
Computational Geometry on Statistical Manifolds for Clustering
(Extended Abstract)

Mary Inaba*, Hiroshi Imai* and Kunihiko Sadakane*

Abstract

This paper investigates computational-geometric aspects of clustering problems on the statis-
tical manifolds in information geometry. This extends the traditional Euclidean computational
geometry to a new one in the space of information geometry. Computational-geometric concepts
such as Voronoi diagrams in the space of information geometry are described, and then some
results on the geometric clustering problem based on the concepts are outlined.

1 Introduction

In information geometry [1, 2, 7], differential geometric properties of probabilistic distributions
and other stochastic systems have been studied. A set of parametrized probability distributions
form a Riemannian manifold by their parameters, and, the exponential family of probabilistic
distribution is the most typical and $\mathrm{w}\mathrm{e}\mathrm{U}$-behaved family. This family contains normal distribution,
Poisson, finite discrete, and exponential distribution as special cases. Furthermore, this has a nice
differential-geometric property, called “

$\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{U}\mathrm{y}$ flat,” and a divergence in general form, which is a
distance-like function between two probability distributions and contains both $\mathrm{K}\mathrm{u}\mathrm{U}\mathrm{b}\mathrm{a}\mathrm{C}\mathrm{k}$ -Leibler
divergence and squared Euclidean distance as its special cases $[1, 2]$ . The Voronoi diagram in the
$\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{U}\mathrm{y}$ flat space is studied in [8, 9, 10].

In this paper, we extend our results for the Euclidean clustering problem [6] to clustering
problems by divergence on statistical manifolds. Clustering problem is to group similar objects
under some criteria, and, in general it is $\mathrm{N}\mathrm{P}$-hard. Geometric $k$-clustering problem is to find a
good partition, $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ a $k$-clustering, of the given set $S$ of $n$ points $p_{i}=(x_{i})(i=1, \ldots, n)$ in the
$d$-dimensional space into $k\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{i}^{\text{・}}\mathrm{n}\mathrm{t}$ nonempty subsets $S_{1},$

$\ldots,$
$S_{k}$ . We first introduce the weighted

Voronoi diagram by divergence, and analyze its complexity. This generalized Voronoi diagram
share nice properties with the Euclidean diagrams. Our Voronoi diagram by divergence is then
applied to the general mixture clustering case. With this unified approach via the divergence, we
could characterize an optimal clustering for the pure variance criterion in the Euclidean case which
was left open in [6]. We propose a randomized 2-clustering approximation algorithm using random
sampling technique, together with analyzing its approximation performance $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{U}\mathrm{y}$.

2 Statistical manifolds of probability distributions
For the statistical estimation, in a traditional form, first we assume an underlying distribution
such as normal distribution or Poisson distribution, then, from a set of observed data, we estimate
the parameters of the distribution, such as mean or deviation in the normal distribution case.
In this sense, once distribution has been assumed, statistical estimation can be regarded as the
estimation of parameter of the distribution. Here, we regard a statistical distribution characterized
by $d$ parameters, as a point in the $d$-dimensional parametric space, geome.trically structures by the
properties of the distributions.
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A set of parametrized probabihty distributions form a Riemanmian manifold $\mathcal{M}$ by their pa-
rameters. For example, a class of one-dimensional normai distribution with mean $\mu$ and standard
deviation $\sigma$ form a manifold $\lambda 4=\{[\mu, \sigma]|\sigma>0\}$ , the upper half plane. This section describes
fundamental properties of this manifold for a wide and well-behaved class of probabihty distri-
butions, called the exponential family. Since we will use two dual coordinates, $\theta$-coordinate and
$\eta$-coordinate, which generalizes the polarity with respect to a paraboloid, we $\mathrm{w}\mathrm{i}\mathrm{U}$ use the tensor
notation.

2.1 Exponential family

A probability distribution parametrized by $\theta=[\theta^{i}]$ belongs to the exponential family if its proba-
bihty density function $f(x;\theta)$ with probability variable (vector) $x$ is expressed as

$f(x; \theta)=\exp[C(x)+\sum_{i}.\theta^{i}F_{1(}.x)-\psi(\theta)]$.

Since $\int f(x;\theta)\mathrm{d}_{X}=1,$ $\psi$ is given by

$\psi(\theta)=\log\int\exp[C(X)+\sum\theta^{i}F_{1}.(x)]\mathrm{d}_{X}i$

For this $\theta=[\theta^{\}]$ , we define $\eta=[\eta_{i}]$ by

$\eta_{i}=\int F_{i}(x)f(_{X};\theta)\mathrm{d}X$.
$\theta$ and $\eta$ are two coordinate systems on the manifold $\mathcal{M}$ of parameters of the distributions in the
exponential family. $\eta$ is also given by

$\eta_{i}=\frac{\partial\psi(\theta)}{\partial\theta^{i}}$

In the case of the exponential family, the dual potential function $\varphi(\eta)$ is defined in the -coordinate
system by

$\varphi(\eta)=\int f(x;\theta)(\log f(X;\theta)-^{o())}X\mathrm{d}_{X}$

where $\theta$ in the right-hand side is that corresponding to $\eta$ in the left-hand side. Note that when
$C(x)\equiv 0$ , this potential function $\varphi$ becomes the minus of entropy of distribution. 9 is then given
by

$\theta^{i}=\frac{\partial\varphi}{\eta_{i}}$ .
In fact, $\theta=\theta(p)$ and $\eta=\eta(p)$ give two coordinate systems on the manifold $\mathcal{M}$ of points $p$.

Examples of the exponential family are normal distributions, finite discrete distribution, expo-
nential distribution, etc., see $[1, 2]$ .

2.2 Properties of the divergence

In the sequel, we adopt the Einstein’s notation.
$\theta^{i}\eta_{i}\equiv\sum_{i}\theta i\eta i$

The statistical manifold of the exponential family has nice differential-geometric structure, $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$

$\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{U}\mathrm{y}$ flat. In order to investigate the discrete proxinity structure of this manifold, in this paper,
it suffices to consider the $\theta$-coordinate and the $\eta$-coordinate of the manifold $\Lambda 4$ for the exponential
family as two dual affine coordinate systems. $\theta(p)$ and $\eta(p)$ denote the $\theta-$ and $\eta$-coordinate values
for a point $p$ on $\mathcal{M}$ , that is, $\theta(p)=[\theta^{1}(p), \ldots , \theta^{d}(p)]$ , and $\eta(p)=[\eta_{1}(p), \ldots,\eta_{d}(p)]$ . In the dually
flat space, we can define a distance-like function divergence between two points $p$ and $q$ on $\mathcal{M}$ .
Definition 1 (Divergence) Consider the two potential functions $\psi,$ $\varphi:\mathcal{M}arrow \mathrm{R}$ for the exponen-
tial family. For two points $p,$ $q\in \mathcal{M}$ , define the divergence $D(p||q)$ by

$D(p||q)=\psi(p)+\varphi(q)-\theta^{i}(p)\eta_{i}(q)$
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The pair of potential functions are connected via the Legendre transformation, that is,

$\mathit{9}^{i}=\frac{\partial\varphi}{\partial\eta_{i}}$, $\eta_{\dot{2}}=\frac{\partial\psi}{\partial\theta^{i}}$

$\psi,$
$\varphi$ are strictly convex, and

$\varphi(q)=\max\{p\in s\theta^{i}(p)\eta i(q)-\psi(p)\}$ , $\psi(p)=\mathrm{m}\mathrm{a}\mathrm{x}q\in s^{\{\mathit{9}^{i}(p})\eta i(q)-\varphi(q)\}$

Hence, $D(p||q)\geq 0$, and $D(p||q)=0$ iff $p=q$. But, unhike the distance, $D(p||q)\neq D(q||p)$ in
general.

Next, we consider the relation of $D(p||q)$ with the potential function $\varphi$ and a tangent hyperplane.
Add a new coordinate $z$ , corresponding to the height, to the $\eta$-coordinate system, and consider the
graph $z=\varphi$ in the $[\eta, z]$-space. For $p\in \mathcal{M}$ , lift it up to the graph $(\eta_{1}(p),\eta_{2}(p),$

$\ldots$ , $\eta_{d}(p),$ $\varphi(p))$ ,
and consider the tangent hyperplane. Then, for a point $q\in \mathcal{M}$ , the height difference of a point
lifted to the graph $z=\varphi(\eta)$ is given by

$\varphi(q)-\mathit{9}i(p)\eta_{i}(q)+\theta i(p)\eta_{i}(p)-\varphi(p)=\psi(p)+\varphi(q)-\theta^{i}(p)\eta i(q)=D(p||q)$

By the symmetric duality, this holds also in 9-coordinate system, i.e., the divergence $D(p||q)$

is also the difference of the height at the point $p$ between the potential function $\psi$ and tangent
hyperplane on $\psi$ on the point $q$ .

The divergence has such a nice and natural meaning, which was used to analyze the $\nabla^{*}$-Voronoi
diagram as stated and cited in Theorem 1.

In the Euclidean case, which corresponds to a self-dual case, $\psi=\varphi=\sum_{i=1}^{d}x_{i}2/2$ and $\theta^{i}=\eta_{i}=$

$x_{i}$ . The divergence is a half of the square of the Euclidean distance. For the exponential family,
the divergence coincides with the Kullback-Leibler divergence $D_{K}(q||p)$ , also known as the relative
entropy. Thus, this $\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{U}\mathrm{y}$ flat structure is an extension of the ordinary Euclidean case, and the
divergence is an extension of the squared Euclidean distance.

Furthermore, the maximum likelihood method in statistical inference can be interpreted in a
natural way in the $\eta$-coordinate system, say, taking the average or the orthogonal projection to
obtain maximum likelihood estimators. For detaik, see $[1, 2]$ .

3 Weighted Voronoi diagrams by divergence

The Voronoi diagram by the divergence is investigated in $[8, 9]$ . In extending the $\mathrm{a}\mathrm{U}$-pair sum
of squared Euclidean distances to the divergence case, multiplicatively and additively weighted
Voronoi diagrams are useful. Hence, this section investigates such weighted diagrams. As $\mathrm{w}\mathrm{i}\mathrm{U}$ be
seen, the weighted diagram has similar structures as the weighted Euclidean diagram [3], and this
result may be viewed as an extension of [3].

We begin with a non-weighted case.
Definition 2 ($\nabla^{*}$-Voronoi diagram) For $k$ generator points $r^{(j)}(j=1, \ldots, k)$ , the $\nabla^{*}$ -Voronoi
diagram consists of Voronoi regions $V(r^{(j)})$ defined as follows in $f\mathit{9}J$.

$V(r^{(j)})=,\cap\{p|D(p^{(}|j)|p)<D(p^{(j’)}||p)\}j\neq j$

$V(r^{(j)})(j=1, \ldots, k)$ partition the manifold, which is called the $\nabla^{*}$ -Voronoi diagram.

For the $\nabla^{*}$-Voronoi diagram, the following holds.

Theorem 1 (Onishi, Imai [9]) The $\nabla^{*}$ -Voronoi diagram can be obtained as the projection to
the manifold $\mathcal{M}$ of the upper envelope of hyperplanes which are tangent hyperplanes in the $[\eta, z]-$

coordinate of the graph $z=\varphi(p)$ at $[\eta(p), \varphi(p)]$ .
By this theorem, the combinatorial complexity of the $\nabla^{*}$-Voronoi diagram can be bounded by

the upper bound theorem for convex polytopes.
The weighted Voronoi diagram by the divergence is defined as $\mathrm{f}\mathrm{o}\mathrm{U}_{0}\mathrm{w}\mathrm{S}$ .
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Definition 3 (Weighted $\nabla^{*}$-Voronoi diagram) Suppose that, for each $k$ points $r^{(j)}$ , a multi-
plicative weight $w^{(j]}\cdot\cdot and$ an additive weight $\tilde{w}^{(j)}$ are given. The Voronoi region ofpoint $r^{(j)}$ is given
$by$

$V(r^{(j)})=j’ \bigcap_{\neq j}\{p|w^{(j}(r|(j)|p))_{D}+\tilde{w}^{(j})<w^{(j’)}D(r^{(j’)}||p)+\tilde{w}\}(j’)$

The collection of $V(r^{(j)})(j=1, \ldots, k)$ is called the weighted $\nabla^{*}$ -Voronoi diagram, or simply the
weighted Voronoi diagram.

Concerning the the combinatorial complexity of this weighted diagram, we can show that each
Voronoi region has complexity $o(n^{\lfloor\frac{d+1}{2}\rfloor})$ , and hence obtain the following.

Theorem 2 The combinatorial complexity of the weighted divergence Voronoi diagram is $o(n^{\lfloor\frac{d+3}{2}\rfloor})$ .

4 Clustering by divergence

For a given set $S$ of $n$ points $p^{(l)}(l=1, \ldots,n)$ on the manifold $\mathcal{M}$ , a $k$-clustering is a partition of
$S$ into nonempty $k$ disjoint subsets $S_{1},$

$\ldots,$
$S_{k}$ whose uniori is $S$ .

Problem 1 (Divergence-sum clustering)

$(\dot{g}),$

$S_{\mathrm{j}}( \min_{tj=1,\ldots,k)}\sum j=1(kp\sum D(r|(j)|\iota)\in Sjp\mathrm{t}^{1)})$

Here, $r^{(j)}$ is a representative point for $S_{j}$ , and, since the sum of divergence is minimized at the
centroid, $r^{(j)}$ is simply set to the centroid of $S_{j}$ in the $\eta$-coordinate. This clustering criterion cor-
responds to maximizing the Classification Maximum Likelihood (CLM) for the exponential family
[4].

Next, generalizing the weighted Euclidean case, we consider the following.

Problem 2 (Multiplicatively weighted divergence-sum clustering)

$\dot{\mathrm{m}}\mathrm{n}\sum_{j=1}^{k}w(|sj|)p^{()}\sum_{\iota\in sj}D(r^{(j)}||p)(1)$

where $w(s)=s^{\alpha}$ , and the following cases have their own meanings:

$\bullet$ $w(s)=1$ (this case corresponds to the simple sum case)
$\bullet$ $w(s)=s$ (this case corresponds to the $\mathrm{a}\mathrm{U}$-pair sum of squared Euclidean distances in the

Euclidean case)
$\bullet$ $w(s)=1/s$ (this case corresponds to the variance)

As in the first problem, $r^{(j)}$ for cluster $S_{j}$ is simply set to the centroid of $S_{j}$ in the $\eta$-coordinate.
We further extend the problem to a mixture case.

Problem 3 (Mixed divergence clustering) In this clustering model, each point $p^{(l)}$ bdongs to
every duster in some sense. Specifically, $\zeta(j,l)(\geq 0)$ denotes how much point $p^{l}$ belongs to cluster
$S_{j}$ , where

$\sum_{j=1}^{k}\zeta(j, l)=1$ for each $l$ .

Then, the dustering problem is to find an optimd $k$ -clustering for
$\min\sum_{j=1}^{k}w(\sum_{l=1}^{n}\zeta(j,l))\mathrm{t}=\sum^{n}\zeta(j,l)D(\tilde{r}^{(j)}||p^{(})\iota \mathrm{t})$
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In this problem, $\tilde{r}^{(j)}$ is the weighted centroid defined by

$\eta_{i}(\tilde{r}^{(j)})=\frac{1}{\sum_{l=1}^{n}\zeta(j,l)}\sum_{=l1}^{n}\zeta(j, l)\eta i(p^{(l}))$

Now, we describe our results for these problems. First, we have the following.

Theorem 3 An optimal dustering for the divergence-sum clustering problem is identical with a
partition by the $\nabla^{*}$ -Voronoi diagram generated by the centroids of clusters.

The number of partitions of $n$ points induced by the nabla*-Voronoi diagram is shown to be
$O(n^{\min\{d}-d+k-2\}k,dk)$ and furthermore such partitions can be enumerated in time proportional to
the bound in [5]. This number is polynomial when $d$ and $k$ are regarded as constants, thus revealing
the geometry helps in solving the clustering problem for moderate $d$ and $k$ .

Concerning the Problem 2, at this point, it seems hard to generalize a result for the Euclidean
case in [6] to this general case, but its mixture version of Problem 3 can be again characterized by
the weighted $\nabla^{*}$-Voronoi diagram as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ . Furthermore, this characterization solves unsolved
pure variance problem in the Euclidean case with $w(s)=1/s$.

To analyze optimal clusterings in the mixed divergence clustering problem, we adopt infinitesi-
mal analysis.

Now, define $W_{j}$ by

$W_{j}=w( \sum_{l=1}^{n}\zeta(j,l))\iota=\sum\zeta(j,l)D(_{\tilde{\Gamma}}(j)||p^{(l})1n)$

where we recall $\tilde{r}^{(j)}$ also depends on $\zeta(j, l)$ .
We now have the $\mathrm{f}\mathrm{o}\mathrm{u}_{0}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$ lemma.

Lemma 1 $\frac{\partial W_{j}}{\partial\zeta(j,l)},=w(\iota=\sum_{1}^{n}\zeta(j, l))D(\tilde{r}^{(j)}||p^{(})\iota’)+\frac{\partial w(\sum_{\iota=}^{n}1\zeta(j,l))}{\partial\zeta(j,l)},\sum_{l=1}^{n}\zeta(j, l)D(\tilde{r}^{(j)}||p)(l)$

Theorem 4 Suppose $w(s)=s^{\alpha}$ . For an opti.$mal$ solution of the mixed divergence clustering prob-
lem, consider the weighted $\nabla^{*}$ -Voronoi diagram for weighted centroids $\tilde{r}^{(j)}$ with multiplicative weight
$w( \sum_{l=1}^{n}\zeta(j, l))$ and additive weight

$\alpha(\sum_{l=1}\zeta(jn, l).)^{\alpha}-1\sum_{\iota=1}^{n}\zeta(j,l)D(\tilde{r}^{(}|j)|p)(l)$ .

Then, for point $p^{(l)}$ in the Voronoi region $of\tilde{r}^{(j)},$ $\zeta(j, l)=1,$
$an\dot{d}$, for points $p^{(l)}$ with $0<\zeta(j, l)<1$ ,

it is on some boundary face on the Voronoi region of $\tilde{r}^{(j)}$ .

As mentioned above, this general characterization solves an unsolved pure variance-clustering
problem in the Euclidean case with $w(s)=1/s$ to which no characterization by the Voronoi diagram
has not yet been known.

5 Random sampling algorithm

We extend approximate algorithm for 2-clustering using random $\mathrm{S}\mathrm{a}\mathrm{m}_{\mathrm{P}^{1\dot{\mathrm{m}}\mathrm{g}}}$ technique to divergence-
sum problem, based on the algorithm in the Euclidean case [6]. The idea of this algorithm is that,
sampled data might not reflect the cost function of whole data, but, sampled data can reflect the
centroid with high probability, so, try $\mathrm{a}\mathrm{U}$ possible partitioning on sampled data, and, compute the
centroid using sampled data, then, compute cost function using whole data and get minimum one.

However, in the Euclidean case, the divergence is directly connected with the variance, the
clustering cost function, while in general cases it is not. Hence, as for analysis of approximation
ratio we restrict ourselves to the case of finite discrete distribution. Using the Kullback-Leibler
divergence, we apply the tail distribution analysis using this divergence.

25



[Randomized 2-clustering algorithm with divergence]

1. Sample a subset $T$ of $m$ points $\mathrm{h}\mathrm{o}\mathrm{m}S$ by $m$ independent draws at random;

2. For every linearly separable 2-clustering $(T_{1},T_{2})$ of $T$ in the $\eta$-coordinate system, execute the
following:

Compute the centroids $t_{1}$ and $t_{2}$ of $T_{1}$ and $T_{2}$ in the $\eta$-coordinate system, respectively;

Find a 2-clustering $(s_{1}, s_{2})$ of $S$ by dividing $S$ by the hyperplane with the same diver-
gence between $t_{1}$ and $t_{2}$ in the $\eta$-coordinate system,
Compute the value of Cost $(s_{1})+\mathrm{C}\mathrm{o}\mathrm{s}\mathrm{t}(s_{2})$ and maintain the $\mathrm{m}\ddot{\mathrm{m}}\mathrm{m}\mathrm{u}\mathrm{m}$ among these
values;

This randomized algorithm is an approximation algorithm, and its approximation ratio may be
evaluated, and we have the following.

Theorem 5 Suppose that there is an optimal 2-clustering such that the sizes of each cluster
are within some constant factor to each other. Let $D$ be the minimum among the averages of
$D(\overline{q}(s_{j})||p)(\mathrm{t})$ for each duster in the optimal dustering. Then, for some constant a’ with $\alpha>d>0$ ,
the randomized algonthm finds a $\mathit{2}-dusie\dot{n}ng$ in $O(nm^{d})$ time, whose sum of divergences is within

a factor of $1+c$ with probability at least $1-4d \exp(-2\alpha’(1-\exp(-\frac{\mathrm{c}D}{n})2m)$ .
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