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Abstract

The effective size of population has played an important role in population genetics. We
consider a Wright-Fisher model whose population size is a simple Markov chain. For this
model, we define inbreeding effective size and variance effective size. These effective sizes
are turned out to be the same for this model. Effects of fluctuation of population size on
the effective size are investigated. The effective size is not the same as the harmonic mean
of population size unless fluctuation of population size is uncorrelated. The effective size
is larger than the harmonic mean when the fluctuation of population size is positively
autocorrelated and smaller than the harmonic mean when the fluctuation is negatively
autocorrelated.

1. Effective size of population

In population genetics theory, a traditional formulation of simple stochastic haploid model
is the folowing Wright-Fisher model. Consider a population of $N$ haploid individuals of
which $i$ are of type $A_{1}$ and $N-i$ are of type $A_{2}$ . The population reproduces itself in discrete
generations. The whole of the next generation is formed by $N$ independent repetitions of the
sampling with replacement. The probability that the next generation will contain $j$ members
of type $A_{1}$ and $N-j$ of type $A_{2}$ is

$p_{ij}=( \frac{i}{N})^{j}(1-\frac{i}{N})^{N-j}$ . (1)

Let $Z(t)$ be the number of type $A_{1}$ in generation $t$ . The process $\{Z(t)\}t=0,1,2,\ldots$ is a dis-
crete time Markov chain on $\{0,1, \ldots, N-1, N\}$ with $p_{ij}=P(Z(t+1)=j|Z(t)=i)$ . Let
$x(t)= \frac{Z(t)}{N}$ be the gene frequency of type $A_{1}$ in generation $t$ in the population. The process
$\{x(t)\}t=0,1,2,\ldots$ is a discrete time Markov chain on $\{0, \frac{1}{N}, \ldots, \frac{N-1}{N},1\}$ with the transition matrix
$T=(p_{ij})i,j=0,1,2,\ldots,N$ . This Markov chain is referred to as a Wright-Fisher model which has the
following properties (Ethier and Kurtz (1986) and Ewens (1979)). The maximum

$\mathrm{e}\mathrm{i}\mathrm{g}_{1}\mathrm{e}\mathrm{n}\mathrm{V}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}$

of the transition matrix $T$ is 1 and the maximum non-unit eigenvalue is $\lambda_{2}=1-\overline{N}$ . The
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probability that randomly sampled two genes from the population have the same parent is
$\pi_{2}=\frac{1}{N}$ . The quantity $\pi_{2}$ is referred to as the inbreeding coefficient. The conditional variance

of $x(t+1)$ conditional on $x(t)=x$ is $Var[X(t+1)|x(t)=x]=E[\{x(t+1)-x(t)\}^{2}\}x(t)=x]$

$= \frac{x(1-x)}{N}$ . The population size $N$ can be expressed as

$N= \frac{1}{1-\lambda_{2}}$ , (2)

$N= \frac{1}{\pi_{2}}$ , (3)

and
$N= \frac{x(1-X)}{Var[x(t+1)|x(t)=X]}$ . (4)

For stochastic models that are more complicated than the Wright-Fisher model, the
effective size of population plays an important role for the population size $N$ (Crow (1954),
Kimura and Crow (1963) and Wright (1938) $)$ . There are several ways to define the effective
size of population. The eigenvalue effective size Ne$(e)$ is defined by

Ne$(e)= \frac{1}{1-\lambda_{2}}$ , (5)

where $\lambda_{2}$ is the maximum non-unit eigenvalue of the transition matrix of the stochastic model.
The inbreeding effective size Ne$(i)$ is defined by

Ne$(i)= \frac{1}{\pi_{2}}$ (6)

where $\pi_{2}$ is the inbreeding coefficient of the stochastic model. The variance effective size
Ne $(v)$ is defined by

Ne$(v)= \frac{x(1-x)}{Var[x(t+1)|_{X(t})=x]}$ , (7)

where $x(t)$ is the gene frequency of type $A_{1}$ in generation $t$ of the stochastic model. For
concrete examples of these effective sizes, see Crow and Kimura (1970), Ewens (1979) and
Nagylaki (1992).

2. Effective size of fluctuating population

There is a lot of ecological data to the effect that the numbers of individuals in natural
populations fluctuate considerably in each epoch and from generation to generation (see
Andrewartha and Birch (1954), Elton and Nichokon (1942) and Odum (1959) $)$ . The varia-
tions in population size are influenced by such factors as climate, the abundance of available
resources, fluctuation in prey-predator balance, competition with other species using the same
habitat (Nicholson (1957)).

One of recent interests in theoretical population genetics is to find a mechanism for
evaluating overdispersed molecular evolution (Gilespie $(1991, 1993, 1994\mathrm{a}, 1994\mathrm{b})$ , Iwasa
(1993), Ohta and Kimura (1971), Ohta and Tachida (1990), Tachida (1991) and Takahata
(1987) $)$ . Overdispersed molecular evolution is a phenomena that the ratio of the variance
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to the mean number of substitution of mutants among species is larger than one. This
ratio is referred to as the dispersion index. Gillespie (1989), using data of 20 protein loci
from three species of mammals, obtained 6.95 as an estimate of the dispersion index. Ohta
(1995) analyzed 49 mammalian protein data and obtained an estimate of 5.6. Note that
the dispersion index is equal to one for the neutral model since the substitution process is a
Poisson process (Kimura (1983)). One of the candidates of the mechanism for evaluating the
dispersion index being much larger than one is nearly neutral mutation model with fluctuating
population size (Araki and Tachida (1997)).

Fluctuation of population size is not independent from generation to generation in gen-
eral as in the case of stochastic selection (Guess and Gillespie (1977), Iizuka (1987), Iizuka
and Matsuda (1982), Seno and Shiga (1984) and $\dot{\mathrm{T}}$akahata, Ishii and Matsuda (1975) $)$ . An
appropriate concept for autocorrelated stochastic processes is mixing processes (Billingsley
(1968) $)$ . In this paper, we will consider a simple case of mixing processes, that is, $\mathrm{t}_{\mathrm{W}\mathrm{C}\succ}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{d}$

Markov chain as a model of autocorrelated fluctuation of population size. Our interest is how
the effective size of population depends on the degree of autocorrelation of the fluctuation.

3. Model

Let $N(t)=N(t,\omega_{1})$ be the population size in generation $t$ . In this paper, we assume
that $\{N(t,\omega_{1})\}t=0,\pm 1,\pm 2,\ldots$ is a stationary Markov chain on $\{N_{1}, N_{2}\}$ such that

$P_{\omega_{1}}(N(t+1,\omega_{1})\neq N(t,\omega_{1})|N(t,\omega 1)=N_{j})=q_{j}$, (8)

$P_{\omega_{1}}(N(t+1,\omega_{1})=N(t,\omega_{1})|N(t,\omega 1)=N_{j})=1-q_{j}$, (9)

and
$P_{\omega_{1}}(N(\mathrm{o},\omega_{1})=Nj)=p_{j}^{(}st)$ , (10)

where $1<N_{1}<N_{2}<\infty,$ $0\leq q_{j}\leq 1,$ $q_{1}+q_{2}>0$ and

$(p_{1}^{(_{S}\ell},p2))(st)(= \frac{q_{2}}{q_{1}+q_{2}}, \frac{q_{1}}{q_{1}+q_{2}})$ (11)

is the stationary distribution of the Markov chain. The parameter $q_{j}$ is the probability of
changing size for $N_{j}(j=1,2)$ .

Note that

$\mathcal{T}_{j}=\sum_{k=1}^{\infty}k(1-q_{j})k-1=qj\frac{1}{q_{j}}$ (12)

is the mean persistence time for population size $N_{j}$ and

$\tau=p_{11}^{(st)}\mathcal{T}+p_{2}\mathcal{T}2=(_{St)}\frac{q_{1}^{2}+q_{2}^{2}}{q_{1}q_{2}(q_{1}+q2)}$ (13)

is the mean persistence time of the Markov chain. The mean of $N(t,\omega_{1})$ is

$E_{\omega_{1}}[N(t, \omega 1)]=p11N+p_{2}N_{2}=(st)(st)\frac{q_{2}N_{1}+q_{1}N_{2}}{q_{1}+q_{2}}$ . (14)
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The covariance of $N(t,\omega_{1})$ and $N(t+k,\omega_{1}\rangle$ is

$Cov_{\omega_{1}}[N(t, \omega_{1}), N(t+k, \omega_{1})]--\frac{q_{1}q_{2}(1-q_{1}-q_{2})^{k}}{(q_{1}+q_{2})^{2}}(N_{2}-N1)^{2}$. (15)

$\mathrm{E}\mathrm{q}.(15)$ means that constant population size, periodic change per generation, positively au-
tocorrelated fluctuation, uncorrelated fluctuation, and negatively autocorrelated fluctuation
correspond to $q_{1}q_{2}=0,$ $q_{1}=q_{2}=1,0<q_{1}+q_{2}<1$ with $q_{1}q_{2}\neq 0,$ $q_{1}+q_{2}=1$ with $q_{1}q_{2}\neq 0$ ,
and $1<q_{1}+q_{2}<2$ , respectively. The case of $q_{2}$ is much $\mathrm{s}\mathrm{m}\mathrm{a}\mathbb{I}\mathrm{e}\mathrm{r}$ than $q_{1}$ and $N_{1}$ is much
smaller than $N_{2}$ corresponds to a model of population bottleneck since the mean persistence

time $\tau_{1}$ for $N_{1}$ is much shorter than $\tau_{2}$ for $N_{2}$ . The mean of $\frac{1}{N(t,\omega_{1})}$ is

$E_{\omega_{1}}[ \frac{1}{N(t,\omega_{1})}]=\frac{1}{N_{H}}$ (16)

where

$N_{H}=$
$\{\frac{p_{1}^{(st)}}{N_{1}}+\frac{p_{2}^{(St)}}{N_{2}}\}^{-}1(=q1+q_{2})(\frac{q_{2}}{N_{1}}+\frac{q_{1}}{N_{2}})^{-1}$ (17)

is the harmonic mean of $N(t,\omega_{1})$ .
For fixed $\omega_{1}$ , we conside.r a haploid population with type $A_{1}$ and $A_{2}$ . The population

size in generation $t$ is $N(t,\omega_{1})$ . The number of type $A_{1}$ in generation $t$ which is den.oted by
$Z(t, \omega_{1}, \omega_{2})$ is a discrete time Markov process with

$P_{(v_{2}}(Z(t+1,\omega 1,\omega_{2})=j|z(t,\omega_{1},\omega_{2})=i)$

$=( \frac{i}{N(t,\omega_{1})})j(1-\frac{i}{N(t,\omega_{1})})^{N}(t+1,\omega_{1})-j$ , (18)

$0\leq i\leq N(t,\omega_{1}),$ $0\leq j\leq N(t+1,\omega_{1})$ . Let $x(t)=x(t, \omega_{1},\omega_{2})=\frac{Z(t,\omega_{1},\omega_{2})}{N(t,\omega_{1})}$ be the gene

frequency of type $A_{1}$ in generation $t$ . The process $\{x(t,\omega_{1,2}\omega)\}_{t=0,1,2},\ldots$ is a Wright-Fisher
model with variable population size $\{N(t,\omega_{1})\}$ for fixed $\omega_{1}$ . Incorporating stochastic effects by
fluctuating population size, this model is referred to as a Wright-Fisher model with fluctuating
population size. Note that $x(t,\omega_{1}, \omega_{2})$ is $\sigma(x(t-1, \omega 1,\omega 2), N(t-1,\omega 1), N(t,\omega_{1}))$ measurable
and $N(t,\omega_{1})$ is $\sigma(N(S,\omega_{1}),$ $S\leq t-1)$ measurable where $\sigma(x(t-1,\omega_{1},\omega_{2}), N(t-1, \omega 1), N(t,\omega_{1}))$

is a $\sigma$-field generated by $x(t-1, \omega_{1},\omega 2),$ $N(t-1, \omega 1),$ $N(t,\omega_{1})$ and $\sigma(N(S,\omega_{1}),$ $S\leq t-1)$ is a
a-field generated by $N(s,\omega_{1}),$ $s\leq t-1$ .

Because of the autocorrelation of fluctuation of population size, we must extend the
definition of effective size, which will be done for inbreeding effective size and variance effective
size in the following. Let $\pi_{2}(t)$ be the probability that randomly sampled..two genes from the
population in generation $t$ have the same ancestral gene. We $\mathrm{h}\mathrm{a}\mathrm{v}\dot{\mathrm{e}}$

$1- \pi_{2}(t)=E_{\omega_{1}}[\prod_{0k=}^{t-1}(1-\frac{1}{N(k,\omega_{1})})]\{1-\pi 2(0)\}$ . (19)

Since
$1- \pi_{2}(t)=(1-\frac{1}{N})^{t}\{1-\pi_{2}(0)\}$ (20)
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in the case of constant population size $(N(t,\omega_{1})=N)$ , the inbreeding effective size Ne$(i)=$

$Ne^{(i)}(q1, q_{2})$ can be defined by

$1- \frac{1}{Ne^{(i)}}=\lim_{\ellarrow\infty}\{E_{\omega}[1\prod_{=k0}^{t-1}(1-\frac{1}{N(k,\omega_{1})})]\}\frac{1}{t}$ . (21)

Let $V_{\ell}(X)$ be the conditional variance of $x(t,\omega_{1},\omega_{2})$ conditional on $x(\mathrm{O},\omega_{1},\omega_{2})=x$ , that
is,

$V_{t}(x)$ $=$ $Var_{(\omega_{1}\mu)}[2x(t, \omega 1,\omega_{2})|X(\mathrm{o},\omega 1,\omega_{2})=x]$

$=$ $E_{(\omega_{1},\omega_{2}}[)\{X(t, \omega_{1},\omega 2)-X(\mathrm{o},\omega 1,\omega 2)\}2|X(0,\omega 1,\omega 2)=x]$ . (22)

Since
$V_{t}(x)= \{1-(1-\frac{1}{N})t\}x(1-x)$ (23)

in the case of constant population size $(N(t,\omega_{1})=N)$ , the variance effective size Ne$(v)=$

$Ne^{(v)}(q1, q_{2})$ can be defined by

$1- \frac{1}{Ne^{(v)}}=\lim_{tarrow\infty}\{1-\frac{V_{t}(x)}{x(1-x)}\}^{\frac{1}{\mathrm{t}}}$ . (24)

We can show that the inbreeding effective size is the same as the variance effective size
for this model.

Lemma 1 For this model,
Ne$(i)()=Nev$ . (25)

Proof. It is enough to show that

$1- \frac{1}{Ne^{(v)}}=\lim_{tarrow\infty}\{E_{\omega_{1}}1\prod_{k0}t-=1(1-\frac{1}{N(k,\omega_{1})})]\}\frac{1}{\mathrm{t}}$. (26)

Taking a conditional expectation, we have

$E_{(\omega_{1},\omega_{2})}[X(t,\omega_{1},\omega_{2})\{1-x(t,\omega 1,\omega_{2})\}|x(0,\omega 1,\omega 2)=x]$

$=E_{(\omega,\omega)}[12E\omega 2[X(t,\omega 1, \omega_{2})\{1-x(t, \omega 1,\omega_{2})\}|N(t-1,\omega 1)]|x(0,\omega 1,\omega_{2})=x]$

$=E_{(\omega_{1},\omega_{2})}1($ 1 – $\frac{1}{N(t-1,\omega_{1})})x(t-1,\omega_{1}, \omega 2)\{1-X(t-1,\omega_{1},\omega 2)\}|X(0)=x]$ . (27)

Iterating this operation, we have

$E_{(\omega_{1},\omega_{2}}[)X(t, \omega_{1},\omega_{2})\{1-x(t, \omega_{1},\omega_{2})\}|x(0,\omega_{1}, \omega_{2})=x]=E_{\omega_{1}}[\square (k=t-101-\frac{1}{N(k,\omega_{1})})]X(1-x)$ . (28)

Since $\{x(t, \omega_{1},\omega 2)\}$ is a martingale $(E_{(\omega_{1}},[\omega_{2})x(t, \omega 1, \omega 2)|X(\mathrm{o},\omega 1, \omega_{2})=x]=x)$ ,

$E_{(\omega_{1},\omega_{2})}[\{x(t,\omega_{1},\omega_{2})-X(\mathrm{O},\omega_{1}, \omega 2)\}2|x(\mathrm{o},\omega 1,\omega_{2})=x]$

$=-E_{(\omega_{1},\omega_{2})}[X(t,\omega_{1},\omega_{2})\{1-x(t,\omega_{1},\omega_{2})\}|X(0,\omega_{1},\omega_{2})=x]+x(1-x)$

$= \{1-E_{\omega_{1}}[k0\prod_{=}^{t}-1(1 - \frac{1}{N(k,\omega_{1})})]\}x(1-x)$ . (29)
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We have the conclusion by the definition of the variance effectiv.e size $(\mathrm{E}\mathrm{q}.(24))$ . $\square$

We will use a notation $Ne=Ne(q1, q_{2})$ for Ne$(i)$ and Ne$(v)$ . Our interests are as follows.
Is the effective size $Ne$ equal to the harmonic mean $N_{H}?$ .

How does the effective size Ne$(q_{1}, q_{2})$ depend on $q_{1}$ and $q_{2}$ ?
We will consider these problems in the next section. For models with fluctuating popular

tion, see Chia and Pollak (1974), Donnelly (i986), Heyde and Seneta (1975), Karlin (1968),

Klebaner (1988) and Seneta (1974). :

4. Results

First, we will present a concrete expression for the effective size $Ne$ . For this end, we
prepare two lemmas.

Lemma 2 For $i=1,2$ , the conditional expectation

$B_{i}(t)=E \omega_{1}[\prod_{=k0}^{t-1}(1-\frac{1}{N(k,\omega_{1})})|N(0,\omega_{1})=Ni]$ (30)

satisfies

$B_{i}(t+2)- \{(1-\frac{1}{N_{1}})(1-q1)+(1-\frac{1}{N_{2}})(1-q2)\}Bi(t+1)$

$+(1- \frac{1}{N_{1}})(1-\frac{1}{N_{2}})(1-q1-q2)Bi(t)=0$ . (31)

Proof. For $i,j=1,2(i\neq j)$ , we have

$B_{i}(t+1)=E_{\omega_{1}}[ \prod_{0k=}(1t-\frac{1}{N(k,\omega_{1})})|N(1,\omega 1)=N_{i}]P(N(1, \omega_{1})=N_{i}|N(0,\omega_{1})=N_{i})$

$+E_{\omega_{1}}[ \prod_{0k=}^{t}(1-\frac{1}{N(k,\omega_{1})})|N(1,\omega_{1})=Nj1P(N(1,\omega_{1})=N_{j}|N(0,\omega_{1})=N_{i})$

$=(1- \frac{1}{N_{i}})\{(1-qi)Bi(t)+q_{i}B_{j(t)\}}$ , (32)

which implies the conclusion. $\square$

Let $\alpha_{+}$ and $\alpha_{-}(\alpha_{+}\geq\alpha_{-}\rangle$ be solutions to

$f( \alpha)=\alpha-2\{(1-\frac{1}{N_{1}})(1-q1)+(1-\frac{1}{N_{2}})(1-q2)\}\alpha$

$+(1- \frac{1}{N_{1}})(1-\frac{1}{N_{2}})(1-q_{1}-q_{2})=0$ . (33)

Note that $\alpha_{+}$ and $\alpha_{-}$ are real and $\alpha_{+}=\alpha_{-}$ if and only if $1- \frac{1}{N_{1}}=(1-\frac{1}{N_{2}})(1-q2)$ .
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Lemma 3 For $q_{1}=0$ and $1- \frac{1}{N_{1}}=(1-\frac{1}{N_{2}})(1-q2)$ ,

$E_{\omega_{1}}[ \prod_{k=0}^{t}(1-1.-\frac{1}{N(k,\omega_{1})})]=(1-\frac{1}{N_{1}})^{t}$ , (34)

and
$E_{\omega_{1}}[ \prod_{k=0}(1-\frac{1}{N(k,\omega_{1})}t-1)]=\frac{c_{1}q_{2}+c_{2}q1}{q_{1}+q_{2}}\alpha^{t}-1+\frac{d_{1q_{2}+d_{2q}}1}{q_{1}+q_{2}}+\alpha_{-}t-1$ (35)

otherurise. Here

$c_{i}= \frac{1-\frac{1}{N}}{\alpha_{+}-\alpha_{-}}.\{(1-\frac{1}{N_{i}})(1-q_{i})+(1-\frac{1}{N_{j}})qi-\alpha-\}$ , (36)

and
$d_{i}=- \frac{1-\frac{1}{N}}{\alpha_{+}-\alpha_{-}}.\mathrm{t}(1-\frac{1}{N_{i}})(1-qi)+(1-\frac{1}{N_{j}})qi-\alpha+\}$ , (37)

$i,j=1,2$ and $i\neq j$ .

Proof. Since

$E_{\omega_{1}}[ \prod_{k=0}^{-}(1-\frac{1}{N(k,\omega_{1})}t1)]=B1(t)p_{1}+B_{2}((st)t)p^{(St)}2$
’ (38)

we have the conclusion by solving the recurrence equation for $B_{1}(t)$ and $B_{2}(t)$ . $\square$

The following theorem presents a concrete expression for the effective size.

Theorem 1 For $q_{1}q_{2}\neq 0$ ,

$Ne= \frac{1}{1-\alpha_{+}}.\cdot$ (39)

For $q_{j}=0$ ,
$Ne=N_{H}=N_{j}$ . (40)

Proof. Note that for real numbers $a,$ $b,$ $A$ and $B$ with $A>|B|,$ $a>0$

$\lim_{tarrow\infty}(aA^{t}+bB^{t})^{\frac{1}{\mathrm{t}}}=A$ , (41)

and for for real numbers $c,$ $d$ and $C$ with $C>0,$ $c>|d|$ ,

$\lim_{tarrow\infty}\{CC^{t}+d(-c)^{t}\}\frac{1}{\mathrm{t}}=C$ , (42)

We have the conclusion by Lemma 3. $\square$

Next, we consider the relation between the effective size $Ne$ and the harmonic mean $N_{H}$ .
From the sign of $f(1- \frac{1}{N_{1}}),$ $f(1- \frac{1}{N_{2}})$ and $f(1- \frac{1}{N_{H}})$ , we can obtain the following result

(Note that $f(1- \frac{1}{Ne})=0$ ).
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Theorem 2 For positively autocoroelated fiuctuation ($0<q_{1}+q_{2}<1$ and $q_{1}q_{2}\neq 0$),

$N_{1}<N_{H}<Ne<N_{2}$ . (43)

For uncorrelated fluctuation ($q_{1}+q_{2}=1$ and $q_{1}q_{2}\neq 0$),

$N_{1}<N_{H2}=Ne<N$ . (44)

For negatively autocoroelated fiuctuation $(q_{1}+q_{2}>1)$ ,

$N_{1}<Ne<N_{H}<N_{2}$ . (45)

By this result, the effective size is equal to the harmonic mean if and only if the fluctuation
of population size is uncorrelated.

We consider the dependence of $q_{1}$ and $q_{2}$ on the effective size $Ne$ . Differentiating
$\alpha_{+}=\alpha_{+}(q_{1}, q_{2})$ by $q_{1}$ and $q_{2}$ , we can obtain the following result.

Theorem 3 For fixed $q_{2}(q_{2}\neq 0)$ , $Ne=Ne(q_{1}, q_{2})$ is an increasing function of $q_{1}$ . For

fixed $q_{1}(q_{1}\neq 0)$ , $Ne=Ne(q_{1}, q_{2})i\mathit{8}$ a decreasing function of $q_{2}$ .

In the next theorem, we consider the case where $q_{2}$ is proportional to $q_{1}$ . We can obtain the
following result in the same way as Theorem 3.

Theorem 4 For fixed $c[c>0$), we $\mathit{8}etq_{1}=q$ and $q_{2}=\mathrm{c}q$ . For $0<q< \min\{1, \frac{1}{c}\}$ ,
$Ne=Ne(q)$ is a decreasing function of $q$ for fixed $c$ .

J. H. Gillespie performed computer simulations for the case of $c=1$ where mutation and selec-
tion are incorporated. He found that average heterozygosity (a measure of genetic diversity)
is an increasing function of the mean persistence time $\tau$ . Since the values of parameters in his
computer simulations are restricted, he is interested in whether this is a general phenomena
or not ( $\mathrm{G}\mathrm{i}\mathrm{U}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{i}\mathrm{e}:\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ communication). Theorem 4 is consistent with this phenomena,

since
$\tau=\underline{1}$ when $c=1$ and average heterozygosity is an increasing function of $Ne$ . This

means
$\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}q$

his finding by computer simulations seems to be a general phenomena. Indeed,
$.\mathrm{t}$h..is is a motivation of the present paper.

Theorem 4 implies that the weaker the autocorrelation of fluctuation of population size
is, the smaller the effective size is. An explanation of this result is as follows. When the
autocorrelation is weak, it is difficult to predict what will happen to $\dot{\mathrm{c}}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{s}$ in population
size in the next several generation. It may be deleterious to the population. On the other
hand, when the effective size is small, the population has little genetic variation which may
cause the extinction of the population by a sudden environmental change that has a harmful
effect to the majority (wild type) of individuals in the population.
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5. Asymptotic relations

The sizes of population $N_{1}$ and $N_{2}$ may be very large in natural populations. Further, the
autocorrelation of $\{N(t,\omega_{1})\}$ may be very strong. In such cases, we can obtain asymptotic
behavior of the effective size. For this end, we parameterize $N_{1},$ $N_{2}$ , Ne, $N_{H},$ $q_{1}$ and $q_{2}$ by $\epsilon$

such as $N_{1}^{\mathcal{E}},$ $N_{2}^{\mathcal{E}},$ $Ne^{\epsilon},$ $N_{H}^{\epsilon},$ $q_{1}\epsilon$ and $q_{2}^{\epsilon}(N_{1}^{\epsilon}<N_{2}^{\epsilon})$ .
In the following theorem, we consider the case where $N_{1}^{\epsilon}$ and $N_{2}^{\epsilon}$ are very large and the

ratio of $N_{2}^{\epsilon}$ to $N_{1}^{\epsilon}$ is finite.

Theorem 5 Assume that $\epsilonarrow 0\mathrm{u}_{\mathrm{m}}N^{\epsilon}=\infty 1$ with $\lim_{\epsilonarrow 0}\frac{N_{1}^{\epsilon}}{N_{2}^{\epsilon}}>0$, then

$\lim=1\underline{Ne^{\epsilon}}$ , (46)
$\epsilonarrow 0N_{2}^{\epsilon}$

if $\lim_{\epsilonarrow 0}N_{1}\epsilon(q_{1}\epsilon+q_{2}^{\epsilon})=0$ and
$\lim=1\underline{Ne^{\epsilon}}$ , (47)

$\epsilonarrow 0N_{H}^{\epsilon}$

if $\lim_{\epsilonarrow 0}N^{\mathcal{E}}1(q^{\epsilon}1+q2)\epsilon=\infty$ .

The following result is more general than Theorem 5, since it is not necessarily assumed that
$N_{1}^{\epsilon}$ and $N_{2}^{\epsilon}$ are very large.

Theorem 6 Assume that $\lim_{\epsilonarrow 0}N_{1}^{\epsilon}(q_{1}^{\xi}+q_{2}^{\epsilon})=0$ and $0< \lim_{\epsilonarrow 0}\frac{N_{1}^{\epsilon}}{N_{2}^{\epsilon}}<1$ , then

$\lim=1\underline{Ne^{\epsilon}}$ . (48)
$\epsilonarrow 0N_{2}^{\epsilon}$

Assume that $\lim_{\epsilonarrow 0}N_{2}^{\epsilon}(q_{1}\epsilon+q_{2}^{\epsilon})=0$ and $\lim_{\epsilonarrow 0}\frac{N_{1}^{\epsilon}}{N_{2}^{\epsilon}}=0$, then

$\lim=1\underline{Ne^{\epsilon}}$ . (49)
$\epsilonarrow 0N_{2}^{\epsilon}$

Assume that $\lim_{\epsilonarrow 0}N_{1}^{\epsilon}(q_{1}\epsilon+q_{2}^{\epsilon})=0$ and $0< \lim_{\epsilonarrow 0}N_{2}^{\epsilon}(q_{1}^{\mathcal{E}}+q_{2}^{\epsilon})\leq\infty$, then

$\lim_{\epsilonarrow 0}\frac{Ne^{\text{\’{e}}}}{N_{2}^{\epsilon}}=\frac{1}{1+\lim_{\Xiarrow}0^{N_{2}q_{2}^{\epsilon}}\mathcal{E}}$. (50)

Assume that $\lim_{\epsilonarrow 0}N_{1}^{\epsilon}(q_{1}^{\epsilon}+q_{2}^{\epsilon})=\infty$ , then

$\lim=1\underline{Ne^{\mathcal{E}}}$ . (51)
$\epsilonarrow 0N_{H}^{\xi j}$

The autocorrelation of fluctuation of population size can be classified as follows. The case of
$\lim_{\epsilonarrow 0}N_{2}\epsilon(q_{1}^{\mathcal{E}}+q_{2}^{\mathcal{E}})=0$ is referred to as strong autocorrelation. The case of $\lim_{0\epsilonarrow}N_{1}^{\epsilon}(q_{1}\epsilon+q_{2}^{\epsilon})=\infty$
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is referred to as weak autocorrelation. The other cases are classified as moderate autocorre
lation (See Gillespie (1991) for such a classification in stochastic selection models). Theorem
5 and Theorem 6 imply that the effective size is very close to the harmonic mean when
the fluctuation has weak autocorrelation. On the other hand, it is very close to the larger
population size when the fluctuation has strong autocorrelation.

The author is grateful to J. H. Gillespie for suggesting the problem of this paper. This
research was partially supported by a grant-in-aid from the Ministry of Education, Science
and Culture of Japan.
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