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POINCARE SERIES CONSTRUCTED FROM A WHITTAKER
FUNCTION ON Sp(2R)

HIRONORI SAKUNO

1. WHITTAKER FUNCTION

1.1. Structure of Lie group and Lie algebra. Let G be the symplectic group
Sp(2;R) realized as : '

6= (ge L) 'ig=Jh wins=( ' ) emm),

where *g denotes the transpose of a matrix g and 1, denotes a unit matrix of size 2.

Let O(4) be the orthogonal group of degree 2. Take a maximal compact subgroup
K = GNO(4). We denote by g, t the Lie algebra of G, K, respectively. Let
6(X) = —*X be a Cartan involution and g = t+ p is the Cartan decomposition of g.

We set a = RH; -+ RH, with H; = diag(1,0,-1,0), Hy = diag(0,1,0,—1). Then
a is a maximally Cartan subalgebra of g and the restricted root system A = A(g; a)
is expressed as A = A(g;a) = {£A; & Ay, £2);,+2X,}, where A; is the dual of H;.
We choose a positive root system AT as At = {d; £ Ay, 2A, 2)5}.

We also denote the corresponding nilpotent subalgebra by n = 3-5- 1+ gp. Here gg
is the root subspace of g corresponding to S € A*. Then one obtains an Iwasawa
decomposition of gand G ; g=n+a+t, G = NAK with A =expa, N =expn.

1.2. Representation of the maximal compact subgroup. Firstly, we review
the parametrization of the finite-dimensional irreducible representations of SLy(C).
Let {f1, fo} be the standard basis of the vector space V =V; = C®C. Then GLy(C)
acts on V by matrix multiplication. We denote the symmetric tensor space of 2
dimension by V; = S4(V). Here V; = C. We consider V; as a SLy(C)-module by

sym* () (11 @ V2 ® -+ ®vg) = gu1 ® gu2 @ -+ + ® gvg.

It is well known that all the finite-dimensional irreducible (polynomial) representa-
tions of SLy(C) can be obtained in this way. By Weyl’s unitary trick, all irreducible
unitary representations of SU(2) are obtained by restriction of sym? (d > 0).

The maximal compact subgroup K is isomorphic to the unitary group U(2) of
degree 2 by



A B A B
(4 B aevmm o (4 2)ex

For d,m € Z,d > 0, we define a holomorphic representation (oggm, Va) of GLy(C)
by 0am(g9) = sym?(g) ®det(g)™. Then we know U2) = {oamlu@ | d,m € Z,d > 0}.
We set A = (A, A2) = (m +d,m) and 7\ = 0gm|y(z)- By the isomorphism between
K and U(2), we obtain

K= {(m,Va) | A= (M1, A2) € Z, A > Mg} We choose the basis of V), as

n! . n—k) :
V) = {vk = ’ ®k ® F2k) (symmetric tensor) | 0 < k < n} :

kY(n — k)! c

1.3. Characters of the unipotent radical. The commutator subgroup [N, N] of
N is given by

ny,ne € R

Hence a unitary character n of N is written for some constant 7,73 € R as

1 no 1 0 ny "Ng |
1 1 — nf %3 - exp{V—1(nono + mans)} € C*.
-ng 1 0 1

A unitary character n of N is said to be non-degenerate if nons # 0.

1.4. Parametrization of the discrete series. Let us now parametrize the discrete
series of Sp(2;R). Take a compact Cartan subalgebra §) defined by h = Rhy & Rhy
with hy = X13 — X31, he = Xos — X42, where the Xj;s are elementary matrices given
by Xij = (0ip0q)1<p.q<s, With Kronecker’s delta 8; p, and let hc be its complexification.
Then the absolute root system is expressed as

A = A(g;h) = {£(2,0),£(0,2), £(1,1), (1, -1},
where by 8 = (r, s), we mean 7 = B(—+/~1hy),s = f(—v/—1hg). Let

‘A-’- = {(21 0)5 (0> 2)’ (1> 1)(1a _.1)}'

We write the set of compact positive roots by A¥ = {(1,-1)}. Then there are 4 sets
of positive roots A (J = I,1,II,IV) of (g,h) containing AF(g; b) as follows:

A? = {(2’ 0)) (1’ 1)> (01 Q)a (1’ _1)}: A+ = (11 1)’ (2i0)a (17 _1)> (0’ —'2)}5

_ A_I% = {(27 O)a (1a _1)) (07 "2)7 ("11 —1)}) A+ = {(1’ '_1): (O’ _'2): (—'1, ’"1)) ("'27 0)}



We put §g s = 27° ZﬁeAjrﬁ (resp. 0 = 271 Y peit B), the half sum of positive
roots (resp. the half sum of compact positive roots). By definition, the space of
Harish-Chandra parameters =, is given by

=, ={A € bt | A+ g is analytically integral and
A is regular and A*-dominant}.

For each J=1,11,1I,1V, we set = =y = {A €E. | (Aa) >0 (a € AF)}. Then E, is
written as a disjoint union =, = [[¥. Je1 2.

It is well-known that there exists a bijection from =, to the set of equivalence classes
of discrete series representations of G. Let 74 be the discrete series representation
associated to A in Z; , then 7 (A = A+ gy — 20k ) is the unique minimal K-type
of ms. We note that for each A in Z;, A = A + dg, s — 20k is called the Blattner
parameter. An easy computation implies

Ee={(A1,A) EZDZ| Ay #0,A2#0,A0 < Ay, Ay + Ag # 0}

We note that Z; (resp.Ey/) corresponds to the holomorphic (resp. anti-holomorphic)
discrete series, and Zp and Zp coresponds to the large discrete series in the sence of
Vogan,[V].

1.5. Characterization of the minimal K-type of a discrete series represen-
tation. Let 1 be a unitary character of N. Then we set

CR(N\G) ={¢:G = C, C-class | ¢(ng) =n(n)$(9), (n,g) € N x G}.

By the right regular action of G, C;°(N \ G) has a structure of smooth G-module.
For any finite dimensional K-module (7,V), we set

Con(N\G/K) =
{F:G =V, C®class | F(ngk™ 1) =n(n)T(k)F(g), (n,9,k) € N x G x K}.

Let (my, H) be the discrete series representation of G with Harish-Chandra param-
eter A in B, (J = I,II, I, 1V), and denote its associated (gc, K)- module by the
same symbol. For W in Homge,x)(mh, Co°(N \ G)), we define Fyy in C25. (N \ G/K)
by

W () (g) = (v", Fw(g)), (" €Vy,9€0).

Here (T,\,V,\) denotes the minimal K-type of my and (%, ) denotes the canonical
pairing on Vi x V.

Now let us recall the definition of the Schmid-operater. Let g=t® p be a Cartan
decomposition of g and Ad = Ady,, be the adjomt representation of K on pc. Then
we can define a differential operator V5 from C5, (N\G/K) to C55, ga4(N \ G/ K)



as V2 F = ¥ Rx, F(-) ® X;. Here the set {X;}; is any fixed orthonormal basis of
p with respect to the Klilling form on g and RxF denotes the right differential of
the function F' by X in g ie. RxF(g) = LF(g-exp tX)!t_O. This operator V,, , is
called the Schmid operator. B

Let (75, V) ) be the sum of irreducible K-submodules of V) ® pc with heighest
weight of the form A — 3 (8 € [&Jn, J =1,I,0I,IV). Let P\ be the projection
from V) ® pc to V) . We define a differential operator from C7% (N \ G/K) to
oo - (N\ G/K) by Dy, F(g9) = P\(VyaF(g)) for F € C2 (N\G/K) g € G.

7,7
Yamashxta obtain the following result.

Proposition 1.1 ( [Y1] H.Yamashita, Proposition(2.1)). Let wa be a represen-
tation of discrete series with Harish-Chandra parameter A € Z; of Sp(2;R). Set
A=A+ g — 206k.Then the linear map

W € Homge x(, Cr° (N \ G)) — Fw € Ker(Dy»)
is injective, and if A is far from the walls of the Wyel chambers, it is bijective.

1.6. A basis on the Whittaker space on Sp(2; R). By the result of Kostant [Ko],
and Vogan [V], if 7 is non-degenerate, we obtain the expression

4, ifAe=gpUzy,

dimcHomge, k) (74, Cy (N\G)) {0 fAeZUEy

Oda obtain the following result.

Theorem 1.1 ([O] Oda).

Let us assume that n is non-degenerate and A € Ey. We choose the basis V\ =
{vp | 0 < k < d}¢ defined in §4.2. Here d = A\; — A2. Then
(1) F € KerDy if and only if F satisfies the conditions

(81 - k)h/d_.]g + ”lnﬂhd—k—l = O, fOT‘ 0 < k < d— 1,
{8132 + (al/aQ)Qng}hd =0,

(1.2) ,
{(a1 +8)% + 200 — 1) (81 + 82) — 2Xg + 1 + dn3a3da }hy = 0.
Here 0; = =, i =1, 2 and {hx | 0 < k < d} is determined by
Z c; (a Vk,
k=0

k
(o) = e (2) explmad)in(a), fora€ A 0<k<d
2



(2) If n3 < 0, ./CerD,,,A contains the function F such that he(a) has the integral
representatio for a = diag(ay, as, a7t,a') € A

. o) t2 2 2 dt
hd(a) = ‘/0 t_)‘2+%W0’_)\2 (t) exp ( 8770773@1)

321302 2 )t

By Theorem 1.1, Oda showed that if A € 2y U=y and 7 is non-degenerate,

C, N3 < O,

Hom(ge,x)(m3, Ayg(N\G)) = {0 > 0

Here we put

A (N\G) = {F € C;°(N\G) | K -finite and for any X € U(gc) there exists a
constant Cx > 0 such that |F'(g)| < Cxtr(tgg), g€ G }

and U(gc) denotes the universal enveloping algebra of gc.
We set for t € C, |argt| < m,

_ (I,,(\/E/z), ifi=1,2,

ki,u(t) = K,,(\/E/Q); if 1 = 3,4.

and for F' € C2°(N\G/K), set hy, ¢, € C®(A) (0 < k < d) as in Theorem 1.1. Then
we obtain the following results. .

Theorem 1.2. Let us assume that n is non-degenerate and A € =j.
(1) Ker D, » has the basis {F;|1 < i < 4} such that h;4(a) (1 < ¢ < 4) have the
integral representations for a = diag(a;,as,a7t;0;') € A

11— t 87’}27730,2 dt
hi =/ $30-2)g, (3 07801 ) 4

Here we set the contours C; (1 <1 < 4)

/ dt_ fC’dta Zer—-‘ 1137 .
& | fRdt,  ifi=2,4,

where [, dt is the contour integral on C given in Theorem 2.1-(2) and [ dt is the
usual integral on Ryq.
(2) We set

i’—;],j=1,2,oszk+de}




For nz € R and for any r, €1, €2 > 0, there exist constants b2’3’°) >0(1<i<4, (kj)€
X) such that
@

* &5k
|ei.a— ety (@)] < bz3)a%+’\1 é e (a—2>
: a
x exp { (1)l + )22 + (2] +0 + e2)a3
2
forr>a; >0, ap >0,
where we set for 1 <i <4 and (k,j) € X ‘

(2) _{1*(2k+j), if1=2,4andl <2k+j <d,

o, =
P .
I 0, otherwise.

(3) If ;3 < 0, then for any r, €1, €2 > 0, there exist constants b(”’ such that

. ap \ " k(el)
epactoee (o)] < Ut af o (27
2

, a
X exp {((“1)z+1‘770i + Ez)a—; - lmsaé} :
| forr>a; >0, ax >0,
where we set for each 1 <1< 4 and 0 < k < d and any fized € > 0

1—(2k+j) — e, ifi=2,4and 1 <2k+j<d,
B(e) =41 -2~ (2k+j)—e, fi=1,3and —2) <2k+1,
0, otherwise.

Remark 1. Firstly F; is defined as a linear combination of the series solutoin.
Then from Theorem1.2 we obtain the folloing result.

Corollary 1.1. Ifi = 1,3, for any r,€1,€3 > 0, there erist constants b; such that

lcik(a)] < b a; ey eXP{(Iﬂol + 61) o + (2|n3} + s +52)a2}
forr > a; > 0,a0 > 0.



2. POINCARE SERIES

We assume 73 < 0.
2.1. The Convergence of the Poincaré series. We denote by a1, ap the functions
a;(g) = a;, (1=1,2),
for g = n - diag(a,as,a7%,05") -k, n € N,k € K,a1,a5 > 0

and denote by I' the group Sp(2; Z).
Then we know the following result.

Lemma 2.1 ( [?] B.Diehl). If R(s3) > 2 and R(s1) > R(s2) + 2, then the sum.

> aa(vg) " an(vg)™
NOP\T

is absolutely convergent.

We set 7} = —2717’; ¢ = 0,3. Then we define the following functions.

Definition 2.1. For s;, s, € C, we define the function f;"** (1 <i<4) by
81,82 a .
;7 (g) = exp {— (ﬁl%];ﬁ + 32[7731&%)}&(9), forg € G

For 1y, 74 € Z, we define the Poincar’e series P, 4,(g) by
P81,S2(g) = Z ff]’s'z(’)'g)

PO\
Then we obtain the following result from Lemma2.1.

Theorem 2.1. For Ay < =1,A1 + A > 1 and R(s;) > 1 (i = 1,2), the Poincar’e
series Ps, s,(g) is absolutely convergent.

2.2. The Fourier coefficients. We investigate the Fourier coefficients of P;, 4,(g)
with respect to N. Here we consider only in the case of unitary character of N.
Let W be the Wyel group of G,

W ={w; |0<i<T7},

where we put

Wy = W1W3, Ws = Wal3, We = W1 WaW3, W7 = W1 Wa.



We set M = Zg(a), I'(w) =T N MNAwN for w € W. Let for £y,13 € R,
Niots : 1 E N — exp{2mv/—1(tgno + t3ng)} € C*

be a unitary character of N. For (¢g,7) € G x " and Iy, l5 € Z, we set

®(g: 1o, 1 =/ » (n!
(g 0 3) Nr‘xP“Ir‘\T‘\NFl’ 2(7”9)77&),&(” )d?’l,
(9500, 1l3) = >, ®7(g; o, 1),
(PAPV\[ () /(NOT)

blo,la (g) = /NnF\N"Pslyb‘? (ng)nlo,la (nﬁl)dn'

where we put P =y~ ' Pr.
Then we obtain the result.

Theorem 2.2. We assume that n3 <0 and 0, = -;—7—;; €Z (i=0,3). Then we obtain

the following results.
(1) For lo,l3 € Z, we have

blo,la(g) = Z (I)wi(QQIO:lS,)-

0<i<7
(2) Ifi=2,3,4,5, we have
(I)wi(g;l07l3) =0 fOTgEG,lo,lg € Z.

If 1 =0, we have

0, @f (107l3) 7& (776’7);’,))

@,wO ,l ,l = 51,8 ]
(9 0 3) {fll, 2(9); ’Lf (lo,l?,) = ("76»773)

Ifi =1, there ezist constants C1(ly, a(7y)) such that

( 0, if m3B% — I3 € Z\{0},
C1(lo, a()) exp(nhno + mhna + nsB%us + louo) £ (g5 o, 38(7)?)
@wl(g;lﬂ7l3) = 9 {1, ané/@Z - l3 = 01 |
X eXp(n:I%ﬁQ —l3)—1 e 1 a2
) 3 — I3 € Q\Z.
\ TG — s f 308 3 € Q\




If i = 6, there exist constants Cy(ls, a(7y)) such that

0, if m’)% — Iy € Z\{0},
& 51,5
02(137 0(7)) exp (776”0 + Ug’fl?, + ?7(’)'—3-?1,0 + l311,3) f3t*? (g ??Oﬁ )
(
Do (95 Lo, 1) = S 1, zfnoﬁ “h=0
(6
o (5 ) -
e , zfngﬁ lh € Q\Z.
{ 7)03 — 1o

If i =17, there exist constants Cs(lo, l3, a(7y)) such that
D, (g3 10, 13) = Cs(lo, I3, a(y)) exp(migno + nins + loue + lsus) £ (g5 Lo, la)-

Where we know v € T’ has a unique decomposition v = mnau (m € M,a € A,n,u €
N) and put

1w 1 0w wu
' o 1 0 1jus u
a(7) = o = diag(e, B0, 57), u = 1 I 0|
I—’L&o 1 ’O 1
1 o 1 0|ny no
_ 1 0 1iny ng
n = 1 1 0
—Nyo 1 0 1

We denote by f;***(:;t0,13) the function fi“**(:) for the unitary character n, s,
(to,t3 € Q) of N.

REFERENCES

[D] B.Diehl, Die analytische Fortsetzung der Eisensteinreihe zur Siegelschen Modulgruppe, J.Reine
Angew. Math. 317, (1980), pp. 40-73

[G-R] LS. Gradshteyn and I.M.Ryzhik, Tables of Integrals, Series, and Products, Academic Press
, (1965)

[H-O] T. Hayata and T. Oda, An ezplicit integral representation of whittaker functions for the
representations of the discrete series - the case of SU(2,2) -, J. Math. Kyoto Univ. 37-3 (1997),

pp. 519-530.

[Kn] A. W. Knapp, Representation Thgory of Semisimple Groups - An overview Based on Example,
Princeton Math. Series, 836 (1986), Princeton Univ. Press

[Ko] B. Kostant, On Whittaker Vectors and Representation Theory, Invent. Math. 48 (1978), pp.
101-184.

[M-O] T. Miyazaki and T. Oda, Principal series Whittaker functions on Sp(2,R), I, RIMS preprints
992 (1994).



10

[O] T. Oda, An explicit integral representation of Whittoker functions on Sp(2;R) for the large
discrete series representations, Tohoku Math. J. 46 (1994), pp. 261-279.

[S] W. Schmid, On the realization of the discrete series of a semisimple Lie groups, Rice Univ.
Stud. 56 (1970), No.1, pp. 99-108.

[V] D. A. Vogan Jr., Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48
(1978), pp. 75—98

[Y1] H. Yamashita, Embeddings of discrete series into induced representations of semzszmple Lie
goups I,—general theory and the case of SU(2,2) -, Japan. J. Math. (N. S.) 1 6 (1990), No.1,
pp. 31-95.

[Y2] , Embeddings of discrete series into induced representations of semisimple Lie goups 1,

—Genemlzzed Whittaker models for SU(2,2) -, J. Math. Ktoto Univ. 31-2 (1991), pp. 543-571.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOY-
oNAKA, OSAKA 560-0043, JAPAN
E-mail address: sakuno@diana.math.wani.osaka-u.ac.jp



