMAN et al..
1994) and human (NACHMAN et al.. 1996). In
all cases., the neutrality was rejected. Further-
more, in these cases, excess replacement sub-
stitutions are found at polymorphic sites.
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site i-2 i-l $\mathrm{i}$ $\mathrm{i}+$ ] $\mathrm{i}+2$

Allele $\mathrm{A}_{\mathrm{i}- 2}$ $\mathrm{A}_{\mathrm{i}-]}$ $\mathrm{A}_{\mathrm{i}}$ $\mathrm{A}_{\mathrm{i}+]}\mathrm{A}_{\mathrm{i}+2}$

$\mathrm{w}i$

$\mathrm{K}(=4)$ interacting sites

$(\mathrm{A}_{\mathrm{i}- 2},\mathrm{A}_{\mathrm{i}1^{\mathrm{A}_{\mathrm{i}^{\mathrm{A}_{\mathrm{i}+}}}}}-,,],\mathrm{A}_{\mathrm{i}2}+)arrow$ $\mathrm{w}_{\mathrm{i}}$

Figure 4: KAUFFMAN’S NK model. The num-
ber of interacting amino acids is $K=4$.

Another feature of DNA variation recently
found is a reduction of variation (site heterozy-
gosity or nucleotide diversity) at silent sites
within population in regions of low recombina-
tion in Drosophila (BEGUN AND AQUADRO,
1992). Since variation between populations
(species) is not reduced in regions of low re-
combination, we can not explain this pattern
by postulating low mutation rate in regions of
low recombination.

Although the neutrality was rejected at not
all loci, there are many loci where DNA vari-
ation pattern is not compatible with the neu-
tral expectation. Therefore, we need to explore
other possibilities than the strict neutral model
to explain evolution at the molecular level. In
the next section, I describe one such effort in-
troducing weak selection (the nearly neutral
mutation model, see OHTA, 1972, 1973, 1992).

3 Nearly neutral mutation
model

Here. we concentrate on evolution of proteins.
A protein comprises of a sequence of amino
acids. In the modeling of a protein, how mu-
tation occurs and how fitness is determined
should be specified. KAUFFMAN (1993) pro-
vides a general framework called the NK model
to study evolution of proteins. In the NK
model. a protein is assumed to have $N$ amino

acids. The gene coding- for the protein consists
of $N$ sites, each site being able to specify one
out of $L$ amino acids (see Fig. 4). $K$ represents
the number of interacting amino acid sites and
this will be explained later. At each site. an
allele (amino acid) can mutate to any other al-
leles with equal probabilities. The allelic state
of the gene is determined by what amino acids
occupy respective amino acid sites in the gene.
Fitness of an allele of the gene is determined
as follows: Fitness, $w_{i}$ , of an amino acid site $\dot{?}$

is determined by what amino acids occupy the
site and $K$ other sites in the NK model. In Fig.
4, the combination of the amino acid at the
site $(A_{i})$ and those at $K=4$ neighboring sites
$(A_{i-2}, A_{i-}1, Ai+1, Ai+2)$ determine the fitness of
the site $w_{i}$ . The fitness of the combination of
amino acids at each site $i$ is determined by in-
dependently drawing numbers from a specified
distribution, $f(s)$ , at the start and its stays
constant through time. The fitness. $w$ . of the
gene is the average of $w_{i}\mathrm{s}$ ,

$w= \frac{1}{N}\sum_{i=1}^{N}w_{i}$ .

If there is no interaction $(K=0)$ . the fit-
ness landscape has one peak and a popula-
tion moves toward that peak. As $K$ increases.
the fitness landscape becomes more rugged
(KAUFFMAN, 1993).

Although this way of introducing interac-
tion among amino acid sites is just one way
of doing so and the original intention of intro-
ducing the NK model was more toward under-
standing complexity, the NK model provides
a starting point for studying molecular evo-
lution of protein. Past nearly neutral muta-
tion models are special cases of the NK model.
OHTA (1977) and KIMURA (1979) studied a
protein model in which each mutation causes
a shift of fitness with some specified distribu-
tion (the shift model). This corresponds to
the $N=\infty,$ $K=\backslash 0$ NK model. In this model.
the average fitness increases or decreases ill-
definitely depending on whether there is posi-
tive mass in the $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{C}\dot{\mathrm{i}}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}$ distribution. On the
other hand, OHTA AND TACHIDA (1990) and
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TACHIDA (1991) studied a model in which the
fitness of the gene is determined from a spec-
ified distribution when mutation occurs (the
fixed model or $\mathrm{h}_{\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{e}}-\mathrm{o}\mathrm{f}_{-}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{s}$ model of KING-
MAN, 1978). If there are $N$ sites each with $L$

alleles\ノ there are $N\cross L$ allelic states accessi-
ble from any one state by one mutation. With
$K=N-1$ in the NK model, fitnesses of those
accessible states are randomly assigned at the
outset. As $N$ goes to infinity, the number of ac-
cessible states becomes infinite and the model
is expected to conve.rge to the $\mathrm{h}_{\mathrm{o}\mathrm{u}\mathrm{S}\mathrm{e}}- \mathrm{o}\mathrm{f}_{-}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{s}$

model.
Several studies examined the behavior of

these nearly neutral mutation models paying
attention to the statistics mentioned in the
previous section. In the $\mathrm{h}_{\mathrm{o}\mathrm{u}\mathrm{S}\mathrm{e}}-\mathrm{o}\mathrm{f}_{-}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{s}$ model,
$\alpha=2N\sigma$ (hereafter, we use $N$ for designating
population size and a for the standard devia-
tion of the mutational effect on fitness) deter-
mines most of the model behavior (TACHIDA,
1991. 1996). IWASA (1993), and GILLESPIE
(1994a) found that the dispersion index be-
comes very large for $\alpha>1$ although the realis-
tic range might be small because substitutions
almost cease if $\alpha>4$ in the $\mathrm{h}_{\mathrm{o}\mathrm{u}\mathrm{S}\mathrm{e}}- \mathrm{o}\mathrm{f}_{-}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{s}$

model. If size of population changes, the dis-
persion index becomes large and still some sub-
stitutions occur in the $\mathrm{h}_{\mathrm{o}\mathrm{u}\mathrm{S}\mathrm{e}}- \mathrm{o}\mathrm{f}_{-}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{s}$ model
(ARAKI AND TACHIDA, 1997). The average
of TAJIMA’S $D$ is negative both in the shift
and $\mathrm{h}_{\mathrm{o}\mathrm{u}\mathrm{S}\mathrm{e}\mathrm{o}}- \mathrm{f}$-cards model (GILLESPIE, $1994\mathrm{b}$

1997). OHTA $(1997, 1998)$ investigated the NK
model with $K=0,2,4$ and showed that the
dispersion index is close to one and TAJIMA’S
$D$ is minus. However, the distributional prop-
erties of TAJIMA’S $D$ and the MK test have
not been investigated. Because large amount
of data are now accumulating, it is necessary
to characterize behavior of the models com-
prehensively in terms of these statistics. As a
start., I chose the simplest nearly neutral mu-
tation model mimicking a protein coding-gene
structure, $\mathrm{i}$ . $\mathrm{e}.,$

$\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ NK model with $K=0$ (the
multi-codon model) and investigated the pat-
tern of variation with regard to these statistics
for the neutrality tests (TACHIDA, 1999).

Figure 5: Multicodon model.

4 Multicodon model

Consider a gene consisting of $3n$ nucleotide
sites each with four alleles (Fig. 5). No
recombination is assumed among nucleotide
sites. Each of three consecutive sites is called
a codon. For simplicity the first two sites of a
codon is assumed to specify an amino acid and
the third site is a silent site. Because there
are four alleles ( $\mathrm{A},$ $\mathrm{T}_{l}$. G. C) per site. a codon
specifies one from sixteen amino acids. In real
organisms, $4^{3}=64$ codons specify 20 amino
acids and a stop signal with redundancy $\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{l}_{d}\mathrm{v}$

at the third site. Mutation occurs $u$ per site
per generation and the probabilities of $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}_{b}\sigma-$

ing to other three alleles are equal. For fitness.
independence among sites is assumed. For $i\mathrm{t}\mathrm{h}$

$\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{o}\mathrm{n}_{\mathit{1}}\backslash$ the selection coefficient $s_{i}$ is assigned
from a specified distribution $f(s)$ (a normal
distribution with a mean zero and variance $\sigma^{2}$

‘

in the following) to each of 16 amino acids and
they stay constant through time. The fitness
of a gene $w$ is defined multiplicatively as

$w= \prod_{i=1}^{n}(1+s_{i})$ .

This model differs from the NK model with
$N=3n,$ $K=1,$ $L=4$ in the following points.
First, interaction between sites is only for $\mathrm{t}1_{1}\mathrm{e}$

first and second sites in a codon and there is no
interaction among codons. In the NK model
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. $\mathrm{r}_{\mathrm{l}\mathrm{C}\mathrm{e}}\mathrm{s}\mathrm{f}\mathrm{r}\mathrm{a}1$

$)C)\mathfrak{o}1\iota 1\partial \mathrm{t}\mathrm{i}\mathrm{c})\mathrm{t}\mathrm{l}$

(size $\backslash$ )

$\mathrm{P}\circ \mathrm{p}_{111\mathrm{a}}\mathrm{t}\mathrm{i}\mathrm{o}1$

A
(size $\backslash$ )

$\not\in\sim\subset\circ\underline{\frac{\Phi}{\mathrm{o}}}\Phi\circ$

$\mathrm{D}^{\mathrm{O}\mathfrak{d}^{\mathrm{M}}\mathrm{t}\mathrm{i}\mathrm{o}1}$

$(\mathrm{s}\mathrm{i}_{\mathrm{Z}}\mathrm{e}\mathrm{B}.\backslash )$

$\frac{\vee\Phi\subset\circ\underline{\mathrm{O}}}{\omega \mathrm{q})}$

$\circ)\mathrm{t}\mathrm{D}$

$\underline{\varpi}$

$\triangleleft>\mathrm{Q})$

Figure 6: Population model.

with $K=1$ , if interacting sites are taken to
be one and the next one, all sites consequently
interact. Second, there are silent sites. As de-
scribed before. some neutrality tests uses in-
formation from both silent and replacement
variation. Thirdly, the fitness is defined multi-
plicatively while it is defined additively in the
NK model. Since relative fitnesses determine
the dynamics of gene frequencies, the effect of
changing one amino acid on fitness is indepen-
dent on the average fitness in the multiplicative
fitness models.

The population starts from $N$ genes with
the same allelic state (see Fig. 6). The Wright-
Fisher model (see, for example, EWENS,
1979; CROW AND KIMURA, 1970) is assumed
with discrete generations and constant size $N$

throughout time. The initial allelic state was
chosen by randomly assigning amino acids at
respective codons. After a weighting period for
stationarity (explained later), a gene is sam-
pled from the population. The sequence of this
gene is later used as an outgroup sequence to
estimate numbers of substitutions. $10N$ gener-
ations after the first sampling, the population
is split into two, A and $\mathrm{B}$ , with the same size
$N$ and random mating continues within each
population. At every 0. $05/u$ generations after
the split, $m$ genes are sampled from each pop-
ulation and their sequences are recorded up to
0. $5/u$ generations. This range of time covers
most of the data analyses conducted thus far.

This model is analyzed using computer
simulation. However, before conducting sim-
ulation of the full multicodon model. a single-

Figure 7: Average selection coefficients and nu-
cleotide diversity in one-codon model. Solid
lines and dotted lines represent average selec-
tion coefficients and nucleotide diversity. re-
$\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{y}\sim$.

codon model was approximately analyzed to
determine the weighting period and examine
to what extent the single-codon model approx-
imates the multicodon model. In the single-
codon model, a gene consists of a single codon.
Because the product of population size and
mutation rate is small compared to one. we
use the weak mutation approximation where
the population is assumed to be monomorphic
and represented by the fixed allele. Evolution
is described by a 16-states Markov chain (see.
for example, ZENG, TACHIDA AND COCKER-
HAM, 1989). With this $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{X}\mathrm{i}_{\ln}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$. it can
be shown using KIMURA (1962) $\mathrm{s}$ formula for
fixation probabilities that the equilibrium dis-
tribution, $q_{i}$ , for the population to be fixed
with the $i\mathrm{t}\mathrm{h}$ allele is expressed as

$q_{i}= \frac{\exp(2Ns_{i})}{\Sigma_{j1}^{16}=\mathrm{x}\mathrm{e}\mathrm{p}(2NS_{j})}$ . (1)

where $s_{i}$ is the selection coefficient of the $i\mathrm{t}\mathrm{h}$

allele (TACHIDA, unpublished results). Tilne
dependent behavior of the average fitness. site
heterozygosity (hereafter called nucleotide di-
versity) and number of substitutions were ex-
amined using computer simulation of the ap-
proximate Markov chain (for the method. see
TACHIDA. 1996). By this approximation. com-
puting time is reduced very much and we can
obtain the result up to $1000/u$ generations $\mathrm{w}\mathrm{i}\mathrm{t}1_{1}$
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large number of replications.
The result is shown in Fig. 7. From the

figure, the average selection coefficient and nu-
cleotide diversity seem to achieve stationary

values by $5/u-10/u$ generations. Although

the values achieved are close to equilibrium val-

ues for $\alpha<10$ , this is not true for larger $\alpha$ .

For example, with $\alpha=20$ , the average selec-

tion coefficient at equilibrium computed from

(1) is 0.0353 while it is 0.0301 at $t=5/u$ and

0.0320 even at $t=1000/u$. However, mutation
rate per nucleotide site is about $10^{-8}$ or less

per year. Thus, the approximate stationarity

achieved in $5/u-10/u$ generations is what we
need to consider in protein evolution. From

this consideration, the full multicodon model
simulation was conducted with a weighting pe-

riod of $5/u$ generations.
The multicodon simulation was carried out

closely following the $\mathrm{W}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}- \mathrm{F}\mathrm{i}_{\mathrm{S}}\mathrm{h}\mathrm{e}\mathrm{r}$ model with

multinomial sampling done by the rejection

method (see PRESS et $\mathrm{a}1$ , 1988). First, we ex-
amined the average selection coefficient, $\overline{w}$ , and

nucleotide diversities at replacement site $(\pi_{\gamma})$

and silent sites $(\pi_{s})$ and results are shown in

Table 1. For comparison, the results of one-
codon simulations are also shown. The agree-
ment between the multicodon and single-codon
simulations are very good for $\overline{w}$ and $\pi_{r}$ . This

justifies the use of the single-codon approxima-
tion for computing these quantities. Further-
more. this suggests that codons are approxi-
mately evolving independently. This may al-

low us to analyze the statistics described be-

low with analytical $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$ in future

studies. The nucleotide diversity, $\pi_{s}$ , at linked
silent sites shows some interesting pattern. As
$\alpha$ increases. $\pi_{s}$ first decreases and then in-

creases. The maximum reduction from the

neutral $(\alpha=0)$ value is found for $\alpha=5.0$

and it is 15% with $u=10^{-5}$ . The relative
reduction increases as $u$ becomes large. This
suggests that intermediate intensity of selec-
tion can be one explanation for the reduction
of the nucleotide diversity at linked $\mathrm{s}\dot{\mathrm{i}}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}$ sites
mentioned before.

Next we investigated the number of substi-

Table 2: The average number of substitutions
and dispersion index.

$a$ Time after the split of the population.
$b$ Average number of substitutions.
$c$ Dispersion index.
The values are $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\dot{\mathrm{t}}\mathrm{e}\mathrm{d}$ from the outputs of

1000 replications with population size $N=$

$500,$ $u=10-5,0n=10$ .

tutions. To estimate numbers of substitutions.
we sampled a gene $10N$ generations before the

split of the population and this is used as an
outgroup. After the split. one gene each is

sampled from populations A and $\mathrm{B}$ (see Fig.

6). The numbers of substitutions between all

pairs of the three genes are estimated by the

JUKES-CANTOR method (JUKES AND CAN-
$\mathrm{T}\mathrm{O}\mathrm{R}$ , 1968) based on their differences. From

these numbers of substitutions. we can draw

a gene genealogy and estimate the numbers of
substitutions on the branches leading to the
gene from A and gene from B. Let $X_{A}$ and
$X_{B}$ be these estimated numbers of substitu-
tions. This procedure is the one usually takeri
in estimations of substitution rates. We can
estimate the mean and variance of numbers of
substitutions by averaging $(X_{A}+X_{B})/2$ and
$(X_{A}-X_{B})^{2}/2$ over replications. respectively.
As shown by BULMER (1989). this way of es-
timating the variance introduces bias when the

number of substitutions per site becomes large.

Thus, in the estimation, we used his correction
factor. Some of the results are shown in Ta-

ble 2. The average number of substitutions
decreases as selection becomes stronger. Al-
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Table 1: The average fitness and nucleotide diversity at 5. $6/u$ generation

$\angle.\mathrm{U}$ $\perp$ 1. $\Delta \mathrm{O}\mathrm{O}\angle$

4 1.2107
5.0 1 2.1021

$\mathit{1}.\Delta \mathit{3}/l\pm$ U. $\mathrm{U}\mathrm{U}\mathrm{O}\mathrm{o}\angle$ U. $\mathrm{U}\mathrm{U}\mathrm{O}40$ $\cup.\cup\cup 9\cup($

1.2974 0.02361 0.02581 0.02971
2.1325 0.00353 0.00350 0.00857

20.0 1 20.2720 19.9891 0.00114 0.00119 0.00889
4 20.9628 19.9891 $\cdot$ 0.00454 0.00476 0.02823

50.0 1 1446.5668 1455.6000 0.00054 0.00056 0.00931

$a$ Computed from the multicodon simulations with 1000 replications. $N=500.n=100$ .
$b$ Computed from the single-codon simulations with $10^{5}$ replications.

though the substitutions almost stop for $\alpha>4$

in the $\mathrm{h}_{\mathrm{o}\mathrm{u}\mathrm{S}\mathrm{e}}- \mathrm{o}\mathrm{f}_{-}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{s}$ model with infinite num-
ber of alleles, the average number of substi-
tutions for $\alpha=10$ is about one-tenth of the
neutral value in the present model. This is
due to the finiteness of the number of alleles
in one codon. The maximum selection coeffi-
cient exists in the finite allele models while it
does not in the infinite allele model if mutant
effects on fitness is without bound like those
from a normal distribution. The dispersion in-
dex, $I=\mathrm{V}\mathrm{a}\mathrm{r}[X]/\mathrm{E}[X]$ , was estimated from the
average and variance of the number of substi-
tutions. In the period examined, the disper-
sion index is generally close to one. The reason
for low dispersion indices in the present model
is considered to be due to two factors. First,
the number of substitutions is averaged over
codons. In codons where differences of selec-
tion coefficients are small, the number of sub-
stitutions is large and thus its contribution is
larger than those from other codons. In these
codons, substitutions occur more like those in
the neutral case and would be regular. Sec-
ond, it takes time for the dispersion index to be
larger in the $\mathrm{h}_{\mathrm{o}\mathrm{u}\mathrm{S}\mathrm{e}-}\mathrm{o}\mathrm{f}$-cards model (TACHIDA,
1996). Here, the time is short in terms of $1/u$

generations. This pattern in dispersion indices
is different from that found $\mathrm{i}\grave{\mathrm{n}}$ mammals.

Next we examined TAJIMA’S $D$ . It is es-

Figure 8: Tajima’s $D$ at replacement sites. Av-
erages and rejection probabilities $(P=0.05)$
are shown by solid and broken lines. respec-
tively. Parameters are $N=500.n=100.m=$
$50$ .

timated by first sampling multiple genes from
a population and then estimating the average
number of differences between genes. $k$ . and
the number of segregating sites. $S_{m}$ . The av-
erage $D$ and the probability of rejection of
the neutrality at the 5% level were estimated.
Some of the results at replacement sites are
shown in Fig. 8. As shown in the figure. $\mathrm{E}[D]$

starts to decreases from zero as $\alpha$ becomes
larger than one and converges to around minus
one. Although $\mathrm{E}[D]$ becomes minus. the rejec-
tion probability is low and takes the maximum
value around 0.3 when $u=$ 0.000004. $\alpha=20$ .
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The probability becomes smaller as mutation
rate decreases and for $u=0.\mathrm{O}\mathrm{o}\mathrm{O}\mathrm{o}1$ it never be-
comes larger than 0.05. As selection becomes
very strong $(\alpha=100),$ $|\mathrm{E}[D]|$ decreases and
the probability drops. This is because the pop-
ulation becomes monomorphic and not much
variation is left reducing the detection rate of
selection. Sample size also affects the rejection
probability. For example, the rejection proba-
bilities for $\alpha=20$ are 0.122, 0.286 and 0.402
with $m=20,50,100$ , respectively. If the num-
ber., $n$ . of sites increases, the rejection proba-
bility increases. Approximately $nu$ determines
the rejection probability. This is expected be-
cause each codon evolves independently and
the nucleotide diversity is very low. At silent
sites $|\mathrm{E}[D]|$ is close to zero and the rejection
probability is low. FU AND $\mathrm{L}\mathrm{I}’ \mathrm{S}D^{*}$ and $F^{*}$ be-
have similarly (data not shown). These statis-
tics based on DNA polymorphism data gen-
erally take negative values under the present
model and the rejection probability is low un-
less $u$ or $n$ is large.

Finally, we carried out the MK test sam-
pling multiple genes from two populations. Re-
sults are shown in Table 3. The rejection
probability of the neutrality is shown chang-
ing a. $u.n.m.t$ . Time is measured defining the
split time of the two populations as zero. In
the MK test. there are two ways the null hy-
pothesis that the $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{s}\mathrm{i}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}$ ratio at
the polymorphic sites are the same as that
at fixed sites is rejected. Define the excess
replacement changes at polymorphic sites as

$\prime\prime \mathrm{r}\mathrm{e}\mathrm{j}\mathrm{A}\text{ノ}\mathrm{T}\backslash$ and the converse is defined as “
$\mathrm{r}\mathrm{e}\mathrm{j}\mathrm{B}$

”

Let $P_{\mathrm{r}\mathrm{e}\mathrm{j}\mathrm{A}}$ and $P_{\mathrm{r}\mathrm{e}\mathrm{j}\mathrm{B}}$ be the respective proba-
bilities of these two events. The table presents
these two probabilities when the null hypoth-
esis is rejected at the 5% level. First of all,
note that the rejection is almost always “

$\mathrm{r}\mathrm{e}\mathrm{j}\mathrm{A}$

”

This is a characteristic outcomes of the present
nearly neutral mutation model with constant
population size. Such pattern is rarely found
in nuclear genes (MORIYAMA AND POWELL,
1996. but see also MIYASHITA et al., 1998)
but found many times in mitochondrial DNA
(BALLARD AND KREITMAN, 1994; RAND et

al., 1994; NACHMAN et $\mathrm{a}1$ , 1994 and 1996:
HASEGAWA et al., 1998). $\dot{\mathrm{T}}$he MK test is sen-
sitive in detecting weak selection. Even for
$\alpha=2.0$ , the rejection probability is 0.1 when
sample size is $m=50$ . Also the rejection prob-
ability is significant even with small sample
size for $\alpha=10$ . However, as selection becomes
stronger $(\alpha=50)$ , the rejection probability
becomes smaller. This is in sharp contrast
to TAJIMA’S test where the rejection probabil-
ity is fairly high for $\alpha=50$ but very low for
$\alpha=2$ . The reason for the low rejection prob-
$\mathrm{a}\dot{\mathrm{b}}$ility of the MK test when selection is strong
(large $\alpha$ ) is the rapid decrease of the fixed re-
placement sites. The power of the MK test
depends on the number of replacement substi-
tutions at fixed sites. Thus, the time after tlue
split also affects the rejection probability. The
rule that $nu$ determines the rejection probabil-
ity found in TAJIMA’S test does not hold in the
MK test. The rejection probability increases as
$n$ increases and with $n=400.u=0$ .00001. the
selection is detected very efficiently.

5 Conclusion
Recent accumulation of data of DNA variation
and advances in analyzing these data were re-
viewed. These new data suggest some inade-
quacies of the strict neutral model of lnolec-
ular evolution., especially of protein evolution.
urging us to study other models. possibly in-
volving selection (GILLESPIE. 1993. $1994\mathrm{b}$).
As one such effort for understanding protein
evolution, a simple multicodon nearly neutral
mutation model was proposed and its behav-
ior was investigated with special attention to
the statistics for testing the neutrality. With
the assumption of constant population size and
no recombination within a gene. the present
model predicts the outcome of the neutralit.v,
tests as follows:

1. The dispersion index is close to one.

2. $\mathrm{T}\mathrm{A}\mathrm{J}\mathrm{I}\mathrm{M}\mathrm{A}^{\backslash }\text{ノ_{}\mathrm{S}}$ and Fu AND LI statistics have
negative values but rejection of the neu-
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Table 3: Results of the MK test with various sample size and divergence time.

LU $\cup$ .UOO U. $\cup\cup/$ U. $\cup \mathrm{i}J^{\angle}\pm$ U. $\cup\cup A$

50 0.116 0.004 0.100 0.001
10 10 0.219 0.000 0.271 0.000

20 0.334 0.000 0.405 0.000
50 0.467 0.000 0.602 0.000

50 10 0.042 0.000 0.073 0.000
20 0.066 0.000 0.139 0.000
50 0.146 0.000 0.264 0.000

4 2 50 0.073 0.005 0.090 0.003
10 50 0.530 0.000 0.684 0.000

400 1 2 50 0.134 0.000 0.161 0.000
10 50 0.901 0.000 0.940 0.000

$a$
$u$ times $10^{5}$ .

$b$ Sample size.
$c$ Probability of rejection at the 5% level with excess replacement at polymorphic sites.
$d$ Probability of rejection at the 5% level with excess replacement at fixed sites.
The values obtained from 1000 replications with $N=500$ .

trality occurs when $\alpha$ is more than ten and
mutation rate or the number of codons are
large.

3. The MK test can detect selection of this
type if $\alpha$ is more than two and the di-
rection of the rejection is always that of
excess replacement polymorphisms.

4. A reduction of nucleotide diversity at
linked silent sites results under this model
but the maximum reduction occurs at in-
termediate strength of selection (around
$\alpha=5)$ .

As mentioned before, mammalian nu-
clear genes have large dispersion indices
(GILLESPIE, 1989; OHTA, 1995) and the
direction of the rejection in the MK test of
Drosophila nuclear genes is always in the other
direction, i.e.. excess replacement fixed sites.
Thus. the present model can not explain these
nuclear gene data. However, if we intro-

duce changes of population size. the disper-
sion index is expected to increase (ARAKI
AND TACHIDA, 1997) and excess replacement
fixations may occur in the MK test com-
parison. Quantifying the effects of chang-
ing population size is one immediate prob-
lem for future researches. Furtherlnore. silent
sites are not necessarily neutral as reported in
Drosophila (AKASHI, 1995) and background
selection (CHARLESWORTH ET $\mathrm{A}\mathrm{L}.$ . 1993.
1995; HUDSON AND KAPLAN, 1995; NORD-
BORG et al., 1996) and hitchhiking (KAPLAN
AND HUDSON, 1989; BRAVERMAN et al..
1995) may affect variation in the protein cod-
ing genes. Extensions incorporating these fac-
tors and its mathematical analysis (like that
by SAWYER AND HARTL. 1992) are one path
to enhance our understanding of the protein
evolution.
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