POINCARÉ SERIES CONSTRUCTED FROM A WHITTAKER FUNCTION ON $Sp(2; \mathbb{R})$

HIRONORI SAKUNO

1. WHITTAKER FUNCTION

1.1. Structure of Lie group and Lie algebra. Let G be the symplectic group $Sp(2; \mathbb{R})$ realized as

$$G = \{g \in SL_4(\mathbb{R}) \mid {}^tgJg = J\}, \quad \text{with } J = \left(egin{array}{cc} 0 & 1_2 \ -1_2 & 0 \end{array}
ight) \in M_4(\mathbb{R}),$$

where tg denotes the transpose of a matrix g and 1_2 denotes a unit matrix of size 2. Let O(4) be the orthogonal group of degree 2. Take a maximal compact subgroup $K=G\cap O(4)$. We denote by \mathfrak{g} , \mathfrak{t} the Lie algebra of G, K, respectively. Let $\theta(X)=-{}^tX$ be a Cartan involution and $\mathfrak{g}=\mathfrak{t}+\mathfrak{p}$ is the Cartan decomposition of \mathfrak{g} . We set $\mathfrak{a}=\mathbb{R}H_1+\mathbb{R}H_2$ with $H_1=diag(1,0,-1,0), H_2=diag(0,1,0,-1)$. Then \mathfrak{a} is a maximally Cartan subalgebra of \mathfrak{g} and the restricted root system $\Delta=\Delta(\mathfrak{g};\mathfrak{a})$ is expressed as $\Delta=\Delta(\mathfrak{g};\mathfrak{a})=\{\pm\lambda_1\pm\lambda_2,\pm2\lambda_1,\pm2\lambda_2\}$, where λ_j is the dual of H_j . We choose a positive root system Δ^+ as $\Delta^+=\{\lambda_1\pm\lambda_2,2\lambda_1,2\lambda_2\}$.

We also denote the corresponding nilpotent subalgebra by $\mathfrak{n} = \sum_{\beta \in \Delta^+} \mathfrak{g}_{\beta}$. Here \mathfrak{g}_{β} is the root subspace of \mathfrak{g} corresponding to $\beta \in \Delta^+$. Then one obtains an Iwasawa decomposition of \mathfrak{g} and G; $\mathfrak{g} = \mathfrak{n} + \mathfrak{a} + \mathfrak{t}$, G = NAK with $A = \exp \mathfrak{a}$, $N = \exp \mathfrak{n}$.

1.2. Representation of the maximal compact subgroup. Firstly, we review the parametrization of the finite-dimensional irreducible representations of $SL_2(\mathbb{C})$. Let $\{f_1, f_2\}$ be the standard basis of the vector space $V = V_1 = \mathbb{C} \oplus \mathbb{C}$. Then $GL_2(\mathbb{C})$ acts on V by matrix multiplication. We denote the symmetric tensor space of 2 dimension by $V_d = S^d(V)$. Here $V_0 = \mathbb{C}$. We consider V_d as a $SL_2(\mathbb{C})$ -module by

$$sym^d(g)(v_1 \otimes v_2 \otimes \cdots \otimes v_d) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_d.$$

It is well known that all the finite-dimensional irreducible (polynomial) representations of $SL_2(\mathbb{C})$ can be obtained in this way. By Weyl's unitary trick, all irreducible unitary representations of SU(2) are obtained by restriction of sym^d $(d \ge 0)$.

The maximal compact subgroup K is isomorphic to the unitary group U(2) of degree 2 by

$$\begin{pmatrix} A & B \\ -B & A \end{pmatrix} \to A + \sqrt{-1}B, \text{ for } \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \in K.$$

For $d, m \in \mathbb{Z}$, $d \geq 0$, we define a holomorphic representation $(\sigma_{d,m}, V_d)$ of $GL_2(\mathbb{C})$ by $\sigma_{d,m}(g) = sym^d(g) \otimes \det(g)^m$. Then we know $U(2) = \{\sigma_{d,m}|_{U(2)} \mid d, m \in \mathbb{Z}, d \geq 0\}$. We set $\lambda = (\lambda_1, \lambda_2) = (m + d, m)$ and $\tau_{\lambda} = \sigma_{d,m}|_{U(2)}$. By the isomorphism between K and U(2), we obtain

 $\hat{K} = \{(\tau_{\lambda}, V_{\lambda}) \mid \lambda = (\lambda_1, \lambda_2) \in \mathbb{Z}, \lambda_1 \geq \lambda_2\}.$ We choose the basis of V_{λ} as

$$V_{\lambda} = \left\{ v_k = \frac{n!}{k!(n-k)!} f_1^{\otimes k} \otimes f_2^{\otimes (n-k)} \text{ (symmetric tensor) } \mid 0 \le k \le n \right\}_{\mathbb{C}}.$$

1.3. Characters of the unipotent radical. The commutator subgroup [N, N] of N is given by

$$[N,N] = \left\{ \begin{array}{c|ccc} \begin{pmatrix} 1 & 0 & n_1 & n_2 \\ 0 & 1 & n_2 & 0 \\ \hline & & 1 & 0 \\ & & 0 & 1 \end{array} \right) & n_1, n_2 \in \mathbb{R} \end{array} \right\}.$$

Hence a unitary character η of N is written for some constant $\eta_0, \eta_3 \in \mathbb{R}$ as

$$\begin{pmatrix} 1 & n_0 & & & \\ & 1 & & & \\ & & & 1 & \\ & & & -n_0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & n_1 & n_2 \\ 0 & 1 & n_2 & n_3 \\ & & 1 & 0 \\ & & 0 & 1 \end{pmatrix} \mapsto \exp\{\sqrt{-1}(\eta_0 n_0 + \eta_3 n_3)\} \in \mathbb{C}^{\times}.$$

A unitary character η of N is said to be non-degenerate if $\eta_0\eta_3 \neq 0$.

1.4. Parametrization of the discrete series. Let us now parametrize the discrete series of $Sp(2;\mathbb{R})$. Take a compact Cartan subalgebra \mathfrak{h} defined by $\mathfrak{h} = \mathbb{R}h_1 \oplus \mathbb{R}h_2$ with $h_1 = X_{13} - X_{31}$, $h_2 = X_{24} - X_{42}$, where the $X'_{ij}s$ are elementary matrices given by $X_{ij} = (\delta_{ip}\delta_{jq})_{1\leq p,q\leq 4}$, with Kronecker's delta $\delta_{i,p}$, and let $\mathfrak{h}_{\mathbb{C}}$ be its complexification. Then the absolute root system is expressed as

$$\tilde{\Delta} = \Delta(\mathfrak{g}; \mathfrak{h}) = \{ \pm (2, 0), \pm (0, 2), \pm (1, 1), \pm (1, -1) \},\$$

where by $\beta = (r, s)$, we mean $r = \beta(-\sqrt{-1}h_1), s = \beta(-\sqrt{-1}h_2)$. Let

$$\tilde{\Delta}^+ = \{(2,0), (0,2), (1,1)(1,-1)\}.$$

We write the set of compact positive roots by $\tilde{\Delta}_c^+ = \{(1,-1)\}$. Then there are 4 sets of positive roots $\tilde{\Delta}_J^+$ $(J=I,I\!I,I\!I\!I,I\!V)$ of $(\mathfrak{g},\mathfrak{h})$ containing $\Delta_c^+(\mathfrak{g};\mathfrak{h})$ as follows:

$$\tilde{\Delta}_{I}^{+} = \{(2,0), (1,1), (0,2), (1,-1)\}, \ \tilde{\Delta}_{I}^{+} = \{(1,1), (2,0), (1,-1), (0,-2)\},\$$

$$\tilde{\Delta}_{M}^{+} = \{(2,0), (1,-1), (0,-2), (-1,-1)\}, \ \tilde{\Delta}_{N}^{+} = \{(1,-1), (0,-2), (-1,-1), (-2,0)\}.$$

We put $\delta_{G,J} = 2^{-1} \sum_{\beta \in \tilde{\Delta}_J^+} \beta$ (resp. $\delta_K = 2^{-1} \sum_{\beta \in \tilde{\Delta}_c^+} \beta$), the half sum of positive roots (resp. the half sum of compact positive roots). By definition, the space of Harish-Chandra parameters Ξ_c is given by

$$\Xi_c = \{ \Lambda \in \mathfrak{h}_{\mathbb{C}}^* \mid \Lambda + \delta_{G,I} \text{ is analytically integral and } \Lambda \text{ is regular and } \tilde{\Delta}^+\text{-dominant} \}.$$

For each J = I, II, III, IV, we set $\Xi_J = \{\Lambda \in \Xi_c \mid \langle \Lambda, \alpha \rangle > 0 \ (\alpha \in \tilde{\Delta}_J^+) \}$. Then Ξ_c is written as a disjoint union $\Xi_c = \coprod_{J=I}^{N} \Xi_J$.

It is well-known that there exists a bijection from Ξ_c to the set of equivalence classes of discrete series representations of G. Let π_{Λ} be the discrete series representation associated to Λ in Ξ_J , then τ_{λ} ($\lambda = \Lambda + \delta_{G,J} - 2\delta_K$) is the unique minimal K-type of π_{Λ} . We note that for each Λ in Ξ_c , $\lambda = \Lambda + \delta_{G,J} - 2\delta_K$ is called the Blattner parameter. An easy computation implies

$$\Xi_c = \{ (\Lambda_1, \Lambda_2) \in \mathbb{Z} \oplus \mathbb{Z} \mid \Lambda_1 \neq 0, \Lambda_2 \neq 0, \Lambda_2 < \Lambda_1, \Lambda_1 + \Lambda_2 \neq 0 \}.$$

We note that Ξ_I ($resp.\Xi_N$) corresponds to the holomorphic (resp. anti-holomorphic) discrete series, and $\Xi_{I\!I}$ and $\Xi_{I\!I}$ coresponds to the large discrete series in the sence of Vogan,[V].

1.5. Characterization of the minimal K-type of a discrete series representation. Let η be a unitary character of N. Then we set

$$C_n^{\infty}(N \setminus G) = \{ \phi : G \to \mathbb{C}, \ C^{\infty}\text{-}class \mid \phi(ng) = \eta(n)\phi(g), \ (n,g) \in N \times G \}.$$

By the right regular action of G, $C^{\infty}_{\eta}(N \setminus G)$ has a structure of smooth G-module. For any finite dimensional K-module (τ, V) , we set

$$C_{\eta,\tau}^{\infty}(N \setminus G/K) = \{F: G \to V, C^{\infty}\text{-}class \mid F(ngk^{-1}) = \eta(n)\tau(k)F(g), (n,g,k) \in N \times G \times K\}.$$

Let (π_{Λ}, H) be the discrete series representation of G with Harish-Chandra parameter Λ in Ξ_J , (J = I, II, III, IV), and denote its associated $(\mathfrak{g}_{\mathbb{C}}, K)$ -module by the same symbol. For W in $Hom_{(\mathfrak{g}_{\mathbb{C}},K)}(\pi_{\Lambda}^*, C_{\eta}^{\infty}(N \setminus G))$, we define F_W in $C_{\eta,\tau_{\lambda}}^{\infty}(N \setminus G/K)$ by

$$W(v^*)(g) = \langle v^*, F_W(g) \rangle, \quad (v^* \in V_\lambda^*, g \in G).$$

Here $(\tau_{\lambda}, V_{\lambda})$ denotes the minimal K-type of π_{Λ} and $\langle *, * \rangle$ denotes the canonical pairing on $V_{\lambda}^* \times V_{\lambda}$.

Now let us recall the definition of the Schmid-operater. Let $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} and $Ad = Ad_{\mathfrak{p}_{\mathbb{C}}}$ be the adjoint representation of K on $\mathfrak{p}_{\mathbb{C}}$. Then we can define a differential operator $\nabla_{\eta,\lambda}$ from $C^{\infty}_{\eta,\tau_{\lambda}}(N \setminus G/K)$ to $C^{\infty}_{\eta,\tau_{\lambda} \otimes Ad}(N \setminus G/K)$

as $\nabla_{\eta,\lambda}F = \sum_i R_{X_i}F(\cdot) \otimes X_i$. Here the set $\{X_i\}_i$ is any fixed orthonormal basis of p with respect to the Klilling form on $\mathfrak g$ and R_XF denotes the right differential of the function F by X in $\mathfrak g$ i.e. $R_XF(g) = \frac{d}{dt}F(g \cdot \exp tX)\Big|_{t=0}$. This operator $\nabla_{\eta,\lambda}$ is called the Schmid operator.

Let $(\tau_{\lambda}^{-}, V_{\lambda}^{-})$ be the sum of irreducible K-submodules of $V_{\lambda} \otimes p_{\mathbb{C}}$ with heighest weight of the form $\lambda - \beta$ ($\beta \in \tilde{\Delta}_{J,n}^{+}$, $J = I, \mathbb{H}, \mathbb{H}, V$). Let P_{λ} be the projection from $V_{\lambda} \otimes p_{\mathbb{C}}$ to V_{λ}^{-} . We define a differential operator from $C_{\eta,\tau_{\lambda}}^{\infty}(N \setminus G/K)$ to $C_{\eta,\tau_{\lambda}}^{\infty}(N \setminus G/K)$ by $\mathcal{D}_{\eta,\lambda}F(g) = P_{\lambda}(\nabla_{\eta,\lambda}F(g))$ for $F \in C_{\eta,\tau_{\lambda}}^{\infty}(N \setminus G/K)$, $g \in G$. Yamashita obtain the following result.

Proposition 1.1 ([Y1] H.Yamashita, Proposition(2.1)). Let π_{Λ} be a representation of discrete series with Harish-Chandra parameter $\Lambda \in \Xi_J$ of $Sp(2;\mathbb{R})$. Set $\lambda = \Lambda + \delta_G - 2\delta_K$. Then the linear map

$$W \in Hom_{\mathfrak{gc},K}(\pi_{\Lambda}^*, C_{\eta}^{\infty}(N \setminus G)) \to F_W \in Ker(\mathcal{D}_{\eta,\lambda})$$

is injective, and if Λ is far from the walls of the Wyel chambers, it is bijective.

1.6. A basis on the Whittaker space on $Sp(2; \mathbb{R})$. By the result of Kostant [Ko], and Vogan [V], if η is non-degenerate, we obtain the expression

$$dim_{\mathbb{C}}Hom_{(\mathfrak{g}_{\mathbb{C}},K)}(\pi_{\Lambda},C^{\infty}_{\eta}(N\backslash G)) = \begin{cases} 4, & \text{if } \Lambda \in \Xi_{\mathbb{I}} \cup \Xi_{\mathbb{I}}, \\ 0, & \text{if } \Lambda \in \Xi_{I} \cup \Xi_{N}. \end{cases}$$

Oda obtain the following result.

Theorem 1.1 ([O] Oda).

Let us assume that η is non-degenerate and $\Lambda \in \Xi_{II}$. We choose the basis $V_{\lambda} = \{v_k \mid 0 \leq k \leq d\}_{\mathbb{C}}$ defined in §4.2. Here $d = \lambda_1 - \lambda_2$. Then

(1) $F \in \mathcal{K}er\mathcal{D}_{\eta,\lambda}$ if and only if F satisfies the conditions

$$(\partial_1 - k)h_{d-k} + \sqrt{-1}\eta_0 h_{d-k-1} = 0, \quad \text{for } 0 \le k \le d-1,$$

$$\{\partial_1 \partial_2 + (a_1/a_2)^2 \eta_0^2\} h_d = 0,$$

(1.2)
$$\{(\partial_1 + \partial_2)^2 + 2(\lambda_2 - 1)(\partial_1 + \partial_2) - 2\lambda_2 + 1 + 4\eta_3 a_2^2 \partial_2\} h_d = 0.$$

Here
$$\partial_i = \frac{\partial}{\partial a_i}$$
, $i = 1, 2$ and $\{h_k \mid 0 \le k \le d\}$ is determined by
$$F|_A(a) = \sum_{k=0}^d c_{i,k}^{(1)}(a)v_k,$$

$$c_k(a) = a_1^{\lambda_2 + 1} a_2^{\lambda_1} \left(\frac{a_1}{a_2}\right)^k \exp(\eta_3 a_2^2) h_k(a), \quad \text{for } a \in A, \ 0 \le k \le d.$$

(2) If $\eta_3 < 0$, $Ker \mathcal{D}_{\eta,\lambda}$ contains the function F such that $h_d(a)$ has the integral representatio for $a = diag(a_1, a_2, a_1^{-1}, a_2^{-1}) \in A$

$$h_d(a) = \int_0^\infty t^{-\lambda_2 + \frac{1}{2}} W_{0,-\lambda_2}(t) \exp\left(\frac{t^2}{32\eta_3 a_2^2} + \frac{8\eta_0^2 \eta_3 a_1^2}{t^2}\right) \frac{dt}{t}.$$

By Theorem 1.1, Oda showed that if $\Lambda \in \Xi_{I\!I} \cup \Xi_{I\!I\!I}$ and η is non-degenerate,

$$Hom_{(\mathfrak{g}_{\mathbb{C}},K)}(\pi_{\Lambda}^*,\mathcal{A}_{\eta}(N\backslash G))\cong egin{cases} \mathbb{C}, & \eta_3<0, \\ 0, & \eta_3>0. \end{cases}$$

Here we put

$$\mathcal{A}_{\eta}(N\backslash G) = \{ F \in C_{\eta}^{\infty}(N\backslash G) \mid K \text{-finite and for any } X \in U(\mathfrak{g}_{\mathbb{C}}) \text{ there exists a constant } C_X > 0 \text{ such that } |F(g)| \leq C_X tr({}^t gg), \ g \in G \}$$

and $U(\mathfrak{g}_{\mathbb{C}})$ denotes the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$.

We set for $t \in \mathbb{C}$, $|\arg t| < \pi$,

$$k_{i,\nu}(t) = \begin{cases} I_{\nu}(\sqrt{t}/2), & \text{if } i = 1, 2, \\ K_{\nu}(\sqrt{t}/2), & \text{if } i = 3, 4. \end{cases}$$

and for $F \in C_{\eta}^{\infty}(N \backslash G/K)$, set $h_k, c_k \in C^{\infty}(A)$ $(0 \le k \le d)$ as in Theorem 1.1. Then we obtain the following results.

Theorem 1.2. Let us assume that η is non-degenerate and $\Lambda \in \Xi_{I\!\!I}$.

(1) Ker $D_{\eta,\lambda}$ has the basis $\{F_i|1\leq i\leq 4\}$ such that $h_{i,d}(a)$ $(1\leq i\leq 4)$ have the integral representations for $a=diag(a_1,a_2,a_1^{-1},a_2^{-1})\in A$

$$h_{i,d}(a) = \int_{C_i} t^{\frac{1}{2}(1-\lambda_2)} k_{i,-\lambda_2}(t) \exp\left(\frac{t}{32\eta_3 a_2^2} + \frac{8\eta_0^2 \eta_3 a_1^2}{t}\right) \frac{dt}{t}.$$

Here we set the contours \tilde{C}_i $(1 \leq i \leq 4)$

$$\int_{\tilde{C}_i} dt = \begin{cases} \int_C dt, & \text{if } i = 1, 3, \\ \int_0^\infty dt, & \text{if } i = 2, 4, \end{cases}$$

where $\int_C dt$ is the contour integral on C given in Theorem 2.1–(2) and $\int_0^\infty dt$ is the usual integral on $\mathbb{R}_{>0}$.

(2) We set

$$X = \left\{ (k, j) \in \mathbb{Z} \times \mathbb{Z} \left| 0 \le k \le \left[\frac{d - 1}{2} \right], \ j = 1, 2, \ 0 \le 2k + j \le d \right\} \right\}$$

For $\eta_3 \in \mathbb{R}$ and for any $r, \epsilon_1, \epsilon_2 > 0$, there exist constants $b_{(3)}^{i,k} > 0$ $(1 \le i \le 4, (k, j) \in X)$ such that

$$|c_{i,d-(2k+j)}(a)| \leq b_{(3)}^{i,k} a_1^{1+\lambda_1} a_2^{1-l_i \lambda_2} \left(\frac{a_1}{a_2}\right)^{\alpha_{i,j,k}^{(2)}}$$

$$\times \exp\left\{ ((-1)^{i+1} |\eta_0| + \epsilon_1) \frac{a_1}{a_2} + (2|\eta_3| + \eta_3 + \epsilon_2) a_2^2 \right\},$$

$$for \ r \geq a_1 > 0, \ a_2 > 0,$$

where we set for $1 \le i \le 4$ and $(k, j) \in X$

$$\alpha_{i,j,k}^{(2)} = \begin{cases} 1 - (2k+j), & \text{if } i = 2, 4 \text{ and } 1 \le 2k+j \le d, \\ 0, & \text{otherwise.} \end{cases}$$

(3) If $\eta_3 < 0$, then for any $r, \epsilon_1, \epsilon_2 > 0$, there exist constants $b_{(4)}^{i,j,k}$ such that

$$|c_{i,d-(2k+j)}(a)| \leq b_{(4)}^{i,j,k} a_1^{1+\lambda_1} a_2^{1-l_i \lambda_2} \left(\frac{a_1}{a_2}\right)^{\beta_{i,j,k}^{(2)}(\epsilon_1)}$$

$$\times \exp\left\{ \left((-1)^{i+1} |\eta_0| + \epsilon_2 \right) \frac{a_1}{a_2} - l_i \eta_3 a_2^2 \right\},$$

$$for \ r \geq a_1 > 0, \ a_2 > 0,$$

where we set for each $1 \le i \le 4$ and $0 \le k \le d$ and any fixed $\epsilon > 0$

$$\beta_{i,j,k}^{(2)}(\epsilon_1) = \begin{cases} 1 - (2k+j) - \epsilon_1, & \text{if } i = 2, 4 \text{ and } 1 \leq 2k+j \leq d, \\ 1 - 2\lambda_2 - (2k+j) - \epsilon_1, & \text{if } i = 1, 3 \text{ and } -2\lambda_2 \leq 2k+1, \\ 0, & \text{otherwise.} \end{cases}$$

Remark 1. Firstly F_i is defined as a linear combination of the series solutoin. Then from Theorem 1.2 we obtain the folloing result.

Corollary 1.1. If i = 1, 3, for any $r, \epsilon_1, \epsilon_2 > 0$, there exist constants b_i such that

$$|c_{i,k}(a)| \le b_i a_1^{1+\lambda_1} a_2^{1-\lambda_2} \exp\left\{ (|\eta_0| + \epsilon_1) \frac{a_1}{a_2} + (2|\eta_3| + \eta_3 + \epsilon_2) a_2^2 \right\}$$

$$for \ r \ge a_1 > 0, a_2 > 0.$$

2. Poincaré series

We assume $\eta_3 < 0$.

2.1. The Convergence of the Poincaré series. We denote by α_1, α_2 the functions

$$\alpha_i(g) = a_i, \ (i = 1, 2),$$

for $g = n \cdot diag(a_1, a_2, a_1^{-1}, a_2^{-1}) \cdot k, \ n \in N, k \in K, a_1, a_2 > 0$

and denote by Γ the group $Sp(2; \mathbb{Z})$.

Then we know the following result.

Lemma 2.1 ([?] **B.Diehl**). If $\Re(s_2) > 2$ and $\Re(s_1) > \Re(s_2) + 2$, then the sum.

$$\sum_{N\cap\Gamma\backslash\Gamma}\alpha_1(\gamma g)^{s_1}\alpha_2(\gamma g)^{s_2}$$

is absolutely convergent.

We set $\eta_i' = \frac{\eta_i}{2\pi}$ i = 0, 3. Then we define the following functions.

Definition 2.1. For $s_1, s_2 \in \mathbb{C}$, we define the function $f_i^{s_1, s_2}$ $(1 \le i \le 4)$ by

$$f_i^{s_1,s_2}(g) = \exp\left\{-\left(s_1|\eta_0|\frac{a_1}{a_2} + s_2|\eta_3|a_2^2\right)\right\} F_i(g), \quad \text{for } g \in G$$

For $\eta'_0, \eta'_3 \in \mathbb{Z}$, we define the Poincar'e series $P_{s_1,s_2}(g)$ by

$$P_{s_1,s_2}(g) = \sum_{P \cap \Gamma \setminus \Gamma} f_1^{s_1,s_2}(\gamma g)$$

Then we obtain the following result from Lemma 2.1.

Theorem 2.1. For $\Lambda_2 < -1$, $\Lambda_1 + \Lambda_2 > 1$ and $\Re(s_i) > 1$ (i = 1, 2), the Poincar'e series $P_{s_1,s_2}(g)$ is absolutely convergent.

2.2. The Fourier coefficients. We investigate the Fourier coefficients of $P_{s_1,s_2}(g)$ with respect to N. Here we consider only in the case of unitary character of N. Let W be the Wyel group of G,

$$W = \{w_i \mid 0 \le i \le 7\},\$$

where we put

$$w_1 = \begin{pmatrix} & 1 & 1 & \\ & 1 & & \\ \hline & -1 & & 1 \end{pmatrix}, w_2 = \begin{pmatrix} & 1 & & \\ & & & 1 & \\ & & -1 & & \\ & & & & \\ \end{pmatrix}, w_3 = \begin{pmatrix} & 1 & & \\ & & & & \\ \hline & & & & 1 \\ & & & & \\ \end{bmatrix},$$

 $w_4 = w_1 w_3, w_5 = w_2 w_3, w_6 = w_1 w_2 w_3, w_7 = w_1 w_2.$

We set $M = Z_K(\mathfrak{a})$, $\Gamma(w) = \Gamma \cap MNAwN$ for $w \in W$. Let for $t_0, t_3 \in \mathbb{R}$,

$$\eta_{t_0,t_3}: n \in N \to \exp\{2\pi\sqrt{-1}(t_0n_0 + t_3n_3)\} \in \mathbb{C}^{\times}$$

be a unitary character of N. For $(g, \gamma) \in G \times \Gamma$ and $l_0, l_3 \in \mathbb{Z}$, we set

$$\Phi^{\gamma}(g; l_0, l_3) = \int_{N \cap P^{\gamma} \cap \Gamma \setminus N} F_{s_1, s_2}(\gamma n g) \eta_{l_0, l_3}(n^{-1}) dn,$$

$$\Phi_w(g; l_0, l_3) = \sum_{(P \cap \Gamma) \setminus \Gamma(w)/(N \cap \Gamma)} \Phi^{\gamma}(g; l_0, l_3),$$

$$b_{l_0, l_3}(g) = \int_{N \cap \Gamma \setminus N} P_{s_1, s_2}(n g) \eta_{l_0, l_3}(n^{-1}) dn.$$

where we put $P^{\gamma} = \gamma^{-1} P \gamma$.

Then we obtain the result.

Theorem 2.2. We assume that $\eta_3 < 0$ and $\eta'_i = \frac{\eta_i}{2\pi} \in \mathbb{Z}$ (i = 0, 3). Then we obtain the following results.

(1) For $l_0, l_3 \in \mathbb{Z}$, we have

$$b_{l_0,l_3}(g) = \sum_{0 \le i \le 7} \Phi_{w_i}(g; l_0, l_3).$$

(2) If i = 2, 3, 4, 5, we have

$$\Phi_{w_i}(g; l_0, l_3) = 0$$
 for $g \in G, l_0, l_3 \in \mathbb{Z}$.

If i = 0, we have

$$\Phi_{w_0}(g; l_0, l_3) = \begin{cases} 0, & \text{if } (l_0, l_3) \neq (\eta'_0, \eta'_3), \\ f_1^{s_1, s_2}(g), & \text{if } (l_0, l_3) = (\eta'_0, \eta'_3). \end{cases}$$

If i = 1, there exist constants $C_1(l_0, a(\gamma))$ such that

$$\Phi_{w_1}(g; l_0, l_3) = \begin{cases} 0, & \text{if } \eta_3' \beta^2 - l_3 \in \mathbb{Z} \setminus \{0\}, \\ C_1(l_0, a(\gamma)) \exp(\eta_0' n_0 + \eta_3' n_3 + \eta_3' \beta^2 u_3 + l_0 u_0) f_2^{s_1, s_2}(g; l_0, \eta_3' \beta(\gamma)^2) \\ & \qquad \qquad \begin{cases} 1, & \text{if } \eta_3' \beta^2 - l_3 = 0, \\ \frac{\exp(\eta_3' \beta^2 - l_3) - 1}{\eta_3' \beta^2 - m_3}, & \text{if } \eta_3' \beta^2 - l_3 \in \mathbb{Q} \setminus \mathbb{Z}. \end{cases}$$

If i = 6, there exist constants $C_2(l_3, a(\gamma))$ such that

$$\Phi_{w_6}(g; l_0, l_3) = \begin{cases} 0, & \text{if } \eta_0' \frac{\alpha}{\beta} - l_0 \in \mathbb{Z} \setminus \{0\}, \\ C_2(l_3, a(\gamma)) \exp\left(\eta_0' n_0 + \eta_3' n_3 + \eta_0' \frac{\alpha}{\beta} u_0 + l_3 u_3\right) f_3^{s_1, s_2} \left(g; \eta_0' \frac{\alpha}{\beta}, l_3\right) \\ \times \begin{cases} 1, & \text{if } \eta_0' \frac{\alpha}{\beta} - l_0 = 0, \\ \frac{\exp\left(\eta_0' \frac{\alpha}{\beta} - l_0\right) - 1}{\eta_0' \frac{\alpha}{\beta} - l_0}, & \text{if } \eta_0' \frac{\alpha}{\beta} - l_0 \in \mathbb{Q} \setminus \mathbb{Z}. \end{cases}$$

If i = 7, there exist constants $C_3(l_0, l_3, a(\gamma))$ such that

$$\Phi_{w_7}(g; l_0, l_3) = C_3(l_0, l_3, a(\gamma)) \exp(\eta'_0 n_0 + \eta'_3 n_3 + l_0 u_0 + l_3 u_3) f_4^{s_1, s_2}(g; l_0, l_3).$$

Where we know $\gamma \in \Gamma$ has a unique decomposition $\gamma = mnau \ (m \in M, a \in A, n, u \in N)$ and put

$$a(\gamma) = a = diag(\alpha, \beta, \alpha^{-1}, \beta^{-1}), \quad u = \begin{pmatrix} 1 & u_0 & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & u_1 & u_2 \\ 0 & 1 & u_2 & u_3 \\ \hline & & 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$n = \begin{pmatrix} 1 & n_0 & & & \\ & 1 & & & \\ \hline & & & 1 & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & n_1 & n_2 \\ 0 & 1 & n_2 & n_3 \\ \hline & & & 1 & 0 \\ & & & 0 & 1 \end{pmatrix}.$$

We denote by $f_i^{s_1,s_2}(\cdot;t_0,t_3)$ the function $f_i^{s_1,s_2}(\cdot)$ for the unitary character $\eta_{t_0,t_3}(t_0,t_3\in\mathbb{Q})$ of N.

REFERENCES

- [D] B.Diehl, Die analytische Fortsetzung der Eisensteinreihe zur Siegelschen Modulgruppe, J.Reine Angew. Math. 317, (1980), pp. 40-73
- [G-R] I. S. Gradshteyn and I.M.Ryzhik, Tables of Integrals, Series, and Products, Academic Press , (1965)
- [H-O] T. Hayata and T. Oda, An explicit integral representation of whittaker functions for the representations of the discrete series the case of SU(2,2) -, J. Math. Kyoto Univ. 37-3 (1997), pp. 519-530.
- [Kn] A. W. Knapp, Representation Theory of Semisimple Groups An overview Based on Example, Princeton Math. Series, 36 (1986), Princeton Univ. Press
- [Ko] B. Kostant, On Whittaker Vectors and Representation Theory, Invent. Math. 48 (1978), pp. 101-184.
- [M-O] T. Miyazaki and T. Oda, Principal series Whittaker functions on $Sp(2, \mathbb{R})$, I, RIMS preprints 992 (1994).

- [O] T. Oda, An explicit integral representation of Whittaker functions on Sp(2; ℝ) for the large discrete series representations, Tôhoku Math. J. 46 (1994), pp. 261–279.
- [S] W. Schmid, On the realization of the discrete series of a semisimple Lie groups, Rice Univ. Stud. 56 (1970), No.1, pp. 99-108.
- [V] D. A. Vogan Jr., Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), pp. 75-98.
- [Y1] H. Yamashita, Embeddings of discrete series into induced representations of semisimple Lie goups I,-general theory and the case of SU(2,2) -, Japan. J. Math. (N. S.) 16 (1990), No.1, pp. 31-95.
- [Y2] _____, Embeddings of discrete series into induced representations of semisimple Lie goups II, -Generalized Whittaker models for SU(2,2) -, J. Math. Ktoto Univ. 31-2 (1991), pp. 543-571.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: sakuno@diana.math.wani.osaka-u.ac.jp