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Abstract

A unified view is given to recent developments about a systematic
method of constructing rational mappings as ergodic transformations
with non-uniform invariant measures on the unit interval $I=[0,1]$ .
All of the rational ergodic mappings of $I$ with explicit non-uniform
invariant densities can be obtained by addition theorems of elliptic
functions. It is shown here that the class of the rational ergodic map-
pings $Iarrow I$ are essentially same as the permutable rational functions
obtained by J. F. Ritt.
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1 Introduction
Qualitative characterizing discrete-time dynamical systems have been recently
gaining an attention. In continuous-time dynamical systems given by ordi-
nary differential equations (ODE), the notion of integrability can serve as the
sharp characteristic for general ODEs such that integrable ODEs are solvable
in the sense that exact solutions are analytically obtained and non-integrable
ODEs such as the three-body problems are not solvable and they show, in
general, chaotic behavior. In contrast with ODE cases, the notion of integra-
bility itself is still vague in discrete-time systems, that is, it is not so sharp
as the case of ODEs. Quite recently, Hietarinta and Viallet show examples of
discrete-time dynamical systems which pass the singularity confinement test
(discrete-time version of Painl\’eve test), but which nevertheless show chaotic
behavior [5]. Thus, an issue is now focused on searching a characteristic dis-
tinguishing chaotic discrete-time systems from regular discrete-time dynam-
ical systems (which have been thought as integrable systems. The purpose
of the present paper is to present a class of discrete-time dynamical systems
which have exact solutions, but which nevertheless are shown to be ergodic
(thus, chaotic). Such dynamical systems (we call exactly solvable chaos) can
be constructed in a systematic way, by utilizing addition theorems of ellip-
tic functions. The main claim here is that solvable discrete-time dynamical
systems with chaotic properties do not belong to exceptional classes but they
are as ubiquitous as multiplication formulas of elliptic functions, which have
interesting $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{C}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}8$ to the issue.

2 Construction
Let us consider an elliptic function $s(x)$ whose inverse function is defined by
the following elliptic integral:

$a_{0}+a_{2}u^{2}+a_{4}u^{4}+a_{6}u^{6}.>0$ for $0<u<1$ (2)
$a_{0}+a_{2}+a_{4}+a_{6}=0,$ $a_{0}>0$ .

This elliptic function can be also considered as the solution $q(t)$ of a Hamil-
tonian system with a Hamiltonian

$H= \frac{1}{2}p^{2}+V(q\rangle=0,$ $(3)$
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where the potential function $V(q)$ is an even polynomial function of the form
$V(q)=-(a_{0}+a_{2}q^{2}+a_{4}q^{4}+a_{6}q^{6})$ satisfying the conditions

$V(0)=0$, $V(1)=0$ , $V(q)<0$ for $0<q<1$ . (4)

Thus on this condition about $a_{0},$ $\cdots$ , $a_{6}$ in Eq. (2), this elliptic function $s(x)$

has a real period $4K$ , where $K$ is defined by the elliptic integral

(5)

We have the relations

$0\leq s(x)\leq 1$ for $0\leq x\leq K$ , (6)

and

$s(\mathrm{O})=0$ , $s(K)=1$ , $s(2K)=0$ , $s(3K)=-1$ , $s(4K)=0$ . (7)

Since the equality

$s^{-1}(-X)= \int_{0}^{-x}\frac{du}{\sqrt{a0+a2u^{2}+a^{4}u^{4}+a^{6}u^{6}}}=-s^{-1}(x)\equiv y$ (8)

holds, then we have
$s(y)=-X$, $s(-y)=X$ (9)

which means that $s^{2}(y)$ is an even function as $s^{2}(y)=s^{2}(-y)$ and has a real
period $2K$ . Furthermore, since any elliptic function has an algebraic addition
theorem [1], there exists a polynomial function $F$ in three variables such that
the relation

$F(S^{2}(x_{1}+x_{2}), S2(X1),$ $s2(X_{2}))=0$ (10)

holds. As a special case of the addition theorems, there exists a polynomial
function $G$ in two variables such that

$G(s^{2}(px), s(2X))=0$ , (11)

where $p$ is a positive integer greater than the unity. This means that we have
an algebraic mapping as

$s^{2}(px)=f(S(2)x)$ , (12)

where $f$ is an algebraic function. If we set

$X_{n+1}\equiv s^{2}(px)$ , $X_{n}\equiv s^{2}(x)$ , (13)

we have a discrete-time dynamical system

$X_{n+1}=f(Xn)$ . (14)
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on the unit interval $I=[0,1]$ . It is easy to check that there exist $p$ pre-images

$0<x_{m}=s^{2}[ \frac{2mK+s-1(\sqrt{y})}{p}]<1$ , $0\leq m\leq p-1$ (15)

satisfying $y=f(x_{m})$ for $0<y<1$ . This dynamical system $X_{n+1}=f(X_{n})$

has the following remarkable property:

Theorem 1 A dynamical system $X_{n+1}=f(X_{n})$ defined as the addition the-
orem (12) of an elliptic function $s^{2}(x)$ is ergodic with respect to an invariant
measure $\mu(dx)$ which is absolutely continuous with respect to the Lebesgue
measure and their density function $p(x)$ is given by the formula

$\rho(X)=\frac{1}{2K\sqrt{x(a_{0}+a_{2}X+a4X^{2}+a_{6}X^{3})}}$. (16)

(Proof of Theorem 1)

Let us consider the diffeonorphisms of $I=[0,1]$ into itself given by

$0 \leq\phi(x)=\frac{1}{K}s^{-1}(\sqrt{x})\leq 1$ for $0\leq x\leq 1$ . (17)

Using the relations

$s^{2}(K\cdot p\theta)=f[s^{2}(K\theta)]$ for $\theta\in[0,\frac{1}{p}]$ ,
$s^{2}[K(2-p\theta)]=f[s^{2}(K\theta)]$ for $\theta\in[\frac{1}{p},\frac{2}{p}]$ ,
$\ldots$ ,
$s^{2}[I \mathrm{f}(-(-1)ii+\frac{1-(-1)^{i}}{2}+(-1)^{i}p\theta)]=f[s^{2}(K\theta)]$ for $\theta\in[\frac{i}{p}, \frac{i+1}{p}]$ ,
$\ldots$ ,
$s^{2}[I \zeta((-1)p(p-1)+\frac{1+(-1)^{\mathrm{p}}}{2}+(-1)^{\mathrm{P}^{-}}1p\theta)]=f[s^{2}(K\theta)]$ for $\theta\in[^{\mathrm{K}}\frac{-1}{p},1]$

(18)
by the fact that $s^{2}(x)$ is an even function and it has a real period $2K$ , we can
derive the piecewise-linear map $\tilde{f}(x)=\phi \mathrm{o}f\mathrm{o}\phi^{-1}(x)$ on $I=[0,1]$ as

$\tilde{f}(x)=px$ for $x \in[0,\frac{1}{p}]$

$\ldots$ ,
$\tilde{f}(x)=-(-1)^{i}i+\frac{1-(-1)^{i}}{2}+(-1)^{i}px$ $x \in[\frac{i}{p}, \frac{i+1}{p}]$

(19)
$\ldots$ ,
$\tilde{f}(x)=-(-1)p-1(p-1)+\frac{1-(-1)^{\mathrm{p}-}1}{2}+(-1)p-1px$ $x\in[^{\mathrm{g}_{\frac{-1}{p}}},1]$

It is noted here that when $p=2,\tilde{f}(x)$ is the tent map, given by

$\tilde{f}(x)=2X$ $x \in[0, \frac{1}{2}]$

(20)
$\tilde{f}(x)=2-2x$ $x \in[\frac{1}{2},1]$ .
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Clearly, the map $\tilde{f}(x)$ in Eq. (19) is ergodic with respect to the Lebesgue
measure on $I=[0,1]$ . Thus, $f$ is also ergodic with respect to the measure

$\mu(dx)=\frac{d\phi(x)}{dx}d_{X}=\frac{1}{2K}\frac{dx}{\sqrt{x(a_{0}+a_{2}X+a4X^{2}+a_{6}X^{3})}}$ . (21)

The measure $\mu(dx)$ is absolutely continuous with respect to the Lebesgue mea-
sure, by which we can define the algebraic density function $\rho(x)$ in $\mathrm{E}\mathrm{q}.(16)$ .
(End of proof)

A simple corollary of the theorem is the following: According to the $\mathrm{P}\mathrm{e}\mathrm{s}\ln\circ$

identity which can be applied to the dynamical systems with absolutely con-
tinuous $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}[7]$ , the Lyapunov characteristic exponent $\Lambda(\mu)$ for the mea-
sure of the map $X_{n+1}=f(X_{n})$ is equivalent to the Kolmogorov-Sinai entropy
$h(\mu)=\log p$ , namely:

$\Lambda(\mu)=\int_{0}^{1}\log|\frac{df}{dx}|\cdot\rho(x)dX=h(\mu)=\log$p. (22)

In this sense, discrete-time dynamical systems $X_{n+1}=f(X_{n})$ constitute a
typical class of chaotic dynamical systems with a special property that their
invariant density functions are explicitly given. Hence, we call this class of
chaotic dynamical systems exactly $\mathit{8}olvable$ chaos [11]. We note here that
dynamical systems of exactly solvable chaos can be good pseudo random-
number $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{S}[13]$, especially for Monte Carlo simulations from the exact
ergodicity

$\lim_{Narrow\infty}\sum_{=n0}^{N}\frac{1}{N}Q(xn)-1=\int_{0}^{1}Q(X)\rho(X)dx$ . (23)

We remark here that we can generate infinitely concrete chaotic dynami-
cal systems with the unique invariant measure (16) from addition theorems
$s^{2}(px)=f[S^{2}(x)]$ of elliptic functions $s(x)$ for $p=2,3,$ $\cdots$ .

3 Examples of exactly solvable chaos
Historically, the most simple example of exactly solvable chaos is the logistic
map $\mathrm{Y}=4X(1-x)\equiv f_{0}(X)$ on $I=[0,1]$ given by Ulam and von Neumann
in the late $1940’ \mathrm{S}[10]$ .

Ulam and von Neumann show that $X_{n+1}=4X_{n}(1-X_{n})$ is ergodic with
respect to an invariant probability measure $\mu(dx)=\frac{dx}{\pi\sqrt{x(1-x)}}$ . The Ulam-von

Neumann map can be seen as a special case of exactly solvable chaos of the
above theorem 1 when we consider $s(x)$ defined by

$s^{-1}(X)= \sin-1(X)=\int_{0}^{x}\frac{du}{\sqrt{1-u^{2}}}$ . (24)
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This corresponds to the case that

$a_{0}=1$ , $a_{2}=-1$ , $a_{4}=a_{6}=0$ (25)

in Eq. (1). Thus, we have the relation $s(x)=\sin(x)$ which admits the
duplication formula $\sin^{2}(2x)=4\sin^{2}(x)(1-\sin^{2}(x))\equiv f(\sin^{2}(x))(p=2$ in
$\mathrm{E}\mathrm{q}.(12))$ gives the logistic map. Clearly, in this case, $K= \frac{\pi}{2}$ . Thus, using
Theorem 1, we have calculate the density function $p(x)$ as

$p(X)= \frac{1}{\pi\sqrt{x(1-X)}}$ . (26)

When $p=3$ , we have the cubic map as $X_{n+1}=X(3-4X)^{2}$ from the tripli-
cation formula.

$\sin^{2}(3X)=f[\sin^{2}(x)]=\sin^{2}(x)[3-48\mathrm{i}\mathrm{n}(2X)]2$ (27)

The cubic map can be regarded as a special class of Chebyshev maps obtained
by using more general addition formulas as $\sin^{2}(px)=f(\sin(2pX))[3]$ .

The alternative attempts to generalize the Ulam-von Neumann map within
a set of rational functions was made by Katsura and Fukuda in $1985[6]$ . The
Katsura-Fukuda map is given by

$\mathrm{Y}=\frac{4X(1-X)(1-lx)}{(1-lX^{2})2}\equiv f_{l}(X)$ (28)

for $0\leq l<1$ . Clearly, the Ulam-von Neumann map can be regarded as a
special case of Katsura-Fukuda maps. In this case, the corresponding elliptic
function $s(x)$ is Jacobi $sn$ function whose inverse function is defined by

$s^{-1}(X)=Sn^{-}1(_{X}; \sqrt{l})=\int_{0}^{x}\frac{du}{\sqrt{(1-u^{2})(1-lu)2}}$ , (29)

where $\sqrt{l}$ corresponds to the modulus of Jacobi elliptic functions. This cor-
responds to the case that

$a_{0}=1$ , $a_{2}=-l+1$ , , $a_{4}=l$ , $a_{6}=0$ (30)

in Eq. (1). Katsura and Fukuda show [6] that the map (28) has exact
solutions $X_{n}=\mathit{8}n^{2}(2^{n}\theta;\sqrt{l})$ . Using the idea of theorem 1, the author shows
[11] that the Katsura-Fukuda maps (28) are also ergodic with respect to an
invariant measures which can be written explicitly as

$\mu(dx)=p(x)d_{X}=\frac{dx}{2K(l)\sqrt{x(1-X)(1-l_{X})}}$ , (31)
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where $K(l)$ is the elliptic integral of the first kind given by $K(l)= \int_{0}^{1}\frac{du}{\sqrt{(1-u^{2})(1-lu^{2})}}$ .

This can be easily checked using the duplication $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}[14]$ of the Jacobi $sn$

elliptic function

(32)

Recently, the more general classes of exactly solvable chaos are derived
from elliptic functions $s(x)$ whose inverse functions are defined by

(33)

where the parameters $l$ and $m$ are arbitrary real numbers satisfying the con-
$\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-\infty<m\leq l<1[11]$ . This corresponds to the case that

$a_{0}=1$ , $a_{2}=-(l+m+1)$ , $a_{4}=lm+l+m$ , $a_{6}=-lm$ (34)

in Eq. (1). The associated mapping generated by the duplication theorem
$s^{2}(2_{X})=f_{\iota_{m}}^{(2)},(S2(x))$ is given by the following rational transformations

$f_{\iota,m}^{(2)}(X)= \frac{4X(1-X)(1-lx)(1-mX)}{1+AX^{2}+BX3+^{cX^{4}}}\in I$, (35)

where $A=-2(l+m+lm),$ $B=8lm,$ $C=l^{2}+m^{2}-2lm-2l2m-2lm+2l^{2}m^{2}$ ,
and $X\in I[11]$ . Clearly, this mapping is a generalized version of Ulam-von
Neumann map and Katsuda-Fukuda map. This two-parameter family of the
dynamical systems $x_{n+1}=f_{l,m}^{(2)}(x_{n})(35)$ are also ergodic with respect to an
invariant measures given by

(36)

where $K$ is given by the integrals

(37)

We can check this fact by directly computing the duplication formula of $s(x)$

whose inverse function is defined in Eq. (33). Let us represent $s(x)$ in terms
of the Weierstrass elliptic $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}[2]$.

The Weierstrass elliptic function $\wp(u)$ of $u\in C$ is defined by

$\wp(u)=\frac{1}{u^{2}}+\sum_{kj},\{\frac{1}{(u-2j\omega_{1}-2k\omega_{2})^{2}}’-\frac{1}{(2j\omega_{1}+2k\omega_{2})^{2}}\}$ , (38)
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where the symbol $\sum’$ means that the summation is made over all combinations
of integers $j$. and $k$ , except for the combination $j=k=0$, and $2\omega_{1}$ and $2\omega_{2}$

are periods of the function $\wp(u)[14]$ . The Weierstrass elliptic function $\wp(u)$

satisfies the differential equation

$( \frac{d\wp(x)}{dx})^{2}=4\wp(_{X)}3-g2\wp(X)-g3,$ (39)

with the invariants

$g_{2}( \omega_{1},\omega_{2})=60\acute{\sum_{j,k}}\frac{1}{(j\omega_{1}+k\omega_{2})^{4}}$ and $g_{3}( \omega_{1}, \omega_{2})=140\acute{\sum}\frac{1}{(j\omega_{1}+k\omega_{2})^{6}}j,k$ .

(40)
Let $e_{1},$ $e_{2}$ and $e_{3}$ be the roots of $4z^{3}-g2^{Z}-g_{3}=0$; that is,

$e_{1}+e_{2}+e_{3}=0$ , $e_{1}e_{2}+e_{2}e_{3}+e_{3}e_{1}=- \frac{g_{2}}{4}$ , $e_{1}e_{2}e_{3}= \frac{g_{3}}{4}$ . (41)

The $di_{\mathit{8}Cr}iminant\Delta$ of the function $\wp(u)$ is defined by $\Delta=g_{2}^{3}-27g_{3}^{2}$ . If
$\triangle>0$ , all roots $e_{1},$ $e_{2}$ and $e_{3}$

,
of the equation $4z^{3}-g_{2}z-g_{3}=0$ are real.

Thus, we can assume that $e_{1}>e_{2}>e_{3}$ . In this case, $\omega_{1}$ and $\omega_{2}$ are given by
the formula

$\omega_{2}=i\int_{-\infty}^{e_{3}}\frac{dz}{\sqrt{g_{3}+g_{2^{Z}}-4z3}}$ . (42)

Using a rational transformation of a variable as $v=- \frac{(1-l)(1-m)}{y-\frac{2l+2m-\mathrm{s}tm-1}{3}}+1$ , we
can rewrite $s^{-1}(X)$ as

$s^{-1}(x)= \int_{\frac{2-l-m}{\theta}}^{\frac{2l+2m-s\iota m-1}{3}+\frac{(1-\iota)(1-m)}{1-x^{2}}}\frac{dy}{\sqrt{4y^{3}-g_{2}y-g_{3}}}$, (43)

where $g_{2}= \frac{4(1-l+l^{2}-m+m^{2}-lm)}{3},$ $g_{3}= \frac{4(2-l-m)(2l-m-1)(2m-l-1)}{27}$ . We note here
that $4y^{3}-g_{2}y-g_{3}$ can be factored as

$4y^{3}-g2y-g3=4(y- \frac{2-l-m}{3})(y-\frac{2l-m-1}{3})(y-\frac{2m-l-1}{3})$. (44)

Thus, we set $e_{1}= \frac{2-l-m}{3}>e_{2}=\frac{2l-m-1}{3}>e_{3}=\frac{2m-l-1}{3}$ . Thus, $s(x)$ can be
written explicitly in terms of the Weierstrass elliptic function as

$s^{2}(x)=1- \frac{(1-l)(1-m)}{\wp(\omega_{1}-x)-\frac{2l+2m-3lm-1}{3}}=\frac{sn^{2}(\sqrt{1-m}X,\sqrt{\frac{l-m}{1-m}})}{1-m+msn^{2}(\sqrt{1-m}x,\sqrt{\frac{l-m}{1-m}})}..\cdot$

(45)
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The function $s^{2}(x)$ also has the same periods $2\omega_{1}$ and $2\omega_{2}$ of the Weierstrass
elliptic function $\wp(x)$ and the real period $2\omega_{1}$ is given by the formula

$2K(l, m)=2 \omega_{1}=\frac{2K(\frac{l-m}{1-m})}{\sqrt{1-m}}$ . (46)

Using the addition formula of Jacobi $sn$ function, we finally obtain the explicit
duplication formula of $s(x)$ as

$s^{2}(2X)= \frac{4s^{2}(X)(1-S^{2}(X))(1-ls^{2}(X))(1-mS(2x))}{1+A_{S^{4}}(x)+BS^{6}(x)+\mathit{0}_{S}8(x)}$ , (47)

where $A=-2(l+m+lm),$ $B=8lm$ and $C=l^{2}+m^{2}-2lm-2l2m-2lm^{2}+$
$l^{2}m^{2}$ . Thus, we obtain the two-parameter family of generalized Ulam-von
Neumann maps $X_{n+1}=f_{l,m}^{(2)}(X_{n})(35)$ .
In the same way, we can construct generalized cubic maps $f_{l,m}^{(3)}$ from the trip-
lication formula $s^{2}(3x)=f_{l,m}^{(3)}(s2(x))$ as

$\mathrm{Y}=f_{l,m}^{(3)}(x)=\frac{X(-3+4x+\sum i^{-1i}-x^{i}4A)^{2}}{1+\Sigma_{i=}^{9}2B_{i}X^{i}}$ , (48)

where $A_{1},$
$\cdots,$

$A_{4}$ and $B_{2},$
$\cdots,$

$B_{9}$ are $\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}[11]$ by

$A_{1}=4(l+m),$ $A_{2}=-6(l+m+lm),$ $\mathrm{A}_{3}=12lm$ ,
$A_{4}=l^{2}+m^{2}-2lm-2l^{2}m-2lm^{2}+l^{2}m^{2}$ ,
$B_{2}=-12(l+m+\iota_{m})$ ,
$B_{3}=8(l+m+l^{2}+m^{2}+l^{2}m+lm^{2}+15lm)$ ,
$B_{4}=6(5l^{2}+5m^{2}-26lm-26l2m-26lm^{2}+5l^{2}m^{2})$ ,
$B_{5}=24(-2l^{2}-2m^{2}-2l^{3}-2m^{3}+4lm+7l^{2}m+7lm^{2})$
$+24(4l^{3}m+4lm^{3}+7l^{2}m^{2}-2l32-2ml^{2}m^{3})$ ,
$B_{6}=4(4l^{2}+4m^{2}+4l^{4}+4m^{4}+17l^{3}+17m^{3}-8lm)$

$+4(-17l2m-17lm-17l^{3}m-217lm3-8l4m-8lm^{4})$
$+4(4l^{2}m^{4}+4l^{4}m^{2}-17l3m-127l2m^{3}+17l^{3}m-354l2)m^{2}$,
$B_{7}=24(-l^{3}-m-3l^{4}-m4+l^{2}m+lm^{2}-l^{3}m-lm^{3})$
$+24(l^{4}m+lm^{4}+4l^{2}m^{2}+4l^{3}m^{2}+4l^{2}m^{3})$

$+24(l^{4}m^{2}+l^{2}m^{4}-l^{3}m^{3}-l^{4}m^{3}-l^{3}m^{4})$ ,
$B_{8}=3(3l^{4}+3m^{4}+4l^{3}m+4lm^{3}+4l^{4}m+4lm^{4}-14l^{2}m^{2})$

$+3(-4l^{3}m-42l^{2}m4l334l4m-s_{-}m-1214l2m^{4}+4l^{4}m^{3}+4l^{3}m^{4}+3l^{4}m^{4})$ ,
$B_{9}=8(-l^{4}m-lm^{4}+l^{3}m^{2}+l^{2}m^{3}+l^{4}m^{2}+l^{2}m^{4}-2l^{3}m^{3}+l^{4}m^{3}+l^{3}m^{4}-l^{4}m^{4})$ .

The generalized cubic map $f_{l,m}^{(3)}$ has the same invariant measure (36) as
the one of the generalized Ulam-von Neumann map. Furthermore, since

$s^{2}(p1p_{2}X)=fl,m(p_{1})(s(2p_{2}X))=f^{(}l,m\circ fp_{1})l,m(_{\mathrm{P}}2)(_{S}2(x))$

$=f_{l,m}^{(p2})(\mathit{8}^{2}(p_{1^{X}}))=fl(,p_{2,m})\mathrm{o}f_{l}^{(},p_{1,m})(_{S(}2)=fl(p_{1p_{2}}x),m)(S^{2}(x))$ ,
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we have the following commutative relations

$f_{l,m}^{(p1p}\mathrm{z})(x)=f_{\iota,m}(p_{1})\circ f\iota_{m}(,p2)(x)=f_{\iota,m}^{(_{\mathrm{P}2}})_{o}fl(,p1)(mx)$ , (49)

where $p_{1}$ and $p_{2}$ are positive integers and $f_{l,m}^{(1)}(x)\equiv X$ . Thus, from the func-
tional relations (49), all generalized models of exactly solvable chaos given by
$\mathrm{Y}=f_{l,m}^{(k)}(x)$ for $k\in Z^{+}$ can be constructed by generalized models of exactly
solvable chaos given by $\mathrm{Y}=f_{l,m}^{(p)}(X)$ with $p$ being primes. For examples, we
can compute $\mathrm{Y}=f_{l,m}^{(k)}(x)$ as follows:

$f_{l,m}^{(4)}(X)=f^{(2}l,m\mathrm{O}\rangle f_{l,m}(2)(x)$

$f_{l,m}^{(6)}(X)=f_{l}(,2)f_{l}^{(}m\circ,3)(x)=f_{l}(m,3m)_{\mathrm{o}}f_{\iota^{(}},m2)(X)$

$f_{l,m}^{(8)}(x)=f_{l}^{(2)},m\circ f_{l,m}(2)f_{\iota^{(}}\mathrm{o},m2)(X)$

$f_{l,m}^{(9)}(X)=f^{(3}l,m\mathrm{O}\rangle f_{l,m}(3)(x)$

$f_{l,m}^{()}p1p_{2}\cdots pk(x)=f_{\iota_{m}^{(}},p1)\circ f_{l}(,p_{2})_{\mathrm{o}}\ldots f_{l,m}^{(}m.(pk)x)$. (50)

All of the above examples of exactly solvable chaos are rational mappings on
the unit interval $I$ and they can be summarized in the following table.

4 Ritt and Weierstrass’s theorems
The commutativity

$f_{p}\mathrm{o}f_{q}(_{X})=fq\mathrm{Q}fp(X)=fpq(X)$ , (51)

for rational ergodic mappings $\{f_{p}\}$ comes from the fact that their mappings
are derived from the multiplication formulas of a single elliptic function $s(x)$

as $s(pu)=f_{p}[s(u)]$ . Thus, they have exact solutions of the form $X_{n}=s(p^{n}\theta)$ .
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Thus, the commutativity is the key for one-dimensional ergodic dynamical
systems to have exact solutions.

With regard to the class of rational permutable functions in this way, Ritt
showed in $1923[9]$ that rational functions constructed from the multiplication
formulas of elliptic functions such as the above examples $\{f_{p}\}$ are all of ra-
tional conmuting self-maps of the projected line except trivial cases. The
trivial cases indicate the cases that rational permutable maps corresponds to
the multiplication formulas of rational functions of $e^{z},$ $\cos(z)$ . Consequently,
permutable rational maps which are shown to be ergodic in the previous sec-
tions are essentially all of rational permutable ergodic mappings with exact
solutions of the form $X_{n}=s(p^{m}\theta)$ , with $s(x)$ being a meromorphic peri-
odic function. Furthermore, if we try to construct ergodic dynamical systems
with exact solutions without using addition theorems of elliptic functions, we
must avoid some lack of analyticity on a map $f$ due to the Weierstrass the-
orem on functions possessing an algebraic addition theorem as follows. The
Weierstrass theorem says that any meromorphic function $s(u)$ possessing an
algebraic addition theorem is either an elliptic function or is of the form $R(u)$

or $R(e^{\lambda u})$ , where $R$ is a rational function [8]. Thus, all of meromorphic and
periodic functions $s(u)$ possessing an algebraic addition theorem belong to
the class of elliptic functions. This is the reason why all of our ergodic ra-
tional transformations constructed here does not have a density function in
a form $\rho(x)=\frac{1}{\sqrt{b_{0}+b_{1x}+b2x^{2}++b_{m}xm}}$ with $m\geq 5$ whose integral defines the

inverse function of a hyperelliptic function with genus $g(\geq 2)$ , but has a den-
sity function in a form $\rho(x)=\frac{1}{\sqrt{b_{0}+b_{1x}+b_{2x^{2}}+b3x^{3}+b_{4x^{4}}}}$ , whose integral defines

the inverse function of an elliptic function with genus $g(=1)$ .
Of course, not all of ergodic transformations on $I$ are in this category as

follows:
Example 1: Gauss Map (1845)

The Gauss map $G$ : $xarrow 1/x-[1/x]$ which maps $I-\{0\}$ onto $I$ is known
to be ergodic with respect to the absolutely continuous invariant measure
$\mu(dx)=\frac{\mathrm{n}21dx}{(+x)}$ . However, the transformation itself is not a rational function.

Example 2: Bool Transformation (1857)
The transformation of Bool $B$ : $x arrow x-\frac{1}{x}$ which maps $R-\{0\}\mathit{0}$nto $R$

is known to be ergodic [4]. The transformation preserves infinite measures.
However, the exact solutions $X_{n}$ do not seem to exist.

Example 3:
The two onto $\mathrm{m}\mathrm{a}_{\mathrm{P}\mathrm{P}^{[mathring]_{1}}}\mathrm{n}\mathrm{g}\mathrm{s}S_{2}$ : $xarrow 2x$ mod 1 and $S_{3}$ : $xarrow 3x$ mod 1
are mutually permutable in the sense that $S_{3}\mathrm{o}S_{2}(x)=S_{2}\circ s_{\mathrm{s}}(x)$ . They are
ergodic with respect to the Lebesgue measure on $I$ . However, the transfor-
mations are not rational.
Example 4:
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The two transformations $F_{2}$ : $x arrow\frac{1}{2}(x-1/x)$ and $F_{3}$ : $x arrow\frac{x(x^{2}-3)}{3x^{2}-1}$ of the real
line $R$ are.mutually permutable in the sense that $F_{3}\mathrm{o}F_{2}(X)=F_{2}\mathrm{o}F_{3}(x)$ .
They are ergodic with respect to a unique invariant measure $\mu(dx)=\frac{dx}{\pi(1+x^{2})}$

(Cauchy distribution) which is absolutely continuous with respect to Lebesgue
measure [12]. These properties comes from the fact that the transformations
are equivalent to the multiplication formula of $\cot(x)$ . Thus, these mappings
have exact solutions $X_{n}=\cot(2^{n}\theta)$ and $X_{n}=\cot(3^{n}\theta)$ . Hence, maps of ex-
ample 4, although they are defined on the infinite support, can be considered
to belong to the present category of exactly solvable chaos.

5 Classification problem of exactly solvable
chaos

It is known that any elliptic function $s(x)$ can be expressed in terms of Weier-
strassian elliptic functions $\wp(x)$ and $\wp’(x)$ with the same periods, the expres-
sion being rational in $\wp(x)$ and linear in $\wp’(x)[14]$ . The invariants $g_{2}(\omega_{1}, \omega_{2})$

and $g_{3}(\omega_{1},\omega_{2})$ of Weierstrassian elliptic functions $\wp(x)$ are not changed under
a transformation

$\omega_{1}’=a\omega_{1}+b\omega_{2}$ , $\omega_{2}’=c\omega_{1}+d\omega_{2}$ , (52)

where $a,$ $b,$ $c$ and $d$ are integers satisfying ad–bc $=1$ . An elliptic modular
function $J$ of $\wp(x)$ is given by

$J( \mathcal{T})=\frac{g_{2}^{3}}{g_{2}^{3}-27g_{3}2}$ , (53)

where $\tau=\frac{\omega}{\omega}\mathrm{a}1^{\cdot}$ Since the elliptic modular function $J(\tau)$ in $\mathrm{E}\mathrm{q}.(53)$ is invariant
under a certain condition; namely,

$J( \frac{c+d\tau}{a+b\tau})=J(\tau)$ , ad–bc $=1$ , (54)

where $a,$ $b,$ $c$ and $d$ are integers, $J(\tau)$ of an elliptic function $s(x)$ can serve as
a characteristic of exactly solvable chaos. For an example, let us consider the
classification problem of the two-parameter family of the generalized Ulam-
von Neumann maps $X_{n+1}=f_{l,m}^{(2)}(X_{n})$ . In this case, it is easy to check that

$J(l, m)= \frac{4[(1-m)(1-l)+(l-m)^{2}]^{3}}{27(1-l)2(1-m)2(l-m)^{2}}\iota$ (55)
$J$

Thus, the equality $J(l, m)=J(l’, m’)$ gives us the solutions of the classifica-
tion problem as follows:

$\lambda=\lambda’,$ $\lambda=1-\lambda’,$ $\lambda=\frac{1}{1-\lambda’},$ $\lambda=\frac{1}{\lambda’},$ $\lambda=\frac{\lambda’}{\lambda’-1},$ $\lambda=\frac{\lambda’-1}{\lambda’}$ , (56)
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where $\lambda\equiv\frac{l-}{1}$ and $\lambda’\equiv\frac{l’-m’}{1-m},$ . This means that when one of the conditions in
$\mathrm{E}\mathrm{q}.(56)$ is satisfied, dynamical systems $X_{n+1}=f_{l,m}^{(2)}(X_{n})$ and $\mathrm{Y}_{n+1}=f_{l,m’}(,2)(\mathrm{Y}n)$

have an algebraic relation such that the relation $H[f_{l,m}^{(2})(x), f^{(2)}l" m’(x)]=0$

holds, where $H$ is a polynomial function in two variables. In this way, we can
$\mathrm{s}\mathrm{o}1_{\mathrm{V}\mathrm{e}_{-}}\mathrm{t}\mathrm{h}\mathrm{e}$ classification problem of exactly solvable chaos $X_{n+1}=f(x_{n})$ .

6 Summary and Discussions
Rational ergodic maps on the unit interval are systematically constructed
from addition theorems of elliptic functions in a unified manner. According
to the classical Weierstrass’s theorem about meromorphic functions possess-
ing algebraic addition theorems and Ritt’s theorem about permutable rational
functions, such rational mappings due to addition theorems of elliptic func-
tions are essentially all rational ergodic transformations that have exact solu-
tions as well as exact density functions. Therefore, in discrete-time systems,
solvable models showing chaotic behavior do not belong to an exceptional
class but they are ubiquitous as the presence of multiplication theorems of
elliptic functions. This implies the gap between the notion of solvability and
integrability in discrete-time dynamical systems as follows: The notion of
solvability in discrete-time systems can be compatible with chaotic behavior
which are commonly believed to indicate non-integrability of the systems,
whereas the notion of the solvability is essentially same as that of the inte-
grability in continuous-time systems (ODE). Thus, further studies of asking
what is an essential characteristic distinguishing chaotic discrete-time sys-
tems from regular discrete-time systems are clearly needed for the settlement
of the issue.
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