Lagrangian properties for the diffraction in the complex domain

Pascal Laubin University of Liège, Belgium

1 Introduction

Let M be a real manifold with boundary and P a second order differential operator with smooth coefficients and real principal symbol p. We assume that p is of real principal type and not characteristic on the boundary. Let us consider the classical Dirichlet problem

$$Pu=0$$
 in M , $u_{|\partial M}=0$.

If the equation of the boundary is f = 0 with f > 0 in M, the diffractive region is defined by

$$\mathcal{G}_{+} = \{
ho \in \dot{T}^* \partial M : p(
ho) = 0, \quad \{p, f\} = 0, \quad \frac{\{p, \{p, f\}\}_{
ho}}{\{\{p, f\}, f\}_{
ho}} > 0 \}$$

and corresponds to rays tangent to the boundary. The propagation of singularities of C^{∞} , Gevrey and analytic singularities is known in this setting, see [12], [7], [8]. However, very few lagrangian properties are preserved along diffractive rays. In [9], Lebeau proves that, far away from the data, the operator mapping the Dirichlet data to the normal derivative of the solution belongs to a class of lagrangian Gevrey 3 distributions with weight.

We review a result on the lagrangian properties of the solution at the transition from the shadow to the illuminated region in the C^{∞} framework. Using the canonical invariance, we prove that the solution belongs to a class of lagrangian distributions associated to a pair of lagrangian submanifolds. As a consequence, we see that, for a conormal data, the second wave front lies in a lagrangian submanifold.

We next investigate the same problem in the analytic category. Here we use the geometry of complex canonical transforms and the H_{φ} spaces of Sjöstrand. We generalize the definition of bilagrangian distributions in this framework and describe the FBI transform of the solution of the boundary value problem.

2 Pairs of lagrangian submanifolds

2.1 Microlocal phase

Let X be a C^{∞} manifold of real dimension n and with local coordinates x_1, \ldots, x_n . On the cotangent bundle T^*X , we consider the canonical 2-form

$$\sigma = \sum_{j=1}^{n} d\xi_j \wedge dx_j$$

where the dual coordinates are defined by $d\xi_j(D_{x_k}) = \delta_{jk}$. This manifold is conic for the multiplication $M_t: (x,\xi) \mapsto (x,t\xi)$. We denote by $\dot{T}^*X = T^*X \setminus \{0\}$ the cotangent bundle with the zero section removed.

A submanifold Λ of T^*X of dimension n is lagrangian if $\sigma_{|\Lambda} = 0$. It is said conic if it is invariant through T_t for every t > 0.

The classical definition of a phase function for a conic lagrangian submanifold is the following, [1]. For simplicity, we restrict ourself to the case of a real non-degenerate phase function.

Definition 1 Let X be a C^{∞} manifold and φ be a C^{∞} real valued function in an open conic subset Γ of $X \times \mathbb{R}^N \setminus \{0\}$ which is homogeneous of degree 1. The function φ is called a local phase function of X if $d\varphi \neq 0$ in Γ and $\operatorname{rg}(\varphi''_{\theta x}, \varphi''_{\theta \theta}) = N$ in the set

$$C_{\varphi} = \{(x, \theta) \in \Gamma : \varphi'_{\theta}(x, \theta) = 0\}.$$

If φ is a local phase function then the differential of the map

$$j_{\varphi}: C_{\varphi} \to T^*X: (x,\theta) \mapsto (x, \varphi'_x(x,\theta))$$

is of rank n. If it is an embedding then φ is called a phase function. Since

$$j_{\varphi}^*\sigma = j_{\varphi}^*d(\xi dx) = d(\varphi_x'dx) = d(d\varphi_{|C_{\varphi}}) = 0,$$

its image $\Lambda_{\varphi} = j_{\varphi}(C_{\varphi})$ is a lagrangian submanifold of \dot{T}^*X .

2.2 2-microlocal phase

The second wave front set along a lagrangian submanifold Λ is defined as a subset of the cotangent bundle of Λ . To define lagrangian distributions associated to this geometric setting, we introduce new phase functions.

If Λ is a conic lagrangian submanifold of \dot{T}^*X , then we have the identification

$$\dot{T}^*\Lambda \sim T_\Lambda \dot{T}^*X$$

where the right hand side is the normal bundle of Λ . Indeed, if k is a normal to Λ at a point ρ then $T_{\rho}\Lambda \ni h \mapsto \sigma(h,k)$ is a well-defined 1-form.

Moreover this manifold has two homogeneities: one inherited from Λ and another one as a cotangent bundle. A lagrangian submanifold of $\dot{T}^*\Lambda$ is said *conic bilagrangian* if it is conic for both homogeneities. We introduce phase functions that parameterize such a manifold.

Let Γ_0 be an open subset of $X \times \mathbb{R}^N \setminus \{0\} \times \mathbb{R}^M \setminus \{0\}$ such that $(x, \theta, \eta) \in \Gamma_0$ and s, t > 0 imply $(x, t\theta, st\eta) \in \Gamma_0$. Such an open set is called a *profile*. An open subset Γ of $X \times \mathbb{R}^N \setminus \{0\} \times \mathbb{R}^M \setminus \{0\}$ is said biconic with profile Γ_0 if

- $(x, \theta, \eta) \in \Gamma$ and t > 0 imply $(x, t\theta, t\eta) \in \Gamma$,
- for each compact subset K of Γ_0 , there is $\epsilon > 0$ such that $(x, \theta, s\eta) \in \Gamma$ if $(x, \theta, \eta) \in K$ and $0 < s < \epsilon$.

If Γ is biconic with respect to a family of profiles, it is also biconic with respect to their union. The *profile* of Γ is the largest profile Γ_0 such that the last condition is satisfied.

We also introduce

$$\Gamma_1 = \{(x, \theta) : \exists \eta \text{ such that } (x, \theta, \eta) \in \Gamma\}.$$

This is an open conic subset of $X \times \mathbb{R}^N \setminus \{0\}$.

Let $p, q \in \mathbb{R}$ and $r \in \mathbb{N}_0$. A C^{∞} function $f: \Gamma \to \mathbb{R}^m$ is said bihomogeneous of degree (p, q; r) if

- $f(x, t\theta, t\eta) = t^p f(x, \theta, \eta)$ if $(x, \theta, \eta) \in \Gamma$, t > 0,
- for every $(x_0, \theta_0, \eta_0) \in \Gamma_0$, there is a neighborhood V of (x_0, θ_0, η_0) and a C^{∞} function F in $V \times] \epsilon, \epsilon[$ satisfying

$$f(x, \theta, s\eta) = s^q F(x, \theta, \eta, s^{1/r})$$

if
$$(x, \theta, \eta, s) \in V \times]0, \epsilon[$$
.

The integer r is inserted here essentially for technical reasons. In the application, it does not affect the 2-microlocal geometry but has some effects on the microlocal lagrangian submanifolds involved. We say that f has the regularity r.

Definition 2 Let

- Λ be a conic lagrangian submanifold of \dot{T}^*X ,
- φ be a C^{∞} real valued function which is homogeneous of degree 1 in Γ_1 ,
- ullet ψ be a C^{∞} real valued function which is bihomogeneous of degree (1,1;r) in Γ

and

$$C_{arphi,\psi}=\{(x, heta,\eta)\in\Gamma_0: arphi_{ heta}'(x, heta)=0, \psi_{1,\eta}'(x, heta,\eta)=0\}.$$

The pair (φ, ψ) is a local 2-phase function of Λ (with regularity r) if

- φ is a local phase function that parameterizes Λ ,
- at each point of $C_{\varphi,\psi}$, the vector $(\psi'_{1,x},\psi'_{1,\theta})$ is different from 0 and

$$\operatorname{rk}\left(\begin{array}{cc}\psi_{1,\eta x}'' & \psi_{1,\eta \theta}'' & \psi_{1,\eta \eta}'' \\ \varphi_{\theta x}'' & \varphi_{\theta \theta}'' & 0\end{array}\right) = N + M.$$

If φ is a phase function, the last condition means that the map $(\rho, \eta) \mapsto \psi_1(j_{\varphi}^{-1}(\rho), \eta)$ is a local phase function of Λ . This definition has the following consequences.

a) The map

$$j_{\varphi,\psi}:C_{\varphi,\psi}\to T^*\Lambda:(x,\theta,\eta)\mapsto ((x,\varphi_x'),j_{\varphi*}((\psi_{1,x}',\psi_{1,\theta}')_{|TC_{\varphi}})).$$

is a lagrangian immersion.

Following the identification $\dot{T}^*\Lambda \sim T_\Lambda \dot{T}^*X$, the map $j_{\varphi,\psi}$ can be identified with

$$C_{\varphi,\psi} \to \dot{T}_{\Lambda} T^* X : (x,\theta,\eta) \mapsto ((x,\varphi_x'),(h,\tilde{\psi}_{1,x}'+\varphi_{xx}''.h+\varphi_{x\theta}''.k))$$

where h, k satisfy

$$\varphi_{\theta x}''.h + \varphi_{\theta \theta}''.k + \tilde{\psi}_{1,\theta}' = 0.$$

b) Let (φ, ψ) be a local 2-phase function (with regularity r) in a biconic set Γ and $(x_0, \theta_0, \eta_0) \in C_{\varphi,\psi}$. By the definition, φ is a local phase function in Γ_1 and there is a biconic open subset $\tilde{\Gamma}$ of Γ whose profile contains (x_0, θ_0, η_0) such that $(x, (\theta, \eta)) \mapsto \varphi(x, \theta) + \psi(x, \theta, \eta)$ is a local phase function in $\tilde{\Gamma}$. A local 2-phase function (φ, ψ) is called a 2-phase function if j_{φ} , $j_{\varphi+\psi}$ and $j_{\varphi,\psi}$ are embeddings.

One can verify that if (φ, ψ) is a local 2-phase function in Γ and $(x_0, \theta_0, \eta_0) \in C_{\varphi, \psi}$ then there is a biconic open set $\tilde{\Gamma}$ whose profile contains (x_0, θ_0, η_0) such that (φ, ψ) is a 2-phase function in $\tilde{\Gamma}$.

Hence, if (φ, ψ) is a 2-phase function then

$$\{((x,\varphi_x'),(h,\psi_{1,x}'+\varphi_{xx}''.h+\varphi_{x\theta}''.k)):(x,\theta)\in C_{\varphi,\psi},\psi_{1,\theta}'+\varphi_{\theta x}''.h+\varphi_{\theta\theta}''.k=0\}$$

is a conic bilagrangian submanifold of $\dot{T}^*\Lambda_{\varphi}$. It is denoted $\Lambda_{\varphi,\psi}$.

c) If (φ, ψ) is a 2-phase function, then

$$n - \operatorname{rg}(\pi_{\Lambda_{\varphi},X}) = N - \operatorname{rg}(\varphi_{\theta\theta}'')$$
 , $n - \operatorname{rg}(\pi_{\Lambda_{\varphi,\psi},\Lambda\varphi}) = M - \operatorname{rg}(\psi_{1,\eta\eta}'')$,

and

$$n-\mathrm{rg}(\pi_{\Lambda_{arphi,\psi},X})=N+M-\mathrm{rk}\left(egin{array}{cc} \psi_{1,\eta\eta}'' & \psi_{1,\eta heta}'' \ 0 & arphi_{ heta heta}'' \end{array}
ight).$$

2.3 Pairs of lagrangian submanifolds

We now describe the geometric setting associated to a 2-phase. If Y is a submanifold of a C^{∞} manifold X, the blowup of X along Y is

$$\hat{X}_Y = (X \setminus Y) \cup \dot{T}_Y X.$$

The sets

$$\bigcap_{1\leq j\leq p} \left(\left\{x\in\omega: f_j(x)>0\right\}\cup\left\{(x,h)\in T_YX: x\in\omega, df_j(x).h>0\right\}\right)$$

where ω is an open subset of X and $f_j \in C^{\infty}(\omega)$, $f_{j|Y\cap\omega} = 0$ for all j, form a basis of topology of \hat{X}_Y . For this topology, the projection $\pi: \hat{X}_Y \to X$ is continuous.

Definition 3 A pair (Λ_0, Λ_1) is a 2-microlocal pair of lagrangian submanifolds of \dot{T}^*X if

- Λ_0 is a conic lagrangian submanifolds of \dot{T}^*X , $\Lambda_1 \subset (\dot{T}^*X)^{\wedge}_{\Lambda_0}$,
- $\Lambda_1 \cap (\dot{T}^*X \setminus \Lambda_0)$ is a conic lagrangian submanifold of \dot{T}^*X ,

• for each $(\rho, h) \in \Lambda_1 \cap \dot{T}_{\Lambda_0} T^*X$, there is an open neighborhood V of (ρ, h) in $(\dot{T}^*X)^{\wedge}_{\Lambda_0}$ and a 2-phase function (φ, ψ) such that

$$\Lambda_0 \cap \pi(V) = \Lambda_{\varphi}$$
 and $\Lambda_1 \cap V = \Lambda_{\varphi+\psi} \cup \Lambda_{\varphi,\psi}$.

In this situation, we say that the 2-phase function (φ, ψ) defines (Λ_0, Λ_1) . Let $T_{\Lambda_0}\Lambda_1 = \Lambda_1 \cap \dot{T}_{\Lambda_0}(T^*X)$. This is a conic bilagrangian submanifold of $\dot{T}^*\Lambda_0$.

Example 4 In $\dot{T}^*\mathbb{R}^n$, consider

$$\varphi(x,\xi) = x.\xi$$
 , $\psi(x,\xi,\eta') = \frac{\eta'.\xi'}{\xi_n} - H(\eta',\xi_n).$

where $\xi = (\xi', \xi_n)$ and H is bihomogeneous of degree (1, 1; r). We have

$$\Lambda_{\varphi} = \{(0,\xi) : \xi_n \neq 0\}$$

and

$$\Lambda_{\varphi+\psi} = \{ ((-\frac{\eta'}{\xi_n}, \frac{\eta'.H'_{\eta'}}{\xi_n} + H'_{\xi_n}), (\xi_n H'_{\eta'}, \xi_n)) : \xi_n \neq 0 \}.$$

If $H(\eta', \xi_n) = \eta_1^3/\eta_2^2$ in \mathbb{R}^3 , the projection of $T_{\Lambda_{\varphi}}\Lambda_{\varphi+\psi}$ on Λ_{φ} is the cusp

$$\{(0,\xi): (\frac{\xi_1}{3})^3 = (\frac{\xi_2}{2})^2 \xi_3: \xi_3 \neq 0\}.$$

It can be shown, see [4], that the property of being a microlocal pair of lagrangian submanifolds is preserved by an homogeneous canonical transformation.

Let us describe the equivalence of 2-phase functions.

Two 2-phase functions (φ, ψ) and $(\tilde{\varphi}, \tilde{\psi})$ defined in biconic open subsets Γ and $\tilde{\Gamma}$ of $X \times \mathbb{R}^N \setminus \{0\} \times \mathbb{R}^M \setminus \{0\}$ are said *equivalent* if there is a C^{∞} diffeomorphism $\Gamma \to \tilde{\Gamma}$: $(x, \theta, \eta) \mapsto (x, f(x, \theta, \eta), g(x, \theta, \eta))$ such that

- $\bullet \ \varphi(x,f(x,\theta,\eta)) + \psi(x,f(x,\theta,\eta),g(x,\theta,\eta)) = \tilde{\varphi}(x,\theta) + \tilde{\psi}(x,\theta,\eta),$
- f is strictly bihomogeneous of degree (1,0;r) and g is bihomogeneous of degree (1,1;r),
- $D_{\theta}f_0$ and $D_{\eta}g_1$ are invertible in Γ_0 .

These two pairs define the same 2-microlocal pair.

If Δ is a diagonal real invertible matrix, the pair of phases

$$\varphi(x,\theta) = \tilde{\varphi}(x,\theta'') + \frac{\langle \Delta \theta', \theta' \rangle}{2|\theta''|} , \quad \psi(x,\theta'',\eta) = \tilde{\psi}(x,\theta'',\eta)$$

defines the same lagrangian submanifolds as $\tilde{\varphi}$ and $\tilde{\psi}$. In the same way,

$$arphi(x, heta) = ilde{arphi}(x, heta) \;\;,\;\;\; \psi(x, heta,\eta) = ilde{\psi}(x, heta,\eta'') + rac{\langle \Delta\eta',\eta'
angle}{2|\eta''|}$$

defines the same lagrangian submanifolds as $\tilde{\varphi}$ and $\tilde{\psi}$.

It can be shown that the transition between two 2-phase functions defining the same 2-microlocal pair of lagrangian submanifolds can be obtained by a composition of the previous reductions.

3 Bilagrangian distributions

3.1 Symbols

We use only classical symbols. This is enough for the applications that we consider here.

Definition 5 If $m, p \in \mathbb{R}$ and X is an open subset of \mathbb{R}^n , we denote by $S^{m,p}(X, \mathbb{R}^N, \mathbb{R}^M)$ the set of all $a \in C^{\infty}(X \times \mathbb{R}^N \times \mathbb{R}^M)$ such that for every compact subset K of X and all multiorders α, β, γ there is a C > 0 satisfying

$$|D_x^{\alpha} D_{\theta}^{\beta} D_n^{\gamma} a(x, \theta, \eta)| \le C(1 + |\theta| + |\eta|)^{m - |\beta|} (1 + |\eta|)^{p - |\gamma|}$$

for all $(x, \theta, \eta) \in K \times \mathbb{R}^N \times \mathbb{R}^M$.

Write

$$S_2^{\infty} = \bigcup_{m,p \in \mathbb{R}} S^{m,p}$$
, $S^{m,-\infty} = \bigcap_{p \in \mathbb{R}} S^{m,p}$.

It is clear that $S^{m,p}$ is a Fréchet space with semi-norms given by the smallest constants which can be used in the definition.

Oscillatory integrals can be defined using symbols in $S^{m,p}$ and 2-phase functions.

Theorem 6 Let (φ, ψ) be a 2-phase function in an open biconic set Γ and let F be a closed conic subset of Γ such that $F \ll \Gamma$. For every $u \in C_0^{\infty}(X)$, the linear form

$$a \mapsto \iiint e^{i(\varphi(x,\theta)+\psi(x,\theta,\eta))} a(x,\theta,\eta) u(x) \, dx d\theta d\eta$$

defined in the set of all $a \in S^{-\infty}(X; \mathbb{R}^N \times \mathbb{R}^M)$ satisfying $\operatorname{supp}(a) \subset F$, can be extended on S_2^{∞} in a unique way such that it is continuous on the set of $a \in S^{m,p}(X, \mathbb{R}^N, \mathbb{R}^M)$ satisfying $\operatorname{supp}(a) \subset F$ for every m, p.

3.2 Distribution class

Let X be a C^{∞} manifold of dimension n and let (Λ_0, Λ_1) be a 2-microlocal pair of lagrangian submanifolds of T^*X .

Definition 7 The space $I^{m,p}(X, \Lambda_0, \Lambda_1)$ is the set of all locally finite sums of an element of $I^m(X, \Lambda_0)$, an element of $I^{m+p}(X, \Lambda_1 \cap T^*X)$ and distributions of the form

$$I_{\varphi,\psi,a}(u) = (2\pi)^{-(n+2(N+M))/4} \iiint e^{i(\varphi(x,\theta)+\psi(x,\theta,\eta))} a(x,\theta,\eta) u(x) \, dx d\theta d\eta$$

where (U,χ) is a chart of X, $u \in C_0^{\infty}(X)$, (φ,ψ) is a 2-phase function of (Λ_0,Λ_1) defined in an open biconic subset Γ of $\chi(U) \times \mathbb{R}^N \setminus \{0\} \times \mathbb{R}^M \setminus \{0\}$ and

$$a \in S^{m+(n-2N)/4, p-M/2}(\chi(U), \mathbb{R}^N, \mathbb{R}^M)$$

satisfies $supp(a) \ll \Gamma$.

It can be shown that this space is invariant by composition with a Fourier integral operators. Moreover, any 2-phase function defining the pair (Λ_0, Λ_1) near a point $\rho_0 \in \Lambda_0$ can be used to define any element of $I^{m,p}(X, \Lambda_0, \Lambda_1)$ near ρ_0 .

The singularities of an element of $I^{m,p}(X,\Lambda_0,\Lambda_1)$ are included in the lagrangian submanifolds involved, [4].

Theorem 8 If $u \in I^{m,p}(X, \Lambda_0, \Lambda_1)$ then

$$WF(u)\subset \Lambda_0\cup \Lambda_1$$
 , $WF^{(2)}_{\Lambda_0}(u)\subset T_{\Lambda_0}\Lambda_1$.

4 Application to diffraction

Let us consider the boundary value problem

$$\begin{cases} (-\Delta + (1+x_n)\partial_t^2)u = 0 \\ u_{|x_n=0} = \delta_0 , u_{|t<0} = 0 \end{cases}$$

where we use the decomposition $(t, x', x_n) \in \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R}_+$. This is a model for the strictly diffractive problems in the C^{∞} category, see [11].

Let

$$p(x_n, \tau, \xi) = |\xi|^2 - (1 + x_n)\tau^2$$

be the principal symbol of the operator and $r(\tau, \xi') = |\xi'|^2 - \tau^2$ be the boundary hamiltonian. Two lagrangian submanifolds are involved here. On one hand, we consider the flowout $\Lambda_0 = \Lambda_{0,+} \cup \Lambda_{0,-}$ of

$$\{((0,0),(\tau,\xi)): \tau=\pm |\xi'| \neq 0,\, \xi_n=0\}$$

through H_r on the boundary and followed by H_p intersected with t > 0 and $x_n > 0$. On the other hand, the flowout $\Lambda_1 = \Lambda_{1,+} \cup \Lambda_{1,-}$ of

$$\{((0,0),(\tau,\xi)): \tau = \pm |\xi|, \xi_n \neq 0\}$$

through H_p intersected with t > 0 and $x_n > 0$. These two manifolds are smooth but are tangent at their intersection.

It can be checked that $(\Lambda_{0,\pm},\Lambda_{1,\pm})$ is a 2-microlocal pair of lagrangian submanifolds with

$$\begin{split} T_{\Lambda_{0,\pm}}\Lambda_{1,\pm} &= \{(((\frac{2}{3}x_n^{3/2}+2\sqrt{x_n},x',x_n),(\pm|\xi'|,\xi',\mp|\xi'|\sqrt{x_n})),\\ &\quad ((0,0,0),(\pm\frac{1}{2}\sigma,0,\mp\frac{1}{2}\sigma(\sqrt{x_n}+\frac{1}{\sqrt{x_n}}))):\sigma,x_n>0,\xi'\neq 0\}. \end{split}$$

A 2-phase function $(\varphi_{\pm}, \psi_{\pm})$ of $(\Lambda_{0,\pm}, \Lambda_{1,\pm} \cup T_{\Lambda_{0,\pm}} \Lambda_{1,\pm})$ is given by

$$\varphi_{\pm}(t, x, \xi') = x' \cdot \xi' \pm |\xi'| (t - \frac{2}{3} x_n^{3/2})$$

and

$$(\varphi_{\pm} + \psi_{\pm})(t, x, \sigma, \xi') = x' \cdot \xi' \pm |\xi'| \left(1 - \frac{\sigma}{|\xi'|}\right)^{-1/2} \left(t - \frac{2}{3} \left(\left(x_n + \frac{\sigma}{|\xi'|}\right)^{3/2} - \left(\frac{\sigma}{|\xi'|}\right)^{3/2}\right)\right).$$

This 2-phase function has the regularity 2.

We denote by $I_{\rho}^{m}(X, \Lambda_{0})$ the set of all lagrangian distributions on Λ_{0} with symbol in S_{ρ}^{m} . This means that the symbol satisfies the following inequalities

$$|D_x^{\alpha} D_{\theta}^{\beta} a(x,\theta)| \le C_{\alpha,\beta} (1+|\theta|)^{m-|\beta|+(1-\rho)(|\alpha|+|\beta|)}.$$

An analysis of the solution of the initial boundary value problem given in [2] leads to the following result.

Theorem 9 The solution u of the previous boundary value problem belongs to

$$I^{\frac{n}{4}-1,\frac{3}{4}}(\mathbb{R}\times\mathbb{R}^{n-1}\times\mathbb{R}_+,\Lambda_0,\Lambda_1\cup T_{\Lambda_0}\Lambda_1))$$

+ $I^{\frac{n}{4}-\frac{1}{2}}_{2/3}(\mathbb{R}\times\mathbb{R}^{n-1}\times\mathbb{R}_+,\Lambda_0).$

5 The geometry in the complex domain

Our purpose is to define the phase functions used to characterize the bilagrangian distributions in the formalism of the Fourier-Bros-Iagolnitzer transform. In the microlocal case, we closely follow [6] and collect some material from [9], see also [13].

As usual, we identify

- \mathbb{C}^n with $\mathbb{R}^n \times \mathbb{R}^n$ and write z = x + iy,
- $\zeta \in T_z^* \mathbb{C}^n$ with $(\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$ using $\zeta(h) = \sum_i \zeta_i h_i$,
- $T_z^*\mathbb{C}^n$ with $T_{(x,y)}^*\mathbb{R}^{2n}$ by mapping the \mathbb{C} -linear form $\zeta \in T_z^*\mathbb{C}^n$ to the \mathbb{R} -linear form $h \mapsto -\Im \zeta(h)$.

This map is symplectic if $T^*\mathbb{R}^{2n}$ is endowed with the usual canonical 2-form and $T^*\mathbb{C}^n$ with the 2-form $-\Im \sigma$ defined below.

It follows that if f is a holomorphic function, $\partial f \in T_z^*\mathbb{C}^n$ is identified with $d(-\Im f) \in T_{(x,v)}^*\mathbb{R}^{2n}$ since $d(-\Im f) = -\Im(\partial f)$.

In the same way, if φ is a real function then $d\varphi \in T^*_{(x,y)}\mathbb{R}^{2n}$ is identified with $\frac{2}{i}D_z\varphi \in \mathbb{C}^n$.

All the constructions described in this section are local even this is not stated explicitly.

5.1 FBI transform

Writing z = x + iy and $\zeta = \xi + i\eta$, the canonical 2-form on $T^*\mathbb{C}^n$ is

$$\sigma = \sum_{j} d\zeta_{j} \wedge dz_{j}.$$

Its real and imaginary parts

$$\Re \sigma = \sum_{j} (d\xi_j \wedge dx_j - d\eta_j \wedge dy_j), \quad \Im \sigma = \sum_{j} (d\eta_j \wedge dx_j + d\xi_j \wedge dy_j)$$

are symplectic forms on \mathbb{R}^{2n} .

Let φ be a real C_1 function defined in a neighborhood of $z_0 \in \mathbb{C}^n$ and

$$\Lambda_{arphi}=\{(z,rac{2}{i}D_{z}arphi(z)):z\in\mathbb{C}^{n}\}.$$

This manifold is 3-lagrangian since it is identified with

$$\{(z, d\varphi(z)) : z \in \mathbb{C}^n\} \subset T^*\mathbb{R}^{2n}.$$

If j_{φ} denotes the immersion $z \mapsto (z, \frac{2}{i}D_z\varphi(z))$ then

$$j_{\varphi}^*(\Re\sigma)=j_{\varphi}^*(\sigma)=j_{\varphi}^*(d(\zeta dz))=d(rac{2}{i}\partial arphi)=rac{2}{i}\,\overline{\partial}\partial arphi.$$

It follows that, if $\overline{\partial}\partial\varphi$ is non degenerate, j_{φ} is a symplectic map from $(\mathbb{C}^n, \frac{2}{i}\overline{\partial}\partial\varphi)$ onto $(\Lambda_{\varphi}, \Re\sigma)$. Its inverse is the projection.

The following result is proven in [7], see also [3].

Theorem 10 Let φ be a strictly plurisubharmonic function near $z_0 \in \mathbb{C}^n$ and χ : $\dot{T}^*\mathbb{R}^n \to \Lambda_{\varphi}$ a canonical transform defined near (y_0, η_0) such that $\chi(y_0, \eta_0) = (z_0, \frac{2}{i}D_z\varphi(z_0))$. Here Λ_{φ} is endowed with the 2-form $\Re \sigma$. There is a unique holomorphic function g(z, y) near (z_0, y_0) , such that

• the complexification of χ is

$$\chi^{\mathbb{C}}: T^*\mathbb{C}^n \to T^*\mathbb{C}^n: (y, -D_y g(z, y)) \mapsto (z, D_z g(z, y)),$$

- $ig(z_0, y_0) = \varphi(z_0), -D_y g(z_0, y_0) = \eta_0,$
- the function $y \mapsto -\Im g(z,y)$ has a non degenerate critical point y(z) with signature (0,n) and critical value $\varphi(z)$. Moreover, we have

$$(y(z), -D_y g(z, y(z)) = \chi^{-1}(z, \frac{2}{i}D_z \varphi(z)).$$

For example, if $\chi: (x,\xi) \mapsto (x-i\xi,\xi)$ and $\varphi(z) = \frac{1}{2} |\Im z|^2$, then $g(z,y) = \frac{i}{2} (z-y)^2$. The FBI transform associated to φ , χ near the points $(y_0, \eta_0), z_0$ is

$$T_\chi u(z,\lambda) = \int e^{i\lambda g(z,y)} a(z,y,\lambda) u(y) \, dy$$

where a is a classical symbol.

5.2 Lagrangian submanifolds

In this setting, lagrangian submanifold can be parameterized by a holomorphic function.

Proposition 11 Let Λ be a lagrangian submanifold of $\dot{T}^*\mathbb{R}^n$, h be a phase function of Λ near ρ_0 and χ be a local canonical map from $\dot{T}^*\mathbb{R}^n$ to Λ_{φ} mapping ρ_0 to z_0 . If g the FBI phase defined in theorem 10 and

$$\phi_{\Lambda}(z) = \operatorname{cv}_{(x,\theta)}(g(z,x) + h(x,\theta))$$

then $\varphi_{\Lambda} = -\Im \phi_{\Lambda}$. The critical points are given by

$$(x,\theta)=j_{\mathbb{C}}^{-1}\circ\chi_{\mathbb{C}}^{-1}(z,D_z\phi_{\Lambda}(z)).$$

Here j is the immersion $(x, \theta) \mapsto (x, h'_x)$ and $j_{\mathbb{C}}$ is its complexification.

We have

$$\chi^{\mathbb{C}}(\Lambda^{\mathbb{C}}) = \{(z, D_z \phi_{\Lambda}(z)) : z \in \mathbb{C}^n\}$$

and

$$\varphi_{\Lambda}(z) \leq \varphi(z).$$

The equality holds if and only if $(z, \frac{2}{i}D_z\varphi(z)) \in \chi(\Lambda)$.

In this formalism, the lagrangian distributions are defined in the following way.

Definition 12 Let u be a distribution in an open subset Ω of \mathbb{R}^n , Λ a lagrangian submanifold of $\dot{T}^*\Omega$. With the notations of proposition 11, u is said lagrangian at ρ_0 if, in a neighborhood of z_0 , we have

$$(T_{\chi}u)(z,\lambda) = e^{i\lambda\phi_{\Lambda}(z)}b(z,\lambda)$$

where b is a classical analytic symbol.

This is equivalent to the fact that u can be written $u = u_1 + u_2$ with $\rho_0 = j_h(x_0, \theta_0)$ not in the singular spectrum of u_2 and

$$u_1(x) = \int_{\Gamma} e^{ih(x, heta)} a(x, heta) \, d heta$$

where Γ is a conic neighborhood of θ_0 and a is a classical analytic symbol near (x_0, θ_0) .

5.3 Pairs of lagrangian submanifolds

Let us consider the FBI transform of a 2-phase function. For simplicity, we restrict ourself to the case of one 2-microlocal parameter.

Proposition 13 Let (Λ_0, Λ_1) be a 2-microlocal pair of lagrangian submanifolds and (h, ψ) be a 2-phase function for the pair (Λ_0, Λ_1) near a point $\rho_0 \in \Lambda_0$. We assume that h is analytic and that ψ is an analytic function of $(x, \theta, \sigma^{1/2})$,

$$\psi(x,\theta,\sigma) = \psi_1(x,\theta)\sigma + \psi_{3/2}(x,\theta)\sigma^{3/2} + \psi_2(x,\theta)\sigma^2 + \mathcal{O}(\sigma^{5/2}).$$

If g is an FBI phase function associated to a local canonical map χ such that $\chi(\rho_0) = z_0 \in \mathbb{C}^n$, we have

$$\phi(z,\sigma) = \operatorname{cv}_{(x,\theta)} (g(z,x) + h(x,\theta) + \psi(x,\theta,\sigma))
= \Phi_{\Lambda_0}(z) + \Phi_1(z)\sigma + \Phi_{3/2}(z)\sigma^{3/2} + \Phi_2(z)\sigma^2 + \mathcal{O}(\sigma^{5/2}).$$

Here Φ_1 and $\Phi_{3/2}$ are real on $\pi \circ \chi(\Lambda_0)$, $\Phi_1(z_0) = 0$, $D_z\Phi_1(z_0) \neq 0$ and $\Im\Phi_2(z_0) > 0$.

With the notations of the proposition 13, a distribution u is said analytic bilagrangian at ρ_0 with respect to (Λ_0, Λ_1) if, in a neighborhood of z_0 , we have

$$(T_\chi u)(z,\lambda) = \int_0^\delta e^{i\phi(z,\sigma)} a(z,\sigma,\lambda)\,d\sigma$$

where a is holomorphic in an open set of the form

$$\{(z,\sigma) \in \mathbb{C}^n \times \mathbb{C} : |z-z_0| < \epsilon, |\Im\sigma| < c\Re\sigma\}$$

and is bounded by $C\lambda^m$ for $\lambda > 1$.

Since $\Im \Phi_2(z_0) > 0$ and $\Phi_1(z_0)$, $\Phi_{3/2}(z_0)$ are real, we can choose $\delta > 0$ small such that

$$-\Im\phi(z_0,\delta)<-\Im\varphi_{\Lambda_0}(z_0).$$

For example, if

$$\Lambda_0 = \{((0, x_n), (\xi', 0))\}, \quad \Lambda_1 = \{((0, 0), (\xi', \xi_n))\}$$

and $g(z,y) = i(z-y)^2/2$, we have

$$\Phi_{\Lambda_0}(z)=rac{i}{2}z'^2, \quad \Phi_{\Lambda_1}(z)=rac{i}{2}z^2$$

and

$$\phi(z,\sigma) = \frac{iz'^2}{2} + \sigma z_n + \frac{i\sigma^2}{2}.$$

6 Bilagrangian structure of the parametrix

Let us show how, at the transition of the shadow and the illuminated region, the parametrix defines a bilagrangian distribution if the boundary data is conormal.

Using [11], we may assume that the operator can be written

$$P(x,D) = D_{x_n}^2 + R(x,D_{x'})$$

in the half space $\{x_n > 0\}$. Its principal symbol is

$$p(x,\xi) = \xi_n^2 + r(x,\xi').$$

Let $r_0(x',\xi') = r(x',0,\xi')$. We assume that the point (x'_0,ξ'_0) is diffractive. This means that $r_0(x'_0,\xi'_0) = 0$ and $dr_0 \neq 0$, $\partial_{x_n} r < 0$.

Following [7], we first perform a complex canonical transform. We choose the weight function $\varphi_0(z') = |\Im z'|^2/2$ and a canonical map

$$\chi_0: \dot{T}^*\mathbb{R}^{n-1} \to (\Lambda_{\varphi_0}, \Re \sigma)$$

mapping (x'_0, ξ'_0) to (0,0) and the glancing region $\{r_0 = 0\}$ to $\{\Im z_1 = 0\}$. To this canonical map is associated a FBI transform.

After this transform, we obtain a pseudodifferential operator

$$P(x, \tilde{D}, \lambda) = \tilde{D}_{x_n}^2 + R(x, \tilde{D}_{x'}, \lambda)$$

near (0,0) on Λ_{φ_0} . Its principal symbol $p(x,\xi)=\xi_n^2+r(x,\xi')$ is real on Λ_{φ_0} and $p(x,\xi)=0$ is equivalent to $x_n+q(x',\xi)=0$ with

$$q(x',\xi) = \xi_1 - e(x',\xi')\xi_n^2 + \mathcal{O}(\xi_n^4), \quad e(0,0) > 0.$$

In the H_{φ} space, the problem is reduced to find an outgoing solution to

$$P(x, \tilde{D}, \lambda)u(x, \lambda) = 0, \quad u_{|x_n=0} = g. \tag{1}$$

Define, as above, Λ_0 as the flowout of the set of diffractive points through the boundary hamiltonian H_r followed by H_p and Λ_1 as the flowout of all the characteristic points at x = 0 through H_p .

In the boundary value problem (1), we consider the boundary data $g(x', \lambda) = \exp(i\lambda z'^2)$ corresponding to a Dirac mass. Using the Lebeau construction of the parametrix, we obtain the following estimation.

Theorem 14 The function

$$\varphi(z,\sigma) = \text{cv}_{(x,\eta'')} \left(\frac{i}{2} (z_n - x_n)^2 + H(z',\sigma,\eta'',\sqrt{x_n + \sigma}) - x_1\sigma - x''.\eta'' + F(x',\sqrt{\sigma},\eta'') + \frac{ix'^2}{2} \right)$$

satisfies the conditions of proposition 13. Moreover, the solution u of the boundary value problem (1) can be written $u_1 + u_2$ where u_1 is analytic bilagrangian and

$$|u_2(z,\lambda)| \le C_{\epsilon} e^{\lambda(\varphi_{\Lambda_0}(z) + Cd(z,\pi\circ\chi(\Lambda_0))^3) + \epsilon\lambda}$$

near 0 for every $\epsilon > 0$.

References

- [1] Hörmander, L., The analysis of linear partial differential operators I-IV, Springer-Verlag, 1983-85.
- [2] Friedlander, F.G. and Melrose, R.B., The wave front set of the solution of a simple initial-boundary value problem with glancing rays II, Math. Proc. Camb. Phil. Soc., 87, 1977, 97-120.
- [3] Laubin, P., Etude 2-microlocale de la diffraction, Bull. Soc. Roy. Sc. Liège, 4, 1987, 295-416.
- [4] Laubin P., Willems B., Distributions associated to a 2-microlocal pair of lagrangian manifolds, Comm. in Part. Diff. Eq., 19, 1994, 1581-1610.

- [5] Laubin P., Conormality and lagrangian properties in diffractive boundary value problems, Microlocal analysis and spectral theory, 91-113, Kluwer Academic Press, 1997.
- [6] Lebeau, G., Deuxième microlocalisation sur les sous-variétés isotropes, Ann. Inst. Fourier, Grenoble, 35, 1985, 145-216.
- [7] Lebeau, G., Régularité Gevrey 3 pour la diffraction, Comm. in Part. Diff. Eq., 9(15), 1984, 1437-1494.
- [8] Lebeau, G., Propagation des singularités Gevrey pour le problème de Dirichlet, Advances in microlocal analysis, Nato ASI, C168, 1986, 203-223.
- [9] Lebeau, G., Scattering frequencies and Gevrey 3 singularities, Invent. math., 90, 1987, 77-114.
- [10] Melrose, R. B., Local Fourier-Airy integral operators, Duke Math. J., 42, 1975, 583-604.
- [11] Melrose, R. B., Transformation of boundary value problems, Acta Math. J., 147, 1981, 149-236.
- [12] Sjöstrand, J., Propagation of analytic singularities for second order Dirichlet problems, I-III, Comm. Part. Diff. Eq., 5(1), 1980, 41-94; 5(2), 1980, 187-207; 6(5), 1981, 499-567.
- [13] Sjöstrand, J., Singularités analytiques microlocales, Astérisque, 95, 1982, 1-166.