
Ordered Binary Decision Diagrams Representing Knowledge-Bases

Takashi HORIYAMA and Toshihide IBARAKI
堀山貴史 茨木俊秀

Department of Applied Mathematics and Physics, Kyoto University

Abstract. We propose to make use of an ordered binary decision diagram (OBDD) as a
means of realizing knowledge-bases. We show that the OBDD-based representation is more
efficient and suitable in some cases, compared with traditional CNF-based $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ model-based
representations in the sense of space requirement. We then consider recognition problems of
OBDDs, and present polynomial time algorithms for testing whether a given OBDD represents
a positive (i.e., monotone) Boolean function, and whether it represents a Horn function.

1 Introduction

Logical formulae are one of the traditional means of representing knowledge in AI [8]. However, it is known
that deduction from a set of propositional clauses is $\mathrm{c}\mathrm{o}- \mathrm{N}\mathrm{p}_{\mathrm{C}}- \mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}$ and abduction is $\mathrm{N}\mathrm{P}$-complete [9].
Recently, an alternative way of representing knowledge, i.e., by a subset of its models, which are called
characteristic models, has been proposed [4, 5, 6]. Deduction from a knowledge-base in this model-based
approach can be performed in linear time, and abduction is also performed in polynomial time [4].

In this paper, we propose yet another method of knowledge representation, i.e., the use of ordered binary
decision diagrams (OBDDs) $[1, 2]$. An OBDD is a directed acyclic graph representing a Boolean function,
which can be considered as a variant of decision tree. By restricting the order of variable appearance and
sharing isomorphic subgraphs, OBDDs have the following useful properties: 1) When a variable ordering is
given, OBDD has a reduced canonical form for each Boolean function. 2) Many practical Boolean functions
can be compactly represented. 3) There are efficient algorithms for Boolean operations on OBDDs. As a
result of these properties, OBDDs are widely used for various applications, especially in computer-aided
design and verification of digital systems $[3, 10]$. The manipulation of knowledge-bases by $\mathrm{O}\mathrm{B}\mathrm{D}$

. Ds, e.g.,
deduction and abduction, was first discussed by Madre and Coudert [7].

We first compare the above three representations, i.e., formula-based, model-based, $\mathrm{a}\mathrm{n}\dot{\mathrm{d}}$ OBDD-based,
on the basis of their sizes. In particular, we show that, in some.cases, OBDDs require exponentially smaller
space than other two representations, while there are also cases in which each of the other two requires
exponentially smaller space. In other words, these three representations are orthogonal with respect to
space requirement.

It is known that OBDD is efficient for knowledge-base operations such as deduction and abduction [7].
We investigate fundamental recognition problems of OBDDs, that is, testing whether a given OBDD
represents a positive Boolean function, and testing whether it represents a Horn function. We often
encounter these recognition problems, since the knowledge-base representing some real phenomenon is
sometimes required to be positive (or Horn), from the hypothesis posed on the phenomenon $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ from
the investigation of the mechanism causing the phenomenon. We show that these recognition problems
for OBDDs can be solved in polynomial time for both positive and Horn cases.

The rest of this paper is organized as follows. The next section gives fundamental definitions and
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{C}\dot{\mathrm{e}}\mathrm{p}\mathrm{t}\mathrm{S}$. We compare the three representations in Section 3, and consider the problems of

$\mathrm{r}\mathrm{e}\mathrm{c}_{J}\mathrm{o}\mathrm{g}\mathrm{n}\mathrm{i}\mathrm{Z}\mathrm{i}\mathrm{n}\mathrm{g}$

positive and Horn OBDDs in Sections 4 and 5, respectively.

数理解析研究所講究録
1093巻 1999年 93-98 93

2 Preliminaries
2.1 Notations and Fundamental Concepts
We consider a Boolean function f : $\{0,1\}^{n}arrow\{0,1\}$. An assignment is a vector $a\in\{0,1\}^{n}$, whose i-th
coordinate is denoted by a_{i} . A model of f is a satisfying assignment of f , and the theory $\Sigma(f)$ representing
f is the set of all models of f . Given $a,$ $b\in\{0,1\}^{n}$, we denote by $a\leq b$ the usual bitwise ordering of
assignments; i.e., $a_{i}\leq b_{i}$ for all $i=1,2,$ $\ldots,$

n , where $0<1$. Given a subset $E\subseteq\{.1,2, \ldots , n\},$ χ^{E} denotes
the characteristic vector of E ; i.e., the i-th coordinate $x^{E}i$ equals 1 if $i\in E$ and 0 if $i\not\in E$.

Let $x_{1},$ $x_{2,\ldots,n}X$ be n variables of f . Negation of variable x_{i} is denoted by \overline{x}_{i} . Any Boolean function
can always be represented by some CNF (conjunctive normal form), which may not be unique. We
sometimes do not make a distinction among a function f , its theory $\Sigma(f)$, and a CNF φ that represents f ,

unless confusion arises. We define a $re\overline{S}t\Gamma i_{Ctio}n$ of f by replacing a variable x_{i} by a constant $a_{i}\in\{0,1\}$, and
denote it by $f|_{x\dot{.}=a}:$. Namely, $f|_{x.=a}:(X_{1}, \ldots, x_{n})=f(x_{1}, \ldots , xi-1, ai, xi+1, \ldots , x_{n})$. The restriction may
be applied to many variables. We also define $f\leq g$ (resp., $f<g$) by $\Sigma(f)\subseteq\Sigma(g)$ (resp., $\Sigma(f)\subset\Sigma(g)$).

A Boolean function f is positive if $f(a)\leq f(b)\mathrm{h}\mathrm{o}\mathrm{I}\mathrm{d}\mathrm{s}$ for all assignments a and b such that $a\leq b$. A
theory Σ is positive if Σ represents a positive function. A clause is positive if all literals in the clause are
positive, and a CNF is positive if it contains only positive clauses. It is known that a theory Σ is positive
if and only if Σ can be represented by some positive CNF.

A theory Σ is Horn if Σ is closed under operation \bigwedge_{bit} , where $a \bigwedge_{bit}b$ is bitwise AND of models a and
b . For example, if $a=$ (0011) and $b=$ (0101), then a $\bigwedge_{bit}b=$ (0001). The closure of a theory Σ with
respect to \bigwedge_{bit} is denoted by $Cl_{\mathrm{A}_{bit}}(\Sigma)$. We also use the operation \bigwedge_{bit} as a set operation; $\Sigma(f)\bigwedge_{bit}\Sigma(g)$

$=$ { $a|a=b \bigwedge_{bit^{C}}$ holds for some $b\in\Sigma(f)$ and $c\in\Sigma(g)$}. We often denotes $\Sigma(f)\bigwedge_{bit}\Sigma(g)$ by $f \bigwedge_{bitg}$, for
convenience. Note that two functions $f\wedge g$ and $f \bigwedge_{bitg}$ are different.

A Boolean function f is Horn if $\Sigma(f)$ is Horn; equivalently if $f \bigwedge_{bi}tf=f$ holds. A clause is Horn if
the number of positive literals in it is at most one, and a CNF is Horn if it contains only Horn clauses. It
$\mathrm{i}.\mathrm{s}$ known tha.t a theory Σ is Horn if and only if Σ can be represented by some Horn CNF.

The set of characteristic models of a Horn theory Σ , denoted by Char(Σ) , is given by Char$(\Sigma)=$

$\{a\in\Sigma|a\not\in Cl_{\mathrm{A}_{bit}}(\Sigma-\{a\})\}$. $Char(\Sigma)$ is uniquely defined for every Horn theory Σ , and satisfies
$Cl_{\mathrm{A}_{bit}}(Char(\Sigma))=\Sigma$.

2.2 Ordered Binary Decision Diagrams
An ordered binary decision diagram (OBDD) is a directed acyclic graph that represents a Boolean function.
It has two sink nodes 0 and 1, called the θ-node and the 1-node respectively (they are together called
constant nodes). Other nodes v are called variable nodes, and are labeled by variables x_{i} . Let $var(v)$

denote the label of node v . Each variable node has exactly two outgoing edges, called a θ-edge and a
1-edge respectively. One of the variable nodes becomes the unique source node. Let $X=\{x_{12,\ldots,n}, XX\}$

denote the set of n variables. A variabie ordering is a total ordering $(xx_{\pi}\pi(1),(2),$ $\ldots,$
$x\pi(n))$, associated

with each OBDD, where π is a bijection $\{$ 1, 2, \ldots , $n\}arrow\{1,2, \ldots, n\}$. The level1 of a node v with label
$x_{\pi(i)}$, denoted by level$(v))$ is defined to be $n-i+1$. By convention, the level of constant nodes is defined
to be 0 . On every path from the root node to a constant node in an OBDD, each variable appears at most
once, and the appearing variables are arranged in the decreasing order of their levels.

Every node v of an OBDD also $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}8\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{S}$ a Boolean function f_{v} , defined by the subgraph consisting
of those edges and nodes reachable from v . If node v is a constant node, f_{v} equals its label. If node v is a
variable node, f_{v} is defined as $\overline{var(v)}f\mathrm{o}-su\mathrm{C}c(v)\vee var(v)f1- Succ(v)$ by Shannon’s expansion, where 0-succ (v)

and $1_{-SuC}C(v)$ respectively denote the node pointed by the 0-edge and the 1-edge of node v . The function
f represented by an OBDD is the one represented by the root node. Given an assignment a , the value
of $f(a)$ is determined by following the corresponding path from the root node to a constant node in the

1This definition of level may be different ffom its comunon use.

94

following manner: at a variable node v , one of the outgoing edges is se..lected according to the assignment
$a_{var(v)}$ to the variable $var(v)$. The value of the function is the label of the final constant node.

When two nodes u and v in an OBDD represent the same function, and their levels are the same, they
are called equivalent. A node whose 0-edge and 1-edge both point to the same node is called redundant.
An OBDD which has no equivalent nodes and no redundant nodes is reduced. The size of an OBDD is the
number of nodes in the OBDD. Given a function f and a variable ordering, its reduced OBDD is unique
and has the minimum size among all OBDDs with the same variable ordering. The minimum sizes of
OBDDs representing a given Boolean function depends on the variable orderings [2]. In the $\mathrm{f}\mathrm{o}\mathrm{l}1_{\mathrm{o}\mathrm{w}}\mathrm{i}\mathrm{n}\mathrm{g},\cdot \mathrm{w}\mathrm{e}$

assume that all OBDDs are reduced.

3 Three Approaches for Knowledge-Base Representation
In this section, we compare three knowledge-base representations: CNF-based, model-based, and OBDD-
based. It is known that CNF-based and model-based representations play orthogonal roles with respect
to space requirement. We show that OBDD-based representation is orthogonal to other two in the same
sense. We start with relations between OBDD and CNF.
Lemma 3.1 There exists a Horn theory on n variables, for which OBDD and CNF both require size $O(n)$,
while its characteristic models require size $\Omega(2^{n/2})$.
Lemma 3.2 There exists a Horn theory on n variables, for which OBDD requires $\mathit{8}izeO(n)$ and charac-
teristic models require size $O(n^{2})$, while CNF requires size $\Omega(2^{n/2})$.
$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\dot{\mathrm{r}}\mathrm{e}\mathrm{m}3.1$ There exists a Horn theory on n variables, for which OBDD requires size $o(n)$, while both
of the characteristic models and CNF require sizes $\Omega(2^{n/4})$.

We now turn to the opposite direction.
Theorem 3.2 There exist a Horn theory on $nvar\dot{\iota}ables$, for which CNF requires size $O(n)$ and charac-
teristic models require size $O(n)$, while the size of the smallest OBDD representation is $\Omega(2^{\sqrt{n}/\sqrt{2}})$.

The above results show that none of the three representations always dominate the other two. OBDDs
can find a place in knowledge-bases as they can represent some theories more efficiently than others.

4 Checking Positivity of OBDD
In this section, we discuss the problem of checking whether a given OBDD is positive. The following
well-known property indicates that this problem can be solved in polynomial time.
Property 4.1 Let f be a Boolean function on n variables $x_{1},$ $x_{2,\ldots n},$$X$. Then, f is positive if and only
if $f|_{x:=}0\leq f|_{x_{*}=1}$ holds for all $i=1,2,$ $\ldots,$

n .

An OBDD representing $f|_{x_{i}=0}$ (resp., $f|_{x=1}:$) can be obtained in $O(|f|\log|f|)$ time, where $|f|$ denotes
the size of the OBDD representing $f[2]$. The size does not increase by a restriction. Since property
$g\leq h$ can be checked in $O(|g|\cdot|h|)$ time, the positivity of f can be checked in $O(n|f|^{2})$ time by checking
$f|_{x=0}:\leq f|_{x_{*}=1}$ for all $i=1,2,$ \ldots , n .

The following well-known property is useful to reduce the computation time.
Property 4.2 Let f be a Boolean function on $nva\dot{n}ab\iota esX1,$ $x_{2},$ $\ldots,$

x_{n} . Then, f is positive if and only
if both $f|_{x_{n}=0}$ and $f|_{x_{n}=1}$ are positive and $f|_{x_{n}=0}\leq f|_{x_{n}=1}$.

The positivity of functions $f|_{x_{n}=}0$ and $f|_{x_{n}=1}$ can be also checked by applying Property 4.2 recursively.
Algorithm CHECK-POSITIVE in Fig. 1 determines the positivity of f in the bottom-up manner (i.e.,
from the smallest level $(l=1)$ to the level of the root node) by checking positivity of all nodes. Note that
the property $f|_{x_{n}=}0\leq f|_{x_{\hslash}1}=$ can be also checked in the bottom-up manner, since it holds if and only if
$f|_{x_{h}=0,=a}x_{k}-1.n-1\leq f|_{x_{\hslash}=1,=}x\hslash-1a_{\mathfrak{n}-1}$ holds for both $a_{n-1}=0$ and 1.

In Step 2, the positivity of f_{v} is easily checked, since both fo-succ(v) (i.e., $f_{v}|_{x_{\ell}=}0$) and $f_{1-su}\mathrm{c}c(v)$ (i.e.,
$f_{v}|_{x\ell=1})$ have already been checked to be positive, and $f_{0-\epsilon uc}c(v)$ and $f_{1c}- suC(v)$ have been compared in Step

95

3 of the previous iteration. Note that both 0 and 1 are considered to be positive functions.
In Step 3, comparison between f_{u} and f_{v} is also performed easily, since the comparisons between

$f_{u}|_{x=a}\ell\ell$ and $f_{v}|_{x_{\ell}=a_{\ell}}$ for both $a_{\ell}=0$ and 1 have already been completed. Note that $f_{v}|_{x_{\ell}=}0=f\mathrm{o}- succ(v)$

and $f_{v}|_{x\ell=1}=f_{1- succ(v}$) hold if $\iota_{ev}el(v)=l$, and $f_{v}|_{x\ell=0}=f_{v}|_{x\ell=1}=f_{v}$ holds if level$(v)<\ell$. Also note

that $f_{u}=f_{v}$ holds if and only if u and v are the same node. After Step 3 is done for some ℓ , we know

the results of comparisons between f_{u} and f_{v} for all pairs of nodes u and v such that level$(u)\leq l$ and

level$(v)\leq\ell$. We store all the results, although some of them may not be needed.
Next, we consider the computation time of this algorithm. In Step 2, checking p ositivity for each node

is performed in a constant time from the data computed in Step 3. The positivity is checked for all nodes.

In Step 3, the comparison between f_{u} and f_{v} for each pair of nodes u and v is also performed in a constant
time. The number of pairs compared in Step 3 during the entire computation is $o((^{\mathrm{I}J1}2))=O(|f|^{2})$, and

this requires $O(|f|^{2})$ time.

Theorem 4.1 Given an OBDD representing a Boolean function f , checking whether f is positive is

performed in $O(|f|^{2})$ time, where $|f|$ is the size of the given OBDD.

5 Checking Horness of OBDD
5.1 Conditions for Horness
In this section, we discuss the problem of checking whether a given OBDD is Horn. We assume, without
loss of generality, that the variable ordering is always $(x_{n}, x_{n-1}, \ldots , x_{1})$. Denoting $f|_{x_{n}=0}$ and $f|_{x_{n}=1}$ by
f_{0} and f_{1} for simplicity, f is given by $f=\overline{x}_{n}f\mathrm{o}x_{n}f_{1)}$ where f_{0} and f_{1} are Boolean functions on $n-1$

variables $x_{1},$ $x_{2,\ldots,n-}x1$. Similar to the case of checking positivity, we can check the Horness of f by

scanning Horness of all nodes in the bottom-up manner.

Lemma 5.1 Let f be a Boolean function on n variables $x_{1},$ $x_{2,\ldots,n}X$, which are expanded as $f=\overline{x}_{n}f_{0}$

V $x_{n}f_{1}$. Then, f is Horn if and only if both f_{0} and f_{1} are Hom and $f_{0} \bigwedge_{bitf1}\leq f_{0}$ holds.
The Horness of f_{0} and f_{1} can be also checked by applying Lemma 5.1 recursively. The following lemma

says that the condition $f_{0} \bigwedge_{bit}f1\leq f_{0}$ can be also checked in the bottom-up manner.

Lemma 5.2 Let $f_{l}g$ and h be Boolean functions on n variables, which are expanded as $f=\overline{x}_{n}f_{0}\vee x_{nf_{1_{j}}}$

$g=\overline{x}_{n}g_{0}x_{n}g_{1}$ and $h=\overline{x}_{n}h_{0}x_{n}h_{1}$, respectively. Then, property $f \bigwedge_{bstg}\leq h$ holds if and only if
$f_{0} \bigwedge_{bitg0}\leq h_{0},$ $f_{0} \bigwedge_{bit}g_{1}\leq h_{0},$ $f_{1} \bigwedge_{bitg0}\leq h_{0}$ and $f_{1} \bigwedge_{b:tg_{1}}\leq h_{1}$ hold.

96

YES if all of
$bit- imp[1-SuCC^{J}(u), 1-SucC(\prime v), 1-succ(\prime w)]$,
$bit- imp[0- Succ’(u), \mathrm{o}- SuCC’(v), \mathrm{o}- S\prime ucc’(w)]$,
$bit- imp[\mathrm{o}-SucC’(u), 1- sucC^{J}(v), \mathrm{o}_{-S}ucC’(w)]$

YES if all of $h_{\mathit{0}}rn[\mathrm{o}-sucC(v)],$ $h_{\mathit{0}}rn[1- s8lcC(v)]$ and
and $bit- imp[0- suCc(v), 1-SucC(v), \mathrm{O}-SuCC(v)]$ $bit- imp[1-suCC’(u), \mathrm{o}_{-}SucC’(v), 0- SuCc^{;}(w)]$

are YES. are YES.
NO otherwise. NO otherwise.

Figure 3: Checking $h_{orn}[v]$ for a node v in Step 2. Figure 4: Checking $bit- imp[u, v, w]$ (i.e., $f_{u} \bigwedge_{bit}$

$f_{v}\leq f_{w})$ for a triple of nodes (u, v, w) in Step 3.

5.2 Algorithm to Check Horness
Algorithm CHECK-HORN in Fig. 2 checks the Horness of a given OBDD in the bottom-up manner. We

use an array $horn[v]$ to denote whether node v represents a Horn function or not, and a three-dimensional
array $bit- imp[u, v, w]$ to denote whether $f_{u} \bigwedge_{bitf_{v}}\leq f_{w}$ holds or not; each element of the $\mathrm{a}\mathrm{r}\mathrm{r}\mathrm{a}\mathrm{y}_{8}$ stores
YES, NO $\mathrm{o}\mathrm{r}*$ (not checked yet). $horn[v]=\mathrm{Y}\mathrm{E}\mathrm{S}$ (i.e., \mathcal{M} leve $t(v),*(f_{v})=f_{v}$) implies that f_{v} is Horn even
if f_{v} is treated as a Boolean function on more than level(v) variables. (Recall that OBDD is reduced; all
the added variables are redundant.) Similarly, $bit- imp[u, v, w]=\mathrm{Y}\mathrm{E}\mathrm{S}$ implies that $f_{u} \bigwedge_{bit}fv\leq f_{w}$ holds
even if $f_{u},$ f_{v} and f_{w} are treated as Boolean functions on $\ell(\geq l_{\max})$ variables, where l_{\max} denotes the
maximum level of the nodes $u,$ v and w .

In Step 2 of Algorithm CHECK-HORN, $horn[v]$ can be computed in a constant time by Fig. 3, cor-
responding to Lemma 5.1. Note that all nodes v satisfy $f_{v}|_{x_{leve}}l(v)^{=0}=f\mathrm{o}-Su\mathrm{c}c(v)$ and $f_{v}|_{x_{\mathfrak{l}ev\mathrm{e}l}=}(v\rangle 1=$

$f1-succ(v)$. Also note that $h_{\mathit{0}}rn[0-SuCC(v)],$ $horn[1- succ(v)]$ and $bit- imp[0_{S}- ucc(v), 1- SuCC(v), \mathrm{o}- sucC(v)]$ have
already been computed in the previous iteration.

Similarly, $bit- imp[u, v, w]$ in Step 3 can be computed in a constant time by Fig. 4, corresponding to
Lemma 5.2. $\mathrm{o}_{- su}cC(\prime v)$ (resp., l-su$cc’(v)$) denotes O-succ (v) (resp., $1_{-_{SucC}}(v)$) if level$(v)=f$, but denotes

97

v itself if level$(v)<I$. This is because $f_{v}|_{x_{l}=0}=f\mathrm{o}-suCc(v)$ and $f_{v}|_{x_{\mathit{1}}=1}=f1- \mathrm{s}ucc(v)$ hold if level$(v)=\ell$,

and $f_{v}|_{x_{\ell}=0}=f_{v}|_{x_{\ell}=1}=f_{v}$ holds if level$(v)<f$. After Step 3 is done for some l , we have the results for

all triples (u, v, w) of nodes such that level$(u)\leq f,$ $level(v)\leq\ell$ and level$(w)\leq\ell$, which contain all the

information required in the next iteration, although some of them may not be needed.
Now, we consider the computation time of Algorithm CHECK-HORN. In Step 2, $horn[v]$ for each node

v is computed in a $\dot{\mathrm{c}}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ time from the information obtained in the previous Step 3. The Horness

is checked for all nodes. In Step 3, $bit-\dot{i}mp[u, v, w]$ for each triple of nodes (u, v, w) is also computed

in a constant time. The number of triples to be checked in Step 3 during the entire computation is
$O(|f|^{3})$, where $|f|$ is the $8\mathrm{i}\mathrm{z}\mathrm{e}$ of the given OBDD, and this requires $O(|f|^{3})$ time. The time for the rest of

computation is minor.

Theorem 5.1 Given an OBDD representing a Boolean function f , checking whether f is Horn is per-

formed in $O(|f|^{3})$ time; where $|f|$ is the size of the given OBDD.

6 Conclusion
In this paper, we considered to make use of OBDDs as knowledge-bases. We have shown that the three

representations (i.e., CNF-based, model-based, and OBDD-based) play orthogonal roles with respect to
space requirement. Thus, OBDDs can find a place in knowledge-bases as they can represent some theories
more efficiently than others.

We then considered the problem of recognizing whether a given OBDD is positive, and whether it is
Horn; checking positivity can be done in quadratic time of the size of OBDD, while checking Horness can
be done in cubic time.

OBDDs are dominatingly used in the field of computer-aided design and verification of digital systems.

The reason is that many Boolean functions which we encounter in practice can be compactly represented,

and that many operations on OBDDs can be efficiently performed. We believe that OBDDs are also useful
for manipulating knowledge-bases. Developing efficient algorithms for knowledge-base operations should
be addressed in the further work.

References
[1] S.B. Akers, “Binary Decision Diagrams,” IEEE Ran8. Comput., C-27, no.6, pp.509-516, 1978.
[2] R.E. Bryant, (

$‘ \mathrm{G}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}$-Based Algorithms for Boolean Function Manipulation,” IEEE Trans. Comput.,
C-35, no.8, pp.677-691, 1986.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill, “Sequential Circuit Verification Using Sym-

bolic Model Checking,” in Proc. of 2. 7th $ACM/IEEE$ DAc, pp.46-51, 1990.
[4] H.A. Kautz, M.J. Kearns, and B. Selman, “Reasoning with Characteristic Models,” in Proc. of AAAI-

. 93, pp.34-39, 1993.
[5] H.A. Kautz, M.J. Kearns, and B. Selman, “Horn Approximations of Empirical Data,” Artificial

$I\dot{n}$telligence, 74, pp.129-245, 1995.
[6] R. Khardon and D. Roth, “Reasoning with Models,” Artificial Intelligence, 87, pp.187-213, 1996.
[7] J.C. Madre and O. Coudert, “A Logically Complete Reasoning Maintenance System Based on a

Logical Constraint Solver,” in Proc. of IJCAI-91, pp.294-299, 1991.
[8] J. McCarthy and P.J. Hayes, “Some Philosophical Problems from the Standpoint of Artificial Intelli-

gence,” in Machine Intelligence 4, ed. D. Michie, Edinburgh University Press, 1969.
[9] B. Selman and H.J. Levesque, “Abductive and Default Reasoning: A Computational Core,” in Proc.

of AAAI-90, pp.343-348, 1990. .

[10] N. Takahashi, N. Ishiura, and S. Yajima, “Fault Simulation for Multiple Faults Using BDD Repre-

sentation of Fault Sets,” in Proc. of $IEEE/ACM$ ICCAD-91, pp.550-553, 1991.

98

