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1 Introduction
Suppose that we are given a set $S$ of countries on
the sphere. Raditional planarity says that two
countries are adjacent iff they share a border line.
In [1], Chen et al. suggest a modified notion of pla-
narity which says that two countries are adjacent
iff they share at least one point. The graph $G$ ab-
stracting this adjacency is called a map graph. If
the countries of $S$ together cover the sphere com-
pletely, $G$ is called a lake-free map graph. If $G$ is
a map graph (or lake-hee map graph, resp.) and
no $k$ countries of $S$ meet at a single point for some
natural number $k$ , then $G$ is called a $k$ -map gmph
(resp., lake-free $k$ -map graph).

The problem of recognizing map graphs and its
extensions have been studied for geographic in-
formation systems. Chen et al. [1] proved that
the problem of recognizing map graphs is in NP
and gave a very complicated $O(n^{3})$-time algo-
rithm for recognizing 4-map graphs. Subsequently,
Thorup [2] came up with a complicated $\Omega(n^{125})-$

but polynomial-time algorithm for recognizing map
graphs.

This paper was motivated by the necessity of
$\mathrm{S}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{g}_{\mathrm{n}\mathrm{g}}$ the $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{f}\llcorner \mathrm{m}\mathrm{s}$ mentioned above. It
shows that there is a relatively simple $O(n^{4})$ al-
gorithm for recognizing lake-free 4-map graphs.

2 Basics
A marked graph is a graph in which zero or more
edges are colored and the rest are not. Let $G$ be a
marked graph. $V(G)$ denotes the vertex set of $G$

and $E(G)$ denotes the edge set of $G$ . For a vertex
$v$ in $G,$ $N_{G}(v)$ denotes the set of vertices adjacent
to $v$ in $G$ . Let $U$ be a subset of E. $N_{G}(U)$ denotes
$\bigcup_{u\in U}N_{G}(u)$ . Let $F$ be a subset of E. $G-U-F$ de-
notes the marked graph obtained $\mathrm{h}\mathrm{o}\mathrm{m}G$ by delet-
ing the edges in $F$ and the vertices in $U$ together
with the edges incident to them. When $U$ or $F$ is
empty, we drop it ffom the notation $G-U-F$.
$G[U]$ denotes $G-(V(G)-U)$ .

Throughout the rest of this paper, fix a marked
graph $G$ with vertex set $V$ and edge set $E$ . Let $U$

be a subset of $V$ . A layout $\mathcal{L}$ of $G[U]$ is a drawing
of the vertices of $U$ on the sphere satisfying the

following three conditions:

1. Each $u\in U$ is drawn as a disc homeomorph
$\mathcal{R}(u)$ on the sphere; for every pair of distinct
vertices $u$ and $v$ in $U$ , the interiors of $\mathcal{R}(u)$ and
$\mathcal{R}(v)$ are disjoint.

2. Two vertices $u$ and $v$ are adjacent in $G[U]$

iff the boundaries of $\mathcal{R}(u)$ and $\mathcal{R}(v)$ have a
nonempty intersection. In addition, if $\{u, v\}$

is a colored edge in $G$ , then the boundaries of
$\mathcal{R}(u)$ and $\mathcal{R}(v)$ share a curve segment (not a
single point).

3. No point in the drawing is shared by at least
five $\mathcal{R}(u)’ \mathrm{s}$ .

If we remove all $\mathcal{R}(u)$ with $u\in U$ ffom the sphere,
we may be left with a number of connected regions.
The closure of each of these regions is called a lake
in $\mathcal{L}$ . Note that each $\mathcal{R}(u)$ is a closed set and its
removal $\mathrm{h}\mathrm{o}\mathrm{m}$ the sphere includes the removal of its
boundary. A vertex $u\in U$ touches a lake $\mathcal{H}$ if the
boundaries of $\mathcal{R}(u)$ and $\mathcal{H}$ have a nonempty inter-
section; $u$ strongly touches $\mathcal{H}$ if the boundaries of
$\mathcal{R}(u)$ and $\mathcal{H}$ share a curve segment. A 2-lake is a
lake strongly touched by exactly two vertices. Eras-
$\dot{i}ng$ a 2-lake $\mathcal{H}$ in $\mathcal{L}$ is the operation of modiMng $\mathcal{L}$

by extending $\mathcal{R}(u)$ to occupy $\mathcal{H}$ , where $u$ is a vertex
strongly touching $\mathcal{H}$ . $\mathcal{L}$ is a map of $G$ if $U=V$ and
there is no lake in $\mathcal{L}$ . When $U\neq V,$ $\mathcal{L}$ is extensible
if we can obtain a map of $G$ by somehow drawing
the vertices of $V-U$ as disc homeomorphs in the
lakes of $\mathcal{L}$ . $\mathcal{L}$ is transformable to another layout $\mathcal{L}’$

of $G[U]$ if whenever $\mathcal{L}$ is extensible, so is $\mathcal{L}’$ . $\mathcal{L}$ is
well-formed if for every edge $\{u, v\}$ in $G[U],$ $\mathcal{R}(u)$

and $\mathcal{R}(v)$ share either exactly one point or exactly
one curve segment (but not both) of their bound-
aries. If $\mathcal{M}$ is a map of $G$ and $W$ is a subset of $V$ ,
then $\mathcal{M}|_{W}$ denotes the extensible layout of $G[W]$

inherited ffom A4 in an obvious way.
Our goal is to design an algorithm which given

$G$ , constructs a map of $G$ if one exists, and reports
“failure” otherwise. Since checking the correctness
of a map of $G$ can be done in linear time, we can
assume that $G$ has a map and only need to show
how to find one. So, in the rest discussion of this
paper, we assume that $G$ has a map. We also call
the vertices in $G$ nations. Throughout the rest of
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this paper, we will $\tilde{\mathrm{u}}$se lower-case letters to denote
nations.

Let $\mathcal{M}$ be a map of $G$ . A $k- po\dot{i}nt$ in $\mathcal{M}$ is a point
shared by exactly $k$ nations. Let $u$ and $v$ be two
nations. A $(u,v)$ -point in $A4$ is a 4-point $p$ at which
$u$ and $v$ together with two other nations $x$ and $y$

meet cyclically in the order $u,$ $x,$ $v,$ $y$ . Erasing the
$(u, v)$ -point $p$ in $\lambda 4$ is the operation of $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}^{r}\mathrm{i}\mathrm{n}\mathrm{g}$

$\mathcal{M}$ by extending nation $x$ to occupy a disc that is
centered at $p$ and touches no nation other than $u,$ $v$ ,
$x$ , and $y$ . A $(u, v)$ -segment in $\lambda 4$ is a curve segment
$S$ shared by the boundaries of $u$ and $v$ such that
each endpoint of $S$ is a 3- or 4-point. Note that two
$(u, v)$-segments must be disjoint. An edge $\{u, v\}$

of $G$ is good in $\mathcal{M}$ if either (i) there is exactly one
$(u, v)$-segment but no $(u, v)$ -point in $\mathcal{M}$ or (ii) there
is exactly one $(u, v)$ -point but no $(u, v)$ -segment in
$\mathcal{M}$ . An edge that is not good in $\Lambda 4$ is bad in $\mathcal{M}$ .
Note that $\mathcal{M}$ is well-formed iff every edge of $G$ is
good in $\mathcal{M}$ .

For every $v\in V$ , since nation $v$ is a disc home-
omorph in $\mathcal{M}$ , removing $v$ from $\mathcal{M}$ leaves exactly
one connected region. So, $G$ must be biconnected.

Fact 1 Let $u$ and $v$ be two distinct vertices of $G$ .
Then, the following statements hold:

1. $G-\{u, v\}$ is disconnect$e\mathrm{d}$ iff there are at least
two $(u, v)$-segments in M.

2. Suppose that $G-\{u,v\}$ is disconnected and its
connected components are $G_{1},$

$\ldots$ ; $G_{k}$ . Then
for each $i\in\{1, \ldots, k\}$ , the marked graph $G_{i}’$

obtained from $G[V(Gi)\cup\{u,v\}]$ by coloring
edge $\{u, v\}$ has a map. Moreover, given a map
$\mathcal{M}_{i}$ for each $G_{i}’$ , we can easily construct a map
$\circ \mathrm{f}G$ .

In light of Fact 1 , we hereafter assume that $G$

is 3-connected.

Fact 2 $G$ is 3-connected iff $G$ has a well-formed
map.

Throughout the rest of this paper, unless stated
otherwise, $\mathcal{M}$ denotes a well-formed map of $G$ .
Two nations $u$ and $v$ strongly touch in At if there
is a $(u,v)$-segment in $\mathcal{M}$ ; they weakly touch in $\mathcal{M}$

if there is a $(u,v)$-point in A4. To $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\Phi$ the dis-
cussions in the sequel, we assume that $|V|\geq 9$ ; the
problem is easily solved when $|V|<9$ .

Fact 3 Let $C=\{a, b, c\}$ be a set of three distinct
vertices in $G$ . Then, the following statements hold:

1. When $C$ is not a clique in $G,$ $G-C$ is con-
nected.

2. When $C$ is a clique in $G,$ $G-C$ is disconnected
iff (i) the nations in $C$ do not meet at a point in
$\mathcal{M}$ and (ii) each pair of nations in $C$ strongly
touch in $\mathcal{M}$ .

3. Suppose that $G-C$ is disconnected. Then,
(i) $G-C$ has exactly two connected compo-
nents $G_{1}$ and $G_{2}$ , and (ii) both $G_{1}’$ and $G_{2}’$

have a well-formed map, where $G_{1}’$ (respec-
tively, $G_{2}’$ ) is the marked $\mathrm{g}\tau \mathrm{a}\mathrm{p}\mathrm{h}$ obtained from
$G[V(G1)\cup C]$ (respectively, $G[V(G_{2})\cup C]$ )
by coloring the edges in $E(G[C])$ . Moreover,
given a well-formed map of $G_{1}’$ and one of $G_{2}’$ ,
we can easily construct one of $G$ .

A clique consisting of $k$ vertices is called a k-
clique. A clique $C$ in $G$ is maximal if no clique
in $G$ properly contains $C$ . A maximal $k$-clique is
denoted by $\mathrm{M}\mathrm{C}_{k}$ . Let $k$ be a positive integer. Two
maximal cliques $C_{1}$ and $C_{2}$ are $k$ -sharing if $|C_{\perp}\cap$

$C_{2}|=k$ . It is easy to $\mathrm{s}e\mathrm{e}$ that $G$ has no 7-clique.

Fact 4 Suppose that $G$ is 4-connected. Then, $G$

has no 6-clique.

A comct 4-pizza is a list $\langle a, b, c, d\rangle$ of four nations
in $G$ such that $G$ has a well-formed map in which
nations $a,$ $b,$ $c,$ $d$ meet at a point cyclically in this
order. Removing a correct 4-pizza $\langle a, b, c, d\rangle$ from $G$

is the operation of $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\{\mathrm{i}r\mathrm{i}\mathrm{n}\mathrm{g}G$ as follows: Delete
the edge $\{a, c\}$ from $G$ and color the edges $\{b, d\}$ ,
$\{a, b\},$ $\{b, c\},$ $\{c, d\}$ , and $\{d, a\}$ .

Lemma 2. 1 Let $G’$ be the marked graph ob-
tained ffom $G$ by removing a correct 4-pizza
$\langle a, b, c, d\rangle$ . Then, $G’$ has a well-formed map. More-
over, given a well-formed map of $G’$ , we can easily
construct a well-formed map of $G$ .

A simple inspection shows that every extensible
layout of an MC5 in $G$ must be a “pizza with crust”.
Thus, in every extensible layout of an $\mathrm{M}\mathrm{C}_{5}C$ , there
is a point at which exactly four nations of $C$ meet.
This motivated the following definition. A correct
center of an $\mathrm{M}\mathrm{C}_{5}C$ in $G$ is a list $\langle a, b, c, d\rangle$ of four
nations in $C$ such that $C$ has a well-formed exten-
sible layout in which nations $a,$ $b,$ $c,$ $d$ meet at a
point cyclically in this order. The unique nation in
$C-\{a, b, c, d\}$ is called a correct crust of $C$ .

Fact 5 Let $C$ be an $\mathrm{M}\mathrm{C}_{5}$ in $G$ . Then, every cor-
rect center of $C$ is a correct 4-pizza in $G$ .

3 Advanced reductions
Let $U$ be a subset of $V$ . A figure of $G[U]$ is a
list $D=\langle \mathcal{L}, S, L_{1}, \ldots, L_{k}\rangle$ , where $\mathcal{L}$ is a layout
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of $G[U],$ $S$ is a set of curve segments in $\mathcal{L}$ whose
internal points are disjoint, and $L_{1},$

$\ldots,$
$L_{k}$ are dis-

joint lists of vertices in $U$ . We call $\mathcal{L}$ the layout
in $D$ , call the curve segments in $S$ the contractible
segments in $D$ , and call $L_{1},$

$\ldots,$
$L_{k}$ the permutable

lists in $D$ . Associated with $D$ is the set $X$ of all
layouts of $G[U_{\rfloor}^{\mathrm{I}}5$ that can be obtained from $\mathcal{L}$ by (i)
contracting some contractible segments each to a
single point while erasing all resulting 2-lakes and
(ii) for $e$ach permutable list $L_{i}$ , selecting a permu-
tation $\pi$ of $L_{i}$ and renaming each nation $u\in L_{i}$ as
$\pi(u)$ . $D$ displays $\mathcal{L}’$ if each $\mathcal{L}’\in \mathcal{X}$ . $Dd\dot{i}splaysc[U]$

if $D$ displays an extensible layout of $G[U]$ . We will
hequently illustrate $D$ by first drawing $\mathcal{L}$ and then
modifying it by (i) interrupting each contractible
segment while emphasizing its endpoints and (ii)
for each permutable list $L_{i}$ , renaming each nation
$u\in L_{i}$ as $u^{i}$ . For example, when $U=\{a, b, c, d, e\}$

is an $\mathrm{M}\mathrm{C}_{5}$ in $G$ , Figure 2.1 displays $\mathcal{M}|_{U}$ . Actu-
ally, by contracting a set of contractible segments
in the figure, we can obtain Figure 2.2(1) through
(5); only they can possibly display $\mathcal{M}|_{U}$ , as can
be easily checked. We note that Figure 2.1 has a
unique permutable set, namely, $U$ itself. $D$ is trans-
formable to another figure $D’$ of $G[U]$ if whenever
$D$ displays $\mathcal{M}|_{U}$ , so does $D’$ .

For an edge $\{a, b\}$ in $G,$ $\mathcal{E}[a, b]$ denotes the set
of uncolored edges $\{x,y\}\in E$ such that $\{x,y\}\cap$

$\{a, b\}=\emptyset$ and $\{x, y, a, b\}$ is an $\mathrm{M}\mathrm{C}_{4}$ in $G$ . A sep-
arating edge of $G$ is an edge $\{a, b\}\in E$ such that
$G-\{a, b\}-\mathcal{E}[a, b]$ is disconnected. A shrinkable seg-
ment $S$ in $\mathcal{M}$ is a $(u, v)$-segment in $\mathcal{M}$ such that
(i) $\{u,v\}$ is an uncolored edge in $G,$ $(\mathrm{i}\mathrm{i})$ both end-
points of $S$ are 3-points, and (iii) one endpoint of
$S$ is touched by a nation $a\not\in\{u, v\}$ and the other
is touched by a nation $b\not\in\{u, v, d\}$ . Nations $a$ and
$b$ are called the ending nations of $S$ .

Lemma 3. 1 Suppose that $G$ is 4-connected. As-
sume that $G$ has a separating edge $\{a, b\}$ . Let
$G’=c-\{a, b\}-\mathcal{E}[a,b]$ . Then, for every $\{x,y\}\in E$

such that $x$ and $y$ belong to different connected
components of $c_{:}’\langle a, x, b, y\rangle$ is a correct 4-pizza in
$G$ .

Corollary 3. 2 Suppos$e$ that $G$ is 4-connected.
Assume that $G$ has no 5-clique. Then, $G$ has a
separating edge iff there is a shrinkable segment in
$\mathcal{M}$ whose ending nations are adjacent in $G$ .

An induoed 4-cycle in $G$ is a set $C$ of four vertices
in $G$ such that $G[C]$ is a cycle. A sepamting 4-cycle
of $G$ is an induced 4-cycle $C$ in $G$ such that $G-C$
is disconnected.

Lemma 3. 3 Suppose that $G$ has a separating 4-
cycle $C$ . Then, $G-C$ has exactly two connected

components $G_{1}$ and $G_{2}$ . Moreover, we can easily
construct two marked graphs $G_{1}’$ and $G_{2}’$ such that
(i) each of $G_{1}’$ and $G_{2}’$ has a well-formed map and
(ii) given a well-formed map of $G_{1}’$ and one of $G_{2}’$ ,
we can easily construct one of $G$ .

A separating triple of $G$ is a list $\langle a, b, c\rangle$ of thrce
vertices in $G$ such that (i) $C=\{a, b, c\}$ is a clique
in $G$ and (ii) $G-C-\mathcal{E}[a, b]$ is disconnected.

Lemma 3. 4 Suppose that $G$ is 4-connected and
has no separating edge but has a separating
triple $\langle a, b, c\rangle$ . Then, $G-\{a, b, c\}-\mathcal{E}[a, b]$ has
exactly two connected components $G_{1}$ and $G_{2}$ .
Moreover, $|V(G_{1})\cap N_{G}(V(c_{2}))|$ $=$ $|V(G_{2})\cap$

$N_{G}(V(c_{1}))|=1$ and $\langle a, u,b, v\rangle$ is a correct 4-
pizza, where $\{u\}=V(G_{1})\cap N_{G}(V(c_{2}))$ and $\{v\}=$

$V(G_{2})\cap NG(V(c1))$ .

A $separat\dot{i}ng$ quadruple is a list $\langle a, b, c, d\rangle$ of four
vertices in $G$ such that (i) $G[\{a, b, c, d\}]$ is a cy-
cle and (ii) $G-\{a, b, c,d\}-\mathcal{E}[a, b]$ is disconnected.
Using Lemma 3. 3 , we can $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}^{r}$ the proof of
Lemma 3. 4 to prove the following:

Lemma 3. 5 Suppose that $G$ has neither separat-
ing edge nor separating 4-cycle, but has a separat-
ing quadruple $\langle a, b, c, d\rangle$ . Then, $G-\{a, b, c, d\}-$

$\mathcal{E}[a, b]$ has exactly two connected components $G_{1}$

and $G_{2}$ . Moreover, $|V(G_{1})\cap N_{G}(V(c_{2}))|$ $=$

$|V(G_{2})\cap N_{G}(V(c_{1}))|=1$ and $\langle a,u, b, v\rangle$ is a cor-
rect 4-pizza, where $\{u\}=V(G_{1})\cap N_{G}(V(c_{2}))$ and
$v=V(G_{2})\cap Nc(V(c_{1}))$ .

Fact 6 Suppose that $G$ does not have an $\mathrm{M}\mathrm{C}_{5}$

or a separating edge. Then, $G$ has a separating
quadruple iff for some induced 4-cycle $C$ in $G$ , at
most one pair of adjacent nations of $C$ weakly touch
in $\mathcal{M}$ .

A separating $tr\dot{i}angle$ of $G$ is a list $\langle a, b, c\rangle$ of three
vertices in $G$ such that (i) $C–\{a, b,c\}$ is a clique
in $G$ and (ii) $G’=G-C-(\mathcal{E}[a, b]\cup \mathcal{E}[a, c])$ is dis-
connected. If in addition, $G’$ has a connect$e\mathrm{d}$ com-
ponent consisting of a single vertex, then $\langle a, b, c\rangle$ is
a strongly separating triangle of $G$ .

Throughout the remainder of this section, we as-
sume that $G$ does not have a separating edge, triple
or quadruple, but has a separating triangle $\langle a, b, c\rangle$ .
Let $C$ and $G’$ be as described in the last paragraph.
Our goal is to show that using $C$ and $G’$ , we can
easily find two correct 4-pizzas.

Claim 1 Let $Z$ be a subset of $V-C$. Suppose
that $\{u, v\}$ is an edge of $G$ such that $u$ and $v$ belong
to different connected components of $G’[z]$ . Then,
$a\in N_{G}(u)\cap N_{G}(v)$ . Consequently, nations $u,$ $v,$ $b$ ,
and $c$ cannot meet at a 4-point in $\mathcal{M}$ .
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Claim 2 Let $Z$ be a subset of $V-C$. Suppose
that a subset $\{u, v, w\}$ of $V-C$ is a 3-clique of
$G$ such that $u$ and $v$ belong to different connected
components of $G’[Z]$ . Then, either (i) $C\subseteq N_{G}(u)$

and $\{C\cap N_{G}(v), C\cap N_{G}(w)\}=\{\{a, b\}, \{a, c\}\}$ or
(ii) $C\subseteq N_{G}(v)$ and $\{C\cap N_{G}(u), C\cap N_{G}(w)\}=$

$\{\{a, b\}, \{a, c\}\}$ . Moreover, there is no $x\in Z-$

$\{u,v,w\}$ with $\{u,v, w\}\subseteq N_{G}(x)$ .

Note that $\lambda 4|c$ can have at most two lakes. If
$\mathcal{M}|c$ has only one lake, then Figure 3. 7(1), (2), or
(3) displays it; otherwise, Figure 3. $\int(4\rangle$ displays it.

Lemma 3. 6 Figure 3.1 (1) does not display $\mathcal{M}|c$ .

Lemma 3. 7 Figure 3.} (2) does not display $\mathcal{M}|c$ .

Lemma 3. 8 Figure 3.1 (3) does not display $\mathrm{A}4|_{C}$ .

By Lemma 3. 6 , 3. 7 and 3. 8 , only Figure3.5(4)
can display $\mathcal{M}|_{C}$ .

Lemma 3. 9 Suppose that $C$ is a strongly sepa-
rating triangle of $G$ . Then, we can easily find two
correct 4-pizzas.

Lemma 3. 10 Suppose that there is no strongly
separating triangle of $G$ . Further assume that $C$

is a separating triangle of $G$ . Then, we can easily
find two correct 4-pizzas.

Fact 7 Suppose that $G$ does not have an $\mathrm{M}\mathrm{C}_{5}$ , a
separating edge, or a separating quadruple. Then,
$G$ has a separating triangle iff for some 3-clique $C$

of $G,$ $(\mathrm{i})$ the nations of $C$ do not meet at a point in
$\mathcal{M}$ and (ii) at least one pair of nations of $C$ strongly
touch in M.

4 Removing cliques of size 5

Rom Figure 2.2, it is easy to see that every $\mathrm{M}\mathrm{C}_{5}$

$C$ of $G$ is -sharing with at most two other $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ of
G.. We claim that at least one $\mathrm{M}\mathrm{C}_{5}$ of $G$ is 4-sharing
with two other $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ of $G$ . Towards a contradic-
tion, assume that the claim does not hold. Let
$C=\{a, b, c, d, e\}$ be an $\mathrm{M}\mathrm{C}_{5}$ of $G$ . Figure 2.2(1)
does not display $\mathcal{M}|c$ ; othemise, either $V$ would
equal $C$ or at least one of $\cdot\langle e, a, b111\rangle,$ $\langle e^{1}, b^{1}, c^{1}\rangle$ ,
$\langle e^{1}, c^{1}, d^{1}\rangle$ , and $\langle e^{1}, a^{1}, d1\rangle$ would be a separating
triangle of $G$, a contradiction. For similar reasons,
when $C$ is -sharing with no $\mathrm{M}\mathrm{C}_{5}$ of $G$ , none of
Figure 2.2(2) through (5) displays $\mathcal{M}|_{C}$ . So, con-
sider the case where $C$ is 4-sharing with exactly one
$\mathrm{M}\mathrm{C}_{5}$ , say $C_{1}=\{a^{1},b^{1}, C^{1}, e, f1\}$ , of $G$ . In this case,
by the assumption that $G$ has no separating trian-
gle, Figure 2.2(2), (3), and (5) are transformable
to Figure 4.1(1) and Figure 2.2(4) is transformable
to Figure 4.1(2). By Figure 4.1(1) and (2), only
Figure 4.2(1) or (2) can possibly display $\mathcal{M}|_{\{a,\ldots,f\}}$ .
Actually, Figure 4.2(2) does not display $\mathcal{M}|_{\{a,\ldots,f\};}$

otherwise, since $C_{1}$ is 4-sharing with no $\mathrm{M}\mathrm{C}_{5}$ of $G$

other than $C$ , there is no $g\in V-\{a, \ldots, f\}$ with
$\{a^{1}, b^{1},e^{1}, f\}\subseteq N_{G}(g)$ and $\langle a^{1}, f, e^{1}\rangle$ would be a
separating triangle of $G$ , a contradiction. Similarly,
Figure 4.2(1) does not display $\mathcal{M}|_{\{a,\ldots,f\}}$ ; other-
wise, since $|V|\geq 9,$ $\langle a^{1}, f, b^{1}\rangle$ or $\langle a^{1}, f, e^{1}\rangle$ would
be a separating triple of $G$ , a contradiction. There-
fore, the claim holds.

By the above claim, if $G$ has an $\mathrm{M}\mathrm{C}_{5}$ , then it has
an $\mathrm{M}\mathrm{C}_{5}$ that is 4-sharing with two other $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ of
$G$ . By our assumption that $G$ has an $\mathrm{M}\mathrm{C}_{5},$ $G$ has
an $\mathrm{M}\mathrm{C}_{5}C=\{a, b, c, d, e\}$ that is -sharing with
two other $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ , say $C_{1}=\{a, c, d, e, f\}$ and $C_{2}=$

$\{a, b, c, e,g\}$ , of $G$ . Let $U=C\cup\{f,g\}$ . We show
how to find a correct center of $C$ below. First, we
make a simple but useful observation.

Throughout this section, we assume that $G$ does
not have a separating edge, quadruple, or triangle.
This implies that $C_{\tau}$ is 4-connected and has no sep-
arating triple. We further assume that $G$ has an
$\mathrm{M}\mathrm{C}_{5;}$ our goal of this section is to show how to
remove $\mathrm{M}\mathrm{C}_{5}’ \mathrm{s}$ from $G$ . The idea behind the re-
moval of an $\mathrm{M}\mathrm{C}_{5}C$ from $G$ is to try to find and
remove a correct center $P$ of $C$ . By Fact 5, we
make $\mathrm{P}^{\mathrm{r}\mathrm{o}}\mathrm{g}\mathrm{T}e\mathrm{S}\mathrm{s}$ after removing $P$ . After the removal
of $P$, the resulting $G$ may be not 4-connected and
may have a separating 4-cycle, edge, triple, quadru-
ple, or triangle. To maintain the assumption that
$G$ does not have a separating edge, quadruple, or
triangle, we just apply the reductions in the last
section to the resulting $G$ . Also, not unexpectedly,
our search of a correct center of $C$ may fail. In this
case, we will be able to decompose $G$ into smaller
graphs to make progress.

Fact 8 Let $W$ be a subset of an $\mathrm{M}\mathrm{C}_{5}C’$ of $G$ with
$|W|\geq 3$ . If all the edges in $E(G[W])$ are colored in
$G$ or $G-C’$ has a vertex $x$ with $W=C’\cap N_{G}(x)$ ,
then no nation in $C’-W$ is a correct crust of $C’$ .

Vertices $f$ and $g$ are not adjacent in $G$ ; other-
wise, only Figure 2.2(4) or (5) can display $\mathcal{M}|c$ ,
but after drawing nations $f$ and $g$ in the two fig-
ures, we see that the 4-connectedness of $G$ would
force $V$ to equal $U$ , a contradiction against the as-
sumption that $|V|\geq 9$ . So, only Figure 4. I $\backslash ^{1)}$

’ or
Figure $4. \int(2)$ can display $\mathcal{M}|_{U}$ . By the figures, a
correct center of $C$ can be found ffom a correct
crust immediately. So, it suffices to find out which
one of $a,$ $c$ , and $e$ is a correct crust of $C$ . This is
done by a case-analysis.
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5 Removing cliques of size 4
Throughout this section, we assume that $G$ does
not have an $\mathrm{M}\mathrm{C}_{5}$ , a separating edge, quadruple, or
triangle. We further assume that $G$ has an $\mathrm{M}\mathrm{C}_{4;}$

our goal of this section is to show how to remove
$\mathrm{M}\mathrm{C}_{4}’ \mathrm{s}$ from $G$ . The idea behind the removal of an
$\mathrm{M}\mathrm{C}_{4}C\mathrm{h}\mathrm{o}\mathrm{m}c$ is to try to find and remove a cor-
rect 4-pizza via constructing an extensible layout
of $C$ . After the removal of a correct 4-pizza, the
resulting $G$ may be not 4-connected and may have
a separating 4-cycle, edge, triple, quadruple, or tri-
angle. To maintain the assumption that $G$ does not
have a separating edge, quadruple or triangle, we
just apply the reductions in the last section $\mathrm{t}.0$ the
resulting $G$.

Since $|V|>8$ and $G$ does not have a separating
triangle, for every $\mathrm{M}\mathrm{C}_{4}C=\{a,b,c,d\}$ of $G$ , only
Figure 5.1(1), (2) or (3) can possibly display $\mathcal{M}_{C}$ ,
according to Fact 7.

5.1 Finding out rice-balls
Let $C=\{a,b, c, d\}$ be an $\mathrm{M}\mathrm{C}_{4}$ of $G$ . For a subset
$W$ of $C$, let $\mathcal{E}[W]$ be the set of uncolored edges
$\{u,v\}\in E$ such that $u\not\in W,$ $v\not\in W$ , and some

$\mathrm{M}\mathrm{C}_{4}$ of $G$ consists of $u,$ $v$ , and two vertices in $W$.
Let $G’=G-C-\mathcal{E}[C]$ . A 3-subset of $C$ is a subset
$S$ of $C$ with $|S|=3$ . For each 3-subset $S$ of $C$ , let
$V_{S}= \bigcup_{K}V(K)$ , where $K$ ranges over all connected
components $K$ of $G’$ with $C\cap N_{G}(V(K))=S$ .

Lemma 5. 1 Figure 5.1(3) displays $\mathcal{M}|c$ iff the
following statements $\mathrm{h}o1\mathrm{d}$ :

1. $V_{\{a,b,C\}},$ $V_{\{a,b,d}$}, $V_{\{a,c,d\}}$ , and $V_{\{b,c,d\}}$ each are
nonempty and they together form a partition
of $V-C$.

2. For every pair of two distinct 3-subsets $S$ and
$T$ of $C,$ $|V_{S}\cap N_{G}(V\tau)\mathrm{I}=1,$ $|V_{\tau}\cap N_{G}(V_{s})|=1$ ,
and $(S\cap T)\cup(V_{S}\cap N_{G}(V_{\tau}))\cup(V_{T}\mathrm{n}N_{G}(VS))$

is an $\mathrm{M}\mathrm{C}_{4}$ of $G$ .

Since it is $e$asy to check whether Statements 1
and 2 hold, we can $e$asily decide whether $C$ has an
extensible “

$\mathrm{r}\mathrm{i}\mathrm{c}$ -ball” layout. Once we know that
$C$ has an extensible “

$\mathrm{r}\mathrm{i}\mathrm{c}e$-ball” layout, then by Fig-
ure 5.1(3) and Statement 2, we can easily find and
then remove six correct 4-pizzas ffom $G$ .

5.2 Distinguishing the remaining
two

By the discussion in \S 5.1, we may assume that no
$\mathrm{M}\mathrm{C}_{4}C=\{a, b, c, d\}$ of $G$ satisfies Statements 1
and 2 in Lemma 5. 1. Then, we have:

Corollary 5. 2 For every $\mathrm{M}\mathrm{C}_{4}C$ of $G$ , the na-
tions of $C$ are related in map $\mathcal{M}$ in the same way
as either Figure 5.1(1) or (2) shows.

Let $C=\{a, b,c, d\}$ be an $\mathrm{M}\mathrm{C}_{4}$ of $G$ . Our goal is
to find out which of Figure 5.1(1) and (2) displays
$\mathcal{M}|c$ . This is achieved by a case-analysis.

5.3 Removing pizzas
By the discussions in the last two subsections, we
may assume that for every $\mathrm{M}\mathrm{C}_{4}C=\{a, b, c, d\}$ of
$G$ , only Figure 5.1(1) displays $\mathcal{M}|c$ . That is, the
four nations of every $\mathrm{M}\mathrm{C}_{4}$ of $G$ meet at a point in
$\mathcal{M}$ .

Fix an $\mathrm{M}\mathrm{C}_{4}C=\{a, b, c, d\}$ of G. $C$ is 3-sharing
with no $\mathrm{M}\mathrm{C}_{4}C’$ of $G$ because otherwise, $C’$ would
have a nonpizza layout. By Figure 5.1(1), there
are distinct nations $e,$ $f,$ $g$ and $h$ in $V-C$ such
that $C\cap N_{G}(e)=\{a^{1}, b^{1}\},$ $C\cap N_{G}(f)=\{b^{1}, c^{1}\}$ ,
$C\cap N_{G}(g)=\{c^{1}, d^{1}\}$ and $C\cap N_{G}(h)=\{d^{1}, a^{1}\}$ ,
because $\mathcal{M}$ has no lake. On the other hand, the ex-
istence of the nations $e,$ $f,$ $g$ and $h$ ensures that the
nations of $C$ have to meet at a point in $\mathcal{M}$ cycli-
cally in the order $a^{1},$ $b^{1},$ $c^{1},$ $d^{1}$ . Thus, by finding
out nations $e,$ $f,$ $g$ and $h$ , we can find and remove
a correct 4-pizza from $G$ .

6 The case with $\mathrm{n}\mathrm{o}\not\subset \mathrm{c}\mathrm{l}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}$

By the discussions in the previous sections, we may
assume that $G$ has a well-fomed map but has no
4-cliques. Then, $G$ is a 3-connected planar graph
and hence has a unique plane embedding. The dual
of the unique embedding is a well-formed map of
$G$ .

7 Time analysis
Let $n$ be the number of vertices in the input graph
$G$ . We first claim that testing the existence of
a separating triangle takes $O(n^{2})$ time. We then
claim that testing the existence of a separating
quadruple takes $O(n^{3})$ time.

Finally, we claim that the running time of the
algorithm is $O(n^{4})$ . The proof is by induction. The
claim is clearly true when $n\leq 8$ . Suppose $n>8$ .
If some reduction in \S 2 or \S 3 applies, then we can
perform such a reduction in $O(n^{3})$ time as claimed
above, and so the runming time on $G$ is $O(n^{4})$ by
the inductive hypothesis. If no reduction in \S 2 or
\S 3 applies, we can either (i) find a correct 4-pizza
in $O(n)$ time and remove it from $G$ , or (ii) reduce
the problem for $G$ to that for a smaller graph in
$O(1)$ time; so, the running time on $G$ is $O(n^{4})$ by
the inductive hypothesis.
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