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Lagrangian properties for the diffraction
in the complex domain

| Pascal Laubin
University of Liege, Belgium

1 Introduction

Let M be a real manifold with boundary and P a second order differential operator with
smooth coefficients and real principal symbol p. We assume that p is of real principal type
and not characteristic on the boundary. Let us consider the classical Dirichlet problem

Pu=0 in M, uwou=0.
If the equation of the boundary is f = 0 with f > 0 in M, the diffractive region is defined
by

_ N ol ) — _o wdin Sl
g—!— - {p € T 81‘/1 . p(p) - O: {p~ f} - 07 {{p, f}*f}p > D}

and corresponds to rays tangent to the boundary. The propagation of singularities of C°,
Gevrey and analytic singularities is known in this setting, see [12], [7], [8]. However, very
few lagrangian properties are preserved along diffractive rays. In [9], Lebeau proves that,
far away from the data, the operator mapping the Dirichlet data to the normal derivative
of the solution belongs to a class of lagrangian Gevrey 3 distributions with weight.

We review a result on the lagrangian properties of the solution at the transition from
the shadow to the illuminated region in the C* framework. Using the canonical invari-
ance, we prove that the solution belongs to a class of lagrangian distributions associated
to a pair of lagrangian submanifolds. As a consequence, we see that, for a conormai data,
the second wave front lies in a lagrangian submanifold.

We next investigate the same problem in the analytic category. Here we use the geom-
etry of complex canonical transforms and the H, spaces of Sjostrand. We generalize the
definition of bilagrangian distributions in this framework and describe the FBI transform
of the solution of the boundary value problem.

2 Pairs of lagrangian submanifolds

2.1 Ivﬁcrolocal phase

Let X be a C™ manifold of real dimension n and with local coordinates z;,...,z,. On
the cotangent bundle 7* X', we consider the canonical 2-form

U:En:dgj/\dmj
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where the dual coordinates are defined by d¢;(D,,) = ;. This manifold is conic for
the multiplication M, : (z,&) — (2, ). We denote by T*X = T*X \ {0} the cotangent
bundle with the zero section removed.
A submanifold A of T*X of dimension n is lagrangian if o = 0. It is said conic if it
is invariant through T; for every ¢t > 0. :
The classical definition of a phase function for a conic lagrangian submanifold is the

following, [1]. For simplicity, we restrict ourself to the case of a real non-degenerate phase
function.

Definition 1 Let X be a C° manifold and ¢ be a C™® real valued function in an open
conic subset T of X x RN\ {0} which is homogeneous of degree 1. The function ¢ is called
u local phase function of X if dp # 0 in T and rg(¢},, vhe) = N in the set

C, = {(2,0) €T : @(,0) = 0}.
If ¢ is a local phase function then the differential of the map
Jo: Cp = T"X : (2,0) = (w, ¢l (x,))
is of rank n. ¥f it is an embedding then ¢ is called a phase function. Since
Jpo = jpd(€dz) = d(p,dz) = d(dw;cu =0,

its image A, = j,(C,) is a lagrangian submanifold of T*X.

2.2 2-microlocal phase

The second wave front set along a lagrangian submanifold A is defined as a subset of the
cotangent bundle of A. To define lagrangian distributions associated to this geometric
setting, we introduce new phase functions.

If A is a conic lagrangian submanifold of T#X, then we have the identification

T*A ~ TWT* X

where the right hand side is the normal bundle of A. Indeed, if & is a normal to A at 2
point p then T,A 3 h — o(h, k) is a well-defined 1-form.

Moreover this manifold has two homogeneities: one inherited from A and another one
as a cotangent bundle. A lagrangian submanifold of T*A is said conic bilagrangian if it
is conic for both homogeneities. We introduce phase functions that parameterize such a
manifold.

Let Ts be an open subset of X x RV \ {0} x RM \ {0} such that (z,8,7n) € Iy and
8,1 > 0 imply (z,8, stn) € I'y. Such an open set is called a profile. An open subset I' of
X xRN\ {0} x RM \ {0} is said biconic with profile Ty if -

o {z,0,n) €T and 1 > 0 imply (z,t0,tn) € T,

o for each compact subset K of T'g, there is € > 0 such that (z,0,sn) e Tif (z,0,n) € K
and 0 < s <e. . v
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If T is biconic with respect to a family of profiles, it is also biconic with respect to their
union. The profile of T is the largest profile I’y such that the last condition is satisfied.
We also introduce

T: = {(z,6) : Iy such that (z,0,n) € T}.

This is an open conic subset of X x RN \ {0}.

Let p,g € R and r € Ny. A C* function f : I' — R™ is said bihomogeneous of degree
(pgr) if

o f(x,t0,tn) =t*f(z,0,n) if (z,0,m) €T, t >0,

» for every (29,60,70) € Lo, there is a neighborhood V' of (o, o, 70) and a O function
F in V' x] — ¢, ¢] satisfying

f(z,0,sm) = s'F(z,0,1,5"")
if (z,0,m,s) € Vx]0,€l.

' The integer r is inserted here essentially for technical reasons. In the application, it
does not affect the 2-microlocal geometry but has some effects on the microlocal la,grangxan
submanifolds involved. We say that f has the regularity 7.

Definition 2 Let

‘e A be a conic lagmngian submanifold of T*X,

o o be a C® real valued function which is homogeneous of degree 1 in Ty,

e 1 be a C™ real valued function which is bihomogeneous of degree (1,1;7) inT
ahd

Cop = {(2,0,m) € To : (z,0) = 0,4} (=, 6,7) = 0}.

The pair (p,1) is a local 2-phase function of A (with regqularity r) if

e ¢ is a local phase function thet parameterizes A,

e at each point of Cyy, the vector (Y ., o) is different f’mm 0 and

l'l " "
rk ( Loz End Vi ) =N+ M.
Coe  Poo 0

If ¢ is a phase function, the last condition means that the map (p,7) — ¥1(j, Hoym)
is a local phase function of A. This definition has the following consequences.

a) The map

Jow : Cop — TN (2,8,1m) = (&, 00), (Y00 Y1 0)irc, )

s a lagrangian immersion.
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Following the identification T*A ~ TAT*X, the map j, can be identified with
Cow — TaT*X : (2,0,1) = ((2,¢5), (h, 1, + Wiu-h + Plip )
where h, k satisfy B
(pgmh + (pzﬁ‘k -+ '(l);_’g =0,

b) Let (p,%) be a local 2-phase function (with regularity ) in a biconic set T’ and
(x0,600,m0) € Cpy. By the definition, ¢ is a local phase function in T'; and there is
a biconic open subset I' of I' whose profile contains (xo,80,70) such that (z,(8,n)) —
o(z,0) +1(x,0,n) is a local phase function in I". A local 2-phase function (¢, 9) is called
a 2-phase function if j,, jo+y and j, . are embeddings.

One can verify that if (p,v) is a local 2-phase function in T and (20,60,m) € Cpy
then there is a biconic open set I' whose profile contains (zo,%,10) such that (¢, ) is a
2-phase function in T

Hence, if (p,) is a 2-phase function then

{((117, (;0;;)7 (hvwil,a: + Lpgmh‘ + ‘Pw k)) (1‘ 0) C‘Pill:’d)l g + "p h’ + (10 k = 0}

is a conic bilagrangian submanifold of T*A¢. It is denoted A, 4.
c) If (p,%) is a 2-phase function, then

£.0.0

n —1g(ma, x) = N — rg(wpe) 8(MA, yhp) = M — 181 ),
and

"
n—rg(ma, ,.x)=N+M—r1k Tom Y7 Lo )
o 0 99

2.3 Pairs of lagrangian submanifolds

We now describe the geometric setting associated to a 2-phase. If Y is a submanifeld of
a C*° manifold X, the blowup of X along Y is

Xy = (X\Y) U TyX
The sets

n ({m ew: fi(z) >0} U{(z,h) € T¥X : z € w,dfj(2).h > 0})

1<j<p

where w is an open subset of X and f; € C®(w), fJ'Ym = 0 for all j, form a basis of
topology of Xy. For this topology, the projection 7 : Xy — X is continuous.

Definition 3 A pair (A, Al) is a 2-microlocal pair of lagrangian submanifolds of T*X if
e A is a conic lagrangian submanifolds of T* X, A; C (T*X)A Ao

e Ay N(T*X \ Ag) is a conic lagrangian submanifold of T*X,
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o for each (p, h) € AyNTh,T* X, there is an open neighborhood V of (p, k) in (T*X Yao
and a 2-phase function (¢, ) 9) such that

Aonm(V)=A, and ANV =AuyUN,y

In this sxtuation, we say that the 2-phase function (p, ) defines (Ag, Ay). Let Ty Ay =
Ay N'Ty,(T*X). This is a conic bilagrangian submanifold of 7*A,.

Example 4 In T*R", consider

W(xif) =z , TP(’%&W') "“ n £

fn - H(ﬂl En)
where £ = (£',§,) and H is bihomogeneous of degree (1,1;r). We have
Ay ={(0,8) : & # 0}

and

7.H
Mgty = {((—g—, L HE), (6ny €0)) < 6n # 0.

If H(rf,&) = n3/n? in R?, the projection of Ty, Ayyy on A, is the cusp

(0,6: 7 =(rs & #0)

It can be shown, see [4], that the property of being a microlocal pair of lagrangian
submanifolds is preserved by an homogeneous canonical transformation.

Let us describe the equivalence of 2-phase functions. _

Two 2-phase functions (y,) and ({,v) defined in biconic open subsets I' and T" of
X x R¥ \ {0} x RM \ {0} are said equivalent if there is a C*® diffeomorphism I' — T':
(z,0,n) — (z, f(z,0,m),9(z,0,7)) such that

e oz, f(z,0,n) +9(z, f(=,0,1),9(z,0,m) = @(z,6) + ¢(z,0,n),

e f is strictly bibomogeneous of degree (1,0;7) and g is bihomogeneous of degree
(1,1;7)
Aty 2P )

e Dyfo and D,g; are invertible in T'y.

These two pairs define the same 2-microlocal pair.
If A is a diagonal real invertible matrix, the pair of phases

ow,0) = o0+ ST | v 0m = a0

defines the same lagrangian submanifolds as @ and . In the same way,

o(z,0) = @(z,0) , (z,0,m) = P(z,0,7") + %?1;27’)

defines the same lagrangian submanifolds as ¢ and 9.

It can be shown that the transition between two 2-phase functions defining the same
2-microlocal pair of lagrangian submanifolds can be obtained by a composition of the
previous reductions.
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3 Bilagrangian distributions
3.1 Symbols
We use only classical symbols. This is enough for the applications that we consider here.

Definition 5 Ifm,p € R and X is an open subset of R", we denote by S™P(X, RN, RM)
the set of alla € C®(X x RN x RM) such that for every compact subset K of X and all
multiorders «, B,y there is a C > 0 satisfying

|D2D; D}a(z,0,n)] < C(1L+ 6]+ [n)™ (1 + )y
- for all (z,0,n) € K xRN x RM.

Write

go — U gp , S0 ﬂsm,l’.
m,pER peR

It is clear that S™P is a Fréchet space with semi-norms given by the smallest constants
which can be used in the definition.

Oscillatory integrals can be defined using symbols in S™? and 2¥phase functions.

Theorem 6 Let (p,v) be a 2-phase function in an open biconic set I' and let F be a
closed conic subset of T' such that F < T'. For every u € C§°(X), the linear form

a— / / / e p@N+d@8mM (0 pu(r) dzdddn

defined in the set of all a € S~°(X;RY x RM) satisfying supp(a) C F, can be extended
on S5° in a unique way such that it is continuous on the set of a € S™P(X, RN, RM)
satisfying supp(a) C F for every m,p.

3.2 Distribution class

Let X be a C* manifold of dimension n and let (Ag, A;) be a 2-microlocal pair of
lagrangian submanifolds of T*X.

Definition 7 The space [™P(X, Ao, \y) is the set of all locally finite sums of an element
of I™(X, Ao}, an element of I™™P(X, Ay NT*X) and distributions of the form

-[cp,t;’i,a(u) — (27()_(”+2(N+M))/4 ]// ei(gp(:z,ﬂ)—{—w,/:(z,@,n))a(m’ 0’ 7])“(.’13’) d:vdﬂd’q

where (U, x) is a chart of X, u € C(X), (p,v) is a 2-phase function of (Ao, A1) defined
in an open biconic subset T of x(U) x RN \ {0} x RM \ {0} and

a € Sm+(n—~2N)/4,p-M/‘2(X(U)7RNyRM)

satisfies supp(a) < T.
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It can be shown that this space is invariant by composition with a Fourier integral
operators. Moreover, any 2-phase function defining the pair (Ao, A1) near a point py € Ag
can be used to define any element of I™P(X, Ag,A;) near py.

The singularities of an element of I"™P(X, Ag, A1) are included in the lagrangian sub-
manifolds involved, [4].

Theorem 8 Ifu € I™P(X, Ag,Ay) then
WF(u) CAUA , WED () C Thohs

4 Application to diffraction

Let us consider the boundary value problem

(=A + (1 + 20)@)u = 0
\ Uan=0 =00 , Ugco=10

where we use the decomposition (t,2',z,) € R x R*! x R,. This is a model for the
strictly diffractive problems in the C* category, see [11].
Let
Plan, 7,6) = €)? — (1 + 2n)7°
be the principal symbol of the operator and r(7,£’') = |¢'|> — 72 be the boundary hamil-
tonian. Two lagrangian submanifolds are involved here. On one hand, we consider the
flowout Ag = Ag U A of

{.((G)O)? (T7 &)) T= :Hg* #F0,8 = Q}

through H, on the boundary and followed by H, intersected with ¢ > 0 and z, > 0. On
the other hand, the flowout Ay = Ay L UA; _ of

{((0,0),(1,8)) : 7 = £[£],6n # 0}

through #,, intersected with ¢ > 0 and z, > 0. These two manifolds are smooth but are
tangent at their intersection.

It can be checked that (A, A; 1) is a 2-microlocal pair of lagrangian submanifolds
with ’

Thouhis = {(Gal? + 252" z), ()€, FE V),
1 1 .
((0,0,0), (50,0, F50(v/Fr + 71?;))) 0,20 > 0,€ #0}.

A 2-phase function (@4, 94) of (Ag s, A1 UTp, A1) is given by

oalt,0,€) =2 € £ |€)(t - 3037
and
k4

(‘Pi + '(ﬁ:i:)(tyma U,'gl).zw"g’ = IE,'(I - Tgﬂ')_l/z(t - g((mﬂ + 'E" )3/2 - ( )3/2))

Z
€'l
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This 2-phase function has the regularity 2
We denote by I"(X, Ag) the set of all la,grang;xan distributions on Ag with symbol in
S7*. This means that the symbol satisfies the following inequalities

ID2DBa(z,8)| < Cap(1 + |6])m 1A alHBD

An analysis of the solution of the initial boundary value problem given in [2] leads to
the following result.

Theorem 9 The solution u of the previous boundary value problem belongs to

I5 L5 (R x R™ x Ry, Ao, Ay UTxoAy))
+ 1;,32(1&& x R x Ry, Ao).

5 The geometry in the complex domain

Our purpose is to define the phase functions used to characterize the bilagrangian dis-
tributions in the formalism of the Fourier-Bros-Iagolnitzer transform. In the microlocal
case, we closely follow [6] and collect some material from [9], see also [13].

As usual, we identify

e C" with R” x R™ and write z = z + iy,
o ¢ € TIC" with (G, ,Ga) € C* using ((h) = ¥, Gy,

o T;C™ with T, )Rzn by mapping the C-linear form ¢ € T;C" to the R-linear form
b —((h).

This map is symplectic if T*R?" is endowed with the usual canonical 2-form and T*C"
with the 2-form —So defined below.

It follows that if f is a holomorphic function, 8f € TrC" is identified with d(—Sf) €
T¢, R since d(—Sf) = —S(df) = —S(9f).

In the same way, if ¢ is a real function then dp € T¢, y)R2” is identified with 2Dz<,o €
cn.

All the constructions described in this section are local even this is not stated explicitly.

5.1 FBI transform

Writing z = + iy and { = £ + in, the canonical 2-form on T*C" is
o= di; Ndz;.
J

Its real and imaginary parts

Ro =Y (d; N dz; —dn; Ady;), So =Y (dn; Ade; + d€; Ady;)
J

g
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are symplectic forms on R*". _
Let ¢ be a real C; function defined in a neighborhood of 2; € C™* and

2 7
A, ={(z, Echp(z)) :ze€C}
This manifold is S-lagrangian since it is identified with
{(z,dp(2)) : z € C*} C T*R*™.

If j, denotes the immersion z — (2, 2D,p(z)) then
. " w2 2 2+

It follows that, if 00y is non degenerate, j, is a symplectic map from (C", %5&0) onto
(A, Ro). Its inverse is the projection.
The following result is proven in [7], see also [3].

Theorem 16 Let ¢ be a strictly plurisubharmonic function near zp € C" and x :
T*R™ — A, a canonical transform defined near (yo, 7o) such that x(yo, 7o) = (20, 2D.(20)).
Here A, is endowed with the 2-form Ro. There is a unique holomorphic function g{(z,y)
near (20,%0), such that

o the complezification of x is
XE: T*C" — T*C" : (y, —Dyg(2,9)) = (2, D2g(2,1)),

e ig(z0,%0) = (20), —Dyg(20,%) = Mo,

e the function y — —Sg(z,y) has ¢ non degenerate critical point y(z) with signature
(0,n) and critical value p(z). Moreover, we have

(9(2), ~Dys(z,4(2)) = X (5 2D.p(2).

For example, if x : (z,€) — (z — i£,€) and ¢(2) = 3]32[?, then g(z,y) = 3 (z — ).
The FBI transform associated to ¢, x near the points (yo,m0), 2o is

Tyu(z,\) = f e*C0a(z,y, Nuly) dy

where a is a classical symbol.

5.2 Lagrangian submanifolds

In this setting, lagrangian submanifold can be parameterized by a holomorphic function.
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Proposition 11 Let A be a lagrangian submanifold of T*R", h be a phase function of
A near py and x be a local canonical map from T*R™ to A, mapping po to 2. If g the
FBI phase defined in theorem 10 and

¢ (2) = cv 0y (9(2, 2) + h(,0))
then @ = —SS¢a. The critical points are given by
(,0) =g’ o Xg' (2, Daga(2)).
Here j 1is the immersion (x,0) — (z,h,) and jc is its complexification.
We have :
XE(A%) = {(z, D.ga(2)) : 2 € C"}
and
oa(z) < o(2).
The equality holds if and only if (2, 2D,¢(2)) € x(A).
In this formalism, the lagrangian distributions are defined in the following way.

Definition 12 Let u be a distribution in an open subset Q of R®, A a lagrangian sub-
manifold of T*Q. With the notations of proposition 11, u is said lagrangian at py if, in a
neighborhood of zy, we have

(Tyw)(2,A) = €*2Pp(z, ))
where b is a classical analytic symbol.
This is equivalent to the fact that u can be written u = u; + uz with py = jr(xo,6o)
not in the singular spectrum of ue and

w(@) = [ e¥=9a(z,6)do
r

where T is a conic neighborhood of 6 and @ is a classical analytic symbol near (o, 6).

5.3 Pairs of lagrangian submanifolds

Let us consider the FBI transform of a 2-phase function. For simplicity, we restrict ourself
to the case of one 2-microlocal parameter.

Proposition 13 Let (Ag, Ay) be a 2-microlocal pair of lagrangian submanifolds and (h, )
be a 2-phase function for the pair (Ao, A1) near a point po € No. We assume that h is
analytic and that ¢ is an analytic function of (x,0,0/?),

P(x,0,0) = ¢1(2,0)0 + Ps/2(x, 0)0™ + hu(z, 0)0 + O(0™?).

If g is an FBI phase function associated to a local canonical map x such that x{(po) =
zp € C*, we have ‘ :

(P(Z, 0') = CV(z,0) (Q(Z, (B) + h(iL’, 9) + w(ﬂ?, 070))
= Bp,(2) + B1(2)0 + Baja(2)0/? + &y(2)0” + O(a”/?).
Here ®, and O3, are real on wo x(Ao), ®1(20) =0, D,®1(20) # 0 and IP2(z%) > 0.
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With the notations of the proposition 13, a distribution u is said enalytic bilagrangian
at po with respect to (Ag, A;) if, in a neighborhood of 2z, we have

5
(Tyu)(z,}) = ] e (2,0,)) do
0

where a is holomorphic in an-open set of the form
{(2,0) e C" x C: |2 — 2] < ¢,|90] < NRa}

and is bounded by CA™ for A > 1.
Since SP;(29) > 0 and ®1(2), P3/2(20) are real, we can choose § > 0 small such that

—S(20,0) < —Jpa, (20)-

For example, if

AU - {((01 377,,), (5170))}? A1 = {((030)7 (5,7 €ﬂ))}
and g(z,y) = i(z — ¥)?/2, we have

/]
d)Ao‘(z) = 52’2, (I)Al(z) =35

and '
22 io?
¢z, 0) = — + 02, + 5

6 Bilagrangian structure of the parametrix

Let us show how, at the transition of the shadow and the illuminated region, the parametrix
defines a bilagrangian distribution if the boundary data. is conormal.
Using [11], we may assume that the operator can be written

P(z,D) = D2+ R(z,Dy)
in the half space {z,, > 0}. Its principal symbol is
p(iL’, 55 = &12; + T(:Ey E,)

Let ro(2',¢') = r(2',0,€'). We assume that the point (x},&)) is diffractive. This means
that ro(xg, &) = 0 and dro # 0, 0,7 < 0.

Following [7], we first perform a complex canomca,l transform. We choose the weight
function wo(2’) = |¥2’|2/2 and a canonical map

X0 : T'R*™ = (A, Ro)

mapping (x4, £;) to (0, 0) and the glancing region {rp = 0} to {32z = 0}. To this canonical
map is associated a FBI transform.
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After this transform, we obtain a pseudodifferential operator
P(x,D,\) = D?_ + R(z, Dy, \)

near {0,0) on Ay, Its principal symbol p(z, &) = € +r(z,£’) is real on A, and p(z,£) =0
is equivalent to x, + ¢(2',£) = 0 with

4(2',€) = & — (@', )6 + O(), €(0,0) > 0.
In the H,, space, the problem is reduced to find an outgoing solution to
Pz, D, Aul(z,A) =0, ug,-0=4g. ‘ (1)

Define, as above, Ag as the flowout of the set of diffractive points through the boundary
hamiltonian H, followed by H, and A, as the flowout of all the characteristic points at
=0 through H,,.

In the boundary value problem (1), we consider the boundary data g(z’, \) = exp(iAz"?)

corresponding to a Dirac mass. Using the Lebeau construction of the parametrix, we ob-
tain the following estimation.

Theorem 14 The function
9 . —
QO(Z, 0') = CV(zg") (\5(3n — .’Eﬂ)2 + H(z',O‘, ,,7”? /""“‘“a:n ¥ 0_)
' w12
~xzo—z".n" + F(@',Vo,n") + —-2——)

satisfies the conditions of proposition 13. Moreovér, the solution u of the boundary value
problem (1) can be written uy + ug where uy is analytic bilagrangian and

[ua(z, N)] < CoeXProrCdzmox(a) i

near 0 for every e > 0.
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