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On a density of the set of primes dividing
generalized Lucas sequences
v By
Yoshifumi KOHENO and Bo Myoung Ok

1. Introduction

In [3], J. C. Lagarias showed that the set of primes dividing certain second-order linear
recurrences has positive density. A method of Hasse is used for his proof. In this note, we
will reserch similar phenomena for the Pell sequence. Our result is a special case which was
not treated in [2]. We need some preliminaries. Any irreducible second-order recurrence
{U,} whose terms U, are rational numbers can bé expressed in the form U, = af" + abr,
where a and 6 are in the quadratic field K generated by a ‘root of characteristic polynomial
of {U,}, and ¢ denotes the algebraic conjugate of a number £ in K. Hasse’s conditions
are as followes; |

(1) 8/8 = +¢*, where k = £1 or &2 for some ¢ in K,

(2) @/ = (¢, where  is a root of unity in KI and j is an integer.

We put

P = {p; all the prime numbers}, P, ={ppe P, p<uz},

Sy = {p;p € P, p|U, for some n}, Sy, .={p;p€ Sy, p<z}.

These particular recurrences {U,}, which satisfy the above conditions (1) and (2), have
a specific property which enables us to decompose SU> into disjoint countable union of

Chebotarev sets of primes.

Definition 1. A set ¥ of primes is a Chebotarev set if there is some finite normal
extension L of the rationals @ such that a prime p is in ¥ if and only if the Artin symbol
L . : '
{—%—?-] is in specified conjugacy classes of the Galois group Gal(L/Q).
p

Then we can define the density d(S/) as follows.

Definition 2. The density d(Sy) is defined

: . 1Su, - x
d(Sy) = mlgg} 4 ﬁ;;m , where P, ~ gz




109

If a sequence {U,} is defined by Up = 2,U; = m and U, = mU,_1+U,—2 (n > 2), then
{U,} is called a generalized Lucas Sequence. In this case, the characteristic polynomial is

2

r“—mzr—1=0.

2. Main Results

Theorem 1[2]. Let D = m? + 4 be an odd prime discriminant of Q(\fﬁ) . Then for the
sequence {U,} (Up = 2,U; =m, U, = mU,_; +U,_s), the set Sy of primes has density
2 ) "

d(SU) = '3*

Theorem 2. For the Pell sequence {P,} (Py=1,P, =1, P, = 2P,_1 + P,_5), the set

Sp of primes has density d(Sp) = %72

For the proof, we can use the same Hasse's method based on the Frobenius density

theorem as in the case of Theorem 1.
Proof. The Pell sequences {P,} satisfies

P, =-{<"+¢&"},

N[ =

where € = 1 + 4/2. In this case Hasse’s method -is useful. Hence
PP, & €"+&"=0(modp) & 60"= -1 (mod p),

where § = —¢2 and the congruences are in the ring Z [\/_2-] of algebraic integers in Q(\/ﬁ) .

Thus S p is just the following set of primes
Sp = {p;Ix € Z such that §* = —1 (mod (p))}.

If p = 1 (mod 8), then (p)‘ splits into two conjugate degree 1 prime ideals in Q(\/é) ,
while if p = +3 (mod 8), then (p) is a degree 2 prime ideal in Q(\/?—) “
Let Sp = S4U Sg, where ' '

Sa = {p;p=+1 (mod 8) and p € Sp}

and
Sp = {p;p =43 (mod 8) and p € Sp}.
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Case 1. The primes in S, are separated into the following disjoint sets.

Sa=Swuls?,

i=3

where

(1) = {p;p= —1 (mod 8) and p € Sp}
S(“ {I) p=1+2 (mod 27*) and p € SU} for j > 1.

We consider the associate Kummer extensions over Q;
1= (VEVE ), 1= Vv ).
Then K; = Cj( 2\]/5) for C; = Q( V1 ) and we get for j > 3
[K;: Q] = [C;‘( 0) IQ] =242 [L;:Q]=2¥"".

Let PV = {p;p =1+2 (mod 27*') and p € P} and E(Aﬂ = P\ Sﬁf), then the primes

in Sy 59) are exactly the primes that split completely in K; but not in L;. Then the density
1 1
of Uj3 S is Z (21 ( % Q] - T, Q])) 254 Moreover the density of SAa }l

Case 2. Put S%b) = (1) \ Sm Then Sy is composed of Sm U 5(2)

where

S = {p;p=—3 (mod 8) and p € S5} = 5L,

and

(2) {Pap = —1+2? (mod 2%) and p € SB} S(l).

1) . . .1
Then the set SE,” is empty and the density of Sg) is 7 From both cases we have the

result.

Remark. We can compare with the density by the statistics computed on the 2400 prime
numbers. Recently we were noticed that P. Moree and P. Stevenhagen obtained the same

results as ours in [4].

Acknowledgments. The authors would like to express their sincere thanks to Mr. R.

Takeuchi at Tokyo Metropolitan University for reference [4].
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In the following table, D, I, N, and V denote a prime number for Q(\/f)—), the length
of the period of (resp. the suffix ¢ of the first term P; = 0(mod D) in ) the Pell sequence
{P,} modulo D for P(3) # 0 (resp. P(3) =0), §Sp, p, and §Pp respectively. Here P(1),
P(2), P(3), denote three consequtive terms in the Pell sequence {F,} modulo D.



. We show several experimental data on Theorem 2 by Fortran 77.
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