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1. INTRODUCTION

Suppose that there are three populations $\pi_{i},$ $i=0,1,2$ , where it is known that
$\pi_{0}=\pi_{i}$ for exactly one of $i=1,2$ , but we do not know for which $i$ . The problem is to
find for which $i$ this is true. In the investigation it is assumed that $\pi_{i}’ \mathrm{s}$ are indepen-
dently distributed as $p-$-variate normal distributions $N_{p}(\mu_{i}, \Sigma),$ $i=0,1,2$ , where all
the parameters are unknown and $\Sigma>O$ . The problem is, thus, reduced to finding the
population with $\mu_{i}=\mu_{0}$ . For this problem we consider a discrimination rule which
satisfies the requirement that

$\max(e_{12}, e_{21})\leq\alpha$ whenever $\delta’\delta\geq d^{2}$ (1.1)

exactly for specified constants $d(>0)$ and $\alpha(0<\alpha<1/2)$ , where $\delta=\mu_{1}-\mu_{2}$ , and
$e_{ij}(i,j=1,2, i\neq j)$ den\’otes the probability of misclassifying $\pi_{0}$ from $\pi_{i}$ into $\pi_{j}$ . It
should be noted that the requirement (1.1) needs the samples drawn from $\pi_{1}$ and $\pi_{2}$

to have the same sample size. Although it can be extended to the unequal sample size
case by requiring that $e_{1\mathit{2}}\leq\alpha$ and $e_{21}\leq\beta(\alpha\neq\beta)$ , we consider only the equal sample
size case in this paper.

Since $\Sigma$ is unknown, there does not exist a discrimination rule with fixed-sample
size which controls the two probabilities of misclassification a.t a specified level. Sri-
vastava (1973) considered to extend Chow and Robbins’s (1965) purely sequential
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procedure to a classification problem. Aoshima, Dudewicz and Siotani (1991) dealt

with the heteroscedastic case of this problem when $p=1$ . However, unfortunatelly,

these discrimination rules in the literatures do not assure to satisfy the requirement

(1.1) except the case when $darrow \mathrm{O}$ . In this paper we shall develop a discrimination rule

satisfying the requirement (1.1) exactly for finite sample by extending Healy’s (1956)

two-stage procedure.

In Section 2, we first consider a $\mathrm{d}_{l}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$rule with fixed-sample size if $\Sigma$ were

known. The samples are, however, chosen to minimize the total sample size, while the

discrimination rule satisfies the requirement (1.1) exactly. In Section 3, a two-stage

procedure is proposed to estimate the discrimination rule including unknown $\Sigma$ . Then,

the design constant in the two-stage procedure is determined so as to satisfy the re-

quirement (1.1) exactly for all $(\Sigma, d, \alpha)$ . In Section 4, the property of the proposed

discrimination rule is discussed and its efficiency is compared with another discrimina-

tion rule based on Srivastava’s (1973) $\mathrm{p}\mathrm{r}o$cedure by the $\mathrm{M}o$nte Carlo simulation study.

2. FIXED-SAMPLE SIZE

If $\Sigma$ were known, $\mu_{i},$ $i=0,1,2$ , are estimated by t.h$\mathrm{e}$ sample mean vectors $\overline{x}_{ini}=$

$\sum_{j=1}^{n}.x\dot{.}j/ni,$ $i=0,1,2$, of fixed size $n_{i}$ , where the random samples $x_{i1},$ $\ldots,$ $x_{in:}$ are

taken from $\pi_{i},$ $i=0,1,2$. Then, it should be noted that (1.1) requires us to take

$n_{1}=n_{2}(\equiv n)$ and it yields the maximum likelihood rule as follows: The population

$\pi_{0}$ is classified into $\pi_{1}$ if

$(\overline{x}_{0n_{0}}-\overline{X}1n)’\Sigma^{-}\mathrm{l}(\overline{x}_{0n\mathrm{o}n}-\overline{x}_{1})\leq(\overline{x}_{0}-n\mathrm{o}\overline{X}_{2})n’\Sigma^{-1}(\overline{x}_{0}n\mathrm{o} - \overline{x}_{2n})$ , (2.1)

and into $\pi_{2}$ otherwise (cf. Anderson (1984)). Let $y_{1}=c\Sigma^{-1/2}(\overline{x}_{0n_{0}}-\overline{x}_{1n})$ and
$y_{2}=c\Sigma^{-1/2}(\overline{\mathfrak{B}}0n\mathrm{o}-\overline{x}_{2}n)$ , where $\mathrm{c}=(1/n_{0}+1/n)^{-1/\mathit{2}}$ . Then $y_{1}-y_{2}$ and $y_{1}+y_{2}$ are inde-

pendently distributed as $N_{p}(-c\delta^{\star}, 2(1-\rho)I_{p})$ and $N_{p}(c\delta\star, 2(1+\rho)I_{p})$ when $\pi_{0}=\pi_{1}$

and are independently distributed as $N_{p}(-c\delta^{\star}, 2(1-\rho)I_{p})$ and $N_{p}(-c\delta\star, 2(1+\rho)I_{p})$

when $\pi_{0}=\pi_{2}$ , where $\rho=c^{2}/n_{0}$ and $\delta^{\star}=\Sigma^{-1/2}\delta$ . Let $u=\Gamma(y_{1}-y2)/\sqrt{2(1-\rho)}$ and

$v=\Gamma(.y_{1}.\cdot+y_{2})/\sqrt{2(1+p)}$, where

$\Gamma=$ (2.2)
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is an orthogonal matrix and $\Delta=\sqrt{\delta’\Sigma^{-1}\delta}$ . Then $u=(u_{1}, u_{2}’)’$ and $v=(v_{1}, v_{\mathit{2}}’)’$ are
independently distributed as

$N_{p}((-c\Delta/\sqrt{2(1-\rho)}, 0)\prime\prime,$ $I_{p})$ and $N_{p}((c\Delta/\sqrt{2(1+\rho)}, 0’)’,$ $I_{p)}$

when $\pi_{0}=\pi_{1}$ and are independently distributed as

$N_{p}((-c\Delta/\sqrt{2(1-\rho)}, \mathrm{O}’)’,$ $I_{p)}$ and $N_{p}((-c\Delta/\sqrt{2(1+\rho)}, 0’)’,$ $Ip)$

when $\pi_{0}=\pi_{\mathit{2}}$ . When $\pi_{0}=\pi_{1}$ , we have

$e_{12}=P(y’1y1-y_{2}’y2>0)$

$=P(u’v>0)$

$=P(w’v- \frac{c\Delta}{\sqrt{2(1-\rho)}}v_{1}>0)$ ,

where $w=(u_{1}+c\triangle/\sqrt{2(1-\rho)},$ $u_{2}’)’$ is distributed as $N_{p}(0, I_{p})$ being independent of
$v$ . For the case that $p=1$ , it is easy to see that

$e_{1\mathit{2}}(=e_{21})$ .

$= \Phi(\frac{c\delta\sigma^{-1}}{\sqrt{2(1+\rho)}})\Phi(-\frac{c\delta\sigma^{-1}}{\sqrt{2(1-\rho)}})+\Phi(-\frac{c\delta\sigma^{-1}}{\sqrt{2(1+p)}})\Phi(\frac{c\delta\sigma^{-1}}{\sqrt{2(1-\rho)}})$ ,

where $\Phi(\cdot)$ denotes the $N(\mathrm{O}, 1)$ distribution function. Then, we have from (1.1) that

$e_{12}(=e21)$ (2.3)

$\leq\Phi(\frac{cd\sigma^{-1}}{\sqrt{2(1+\rho)}})\Phi(-\frac{cd\sigma^{-1}}{\sqrt{2(1-\rho)}})+\Phi(-\frac{cd\sigma^{-1}}{\sqrt{2(1+p)}})\Phi(\frac{cd\sigma^{-1}}{\sqrt{2(1-\rho)}})$ .

For the case that $p\geq 2$ , we have

$e_{12} \langle=e_{21})=1-E\{\Phi(\frac{c\triangle}{\sqrt{2(p-1)(1-\rho)}}\frac{t}{\sqrt{1+t^{2}/(p-1)}})\}$ ,

where $t$ denotes a noncentral $t$ random variable with noncentrality parameter $\gamma=$

$\sqrt{c^{2}\Delta^{2}/\{2(1+\rho)\}}$ and with $p-1$ degrees of freedom $(\mathrm{d}.\mathrm{f}.)$ . From Das Gupta (1974) (see

also Srivastava and Khatri (1979) $)$ , it is known that the probability of misclassification

85



is a monotone decreasing function of $\Delta$ . Thus, when we let $\lambda$ be the maximum latent

root of $\Sigma$ , it holds from $\Delta\geq d/\sqrt{\lambda}$ that

$e_{12}(=e_{21})\leq 1-E\{$$- \Phi(\frac{cd}{\sqrt{2(p-1)\lambda(1-\rho)}}\frac{t\sim}{\sqrt{1+l^{2}/\sim(p-1)}})\}$ , (2.4)

(2.7)

where $t\sim$ denotes a noncentral $t$ random variable with noncentrality parameter $\tilde{\gamma}=$

$\sqrt{c^{2}d^{2}/\{2\lambda(1+\rho)\}}$ and with $p-1\mathrm{d}.\mathrm{f}$ . .
There are several choices of $(n_{0}, n)$ for the discrimination rule (2.1) satisfying (1.1).

Let $c^{2}d^{2}/\lambda=g_{p^{2}}(\alpha)$ , where $g_{p}(\alpha)$ is independent of $(n_{0}, n)$ and it is determined later.

When we write $n_{0}=\xi n$ for some fixed and known $\xi$ (i.e., $n_{0}=c^{2}(1+\xi)$ ), let us choose
$\xi$ such that the total sample size

$n_{0}+2n= \frac{\lambda g_{p}^{2}(\alpha)}{d^{2}}(1+\xi)(1+2\xi^{-1})$

is minimized. This gives $\xi=\sqrt{2}$ , and hence $n_{0}=[n_{0}^{*}]+1$ and $n=[n^{*}]+1$ with $[a]$

denoting the smallest integer less than $a$ , where

$n_{0}^{*}=(1+ \sqrt{2})\frac{\lambda g_{\mathrm{p}}^{2}(\alpha)}{d^{2}}$ and $n^{*}=\xi^{-1}n_{0}^{*}-$ . (2.5)

We shall determine $g_{\mathrm{p}}(\alpha)=g^{*}$ such that

$\Phi(\frac{g^{*}}{\sqrt{2(1+\rho)}})\Phi(-\frac{g^{*}}{\sqrt{2(1-\rho)}})$ (2.6)

$+ \Phi(-\frac{g^{*}}{\sqrt{2(1+\rho)}})\Phi(\frac{g^{*}}{\sqrt{2(1-\rho)}})=\alpha$

when $p=1$ , and such that

$E \{\Phi(\frac{g^{*}}{\sqrt{2(p-!)(1-p)}}\frac{t\sim}{\sqrt{1+t^{2}/\sim(p-1)}})\}=1-\alpha$

when $p\geq 2$ , where $t\sim$ has a noncentral $t$ distribution with $\tilde{\gamma}=\sqrt{g^{*2}/\{2(1+\rho)\}}$ and

with $p-1\mathrm{d}.\mathrm{f}$. Then, the discrimination rule (2.1) based on the samples of sizes $(n_{0}, n)$

satisfies the requirement (1.1) exactly. Note that the fixed-sample sizes $(n_{0}, n)$ defined

above meet an asymptotically optimal choice given by Bechhofer and Turnbull (1971)

for the one-sided comparisons problem with a control. (Cf. Hochberg and Tamhane

(1987), p.202.) Table 1 gives values of $g_{p}(\alpha)$ for $p=1$ (1)5 and $\alpha=.01$ and.05. These
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values were computed by solving the equations (2.6) for $p=1$ and (2.7) for $p\geq 2$

via the bisection method. The expectation in (2.7) was computed by the Monte Carlo
method with 10,000 independent trials.

TABLE 1. Values of $g_{v}(\alpha)$

3. TWO-STAGE PROCEDURE

Since $\Sigma$ is unknown, that is $\lambda$ is unknown, the sample sizes $(n_{0}, n)$ given by (2.5)
need to be estimated in the discrimination rule (2.1). Let us consider the following
two-stage procedure.

We first take the initial samples $X_{01},$
$\ldots,$ $X_{00}m$ from $\pi_{0}$ and $x_{i1},$

$\ldots,$ $x_{im}$ from $\pi_{i},$ $i=$

$1,2$ , where $m_{0}=[\xi m]+1,$ $m$ is a given integer such that $m_{0}-1+2(m-1)\geq p$ and
$\xi=\sqrt{2}$ . Compute $\overline{x}_{0m_{0}}=\Sigma_{j=}^{m0}1x_{0j}/m0,$ $\overline{x}_{i}m=\Sigma_{j=}^{m}1X_{i}j/m,$ $i=1,2$ , and

$\nu S_{m}=\sum_{1j=}^{m}(x0j-\overline{X}0_{m\mathrm{o}})(X_{0j}0-\overline{\mathfrak{B}}0m\mathrm{o}.)’+\sum_{i=1j}\sum_{1=}^{m}$ ($2x$ij $-\overline{X}_{im}$ ) $(X_{i}j-\overline{X}_{im})’$ , (3.1)

(3.2)

where $\nu=m_{0}-1+2(m-1)$ . Let $\ell_{m}$ be the maximum latent root of $S_{m}$ . The sample
sizes of two-stage procedure are defined by

$N_{0}= \max\{m_{0},$ $[(1+ \sqrt{2})\frac{\ell_{m}g_{p,m}^{2}(\alpha)}{d^{2}}]+1\}$

for $\pi_{0}$ , and by
$N=[\xi^{-1}N_{0}]+1$ (3.3)

for $\pi_{i},$ $i=1,2$ . The constant $g_{p,m}(\alpha)=g$ is determined such that

(3.4)
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when $p=1$ , where $F_{\nu}(\cdot)$ denotes the $t$ distribution function with $\nu \mathrm{d}.\mathrm{f}.$ , and such that

(3.5)

when $p\geq 2$ , where $\overline{h}=t-(v\sim/w_{1\cdot 2})w_{12},$ $t$ is a $N_{p-1}(0, I_{p}-1)\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d}_{\mathrm{o}\mathrm{n}1}$ vector, $\tilde{v}$ is a
$N(g\sqrt{1/(2\sqrt{2})}\sqrt{w_{12}/\nu}-w_{12}’W^{-1}\iota 22’ 1)$ random variable, $w_{1\cdot 2}=w_{11}-w_{12}^{;}W_{2}-1w_{1}22$ ,

and

$W=|$
denotes a $W_{p}(\nu, I_{\mathrm{p}})$ matrix. Here, $t$ and $W$ are independent. At the second stage,

we take the additional samples $X_{0m\mathrm{o}+1},$ $\ldots,$ $X0N0$ from $\pi_{0}$ and $xim+1,$ $\ldots,$ $xiN$ from $\pi_{i}$ ,

$i=1,2$ . Compute $\overline{x}_{0N_{0}}=\Sigma^{N_{0}}j=1X0j/N_{0}$ and $\overline{x}_{iN}=\Sigma_{j=1}^{N}x_{ij/N},$ $i=1,2$ . Then, the

following discrimination rule is proposed: The population $\pi_{0}$ is classified into $\pi_{1}$ if

$(\overline{x}_{0N_{0^{-\overline{X}}}}1N)^{\prime s_{m}}-1(\overline{x}_{0N}1N)0^{-\overline{x}}\leq(\overline{x}0N0-\overline{X}_{2}N)\prime s-m1(\overline{X}0N_{0^{-}}\overline{x}2N)$ , (3.6)

and into $\pi_{2}$ otherwise.

For the discrimination rule (3.6) we have

THEOREM 1 The discrimination rule (3.6) satisfies the requirement (1.1) exactly.

In the proof of this theorem the following lemma is useful.

LEMMA 1 Let $W$ be a $p\cross p$ symmetric nonsingular matrix and

$W=$ ,

where $w_{11}$ is a scalar, $w_{12}$ is a $(p-1)\cross 1$ vectorf and $W_{22}$ is a $(p-1)\cross(p-1)$ matrix.

Let $w_{1\cdot 2}=w_{11}-w’W122-121w2$ . Then

$W^{-1}=+w_{1\cdot 2}^{-1}$ (1, $-w_{1222}’W-1$ ).

PROOF See Srivastava and Khatri (1979, Corollary 1.4.2, p.8). $\blacksquare$

PROOF OF THEOREM 1 Let $\delta^{\star}=\Sigma^{-1/2}\delta,$ $y=c_{1}\Sigma^{-1/}\sim 2(2\overline{x}0N0-\overline{X}_{1N^{-}}\overline{X}_{2N})$
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and $z=\sim c_{2}\Sigma^{-1/}2(\overline{x}_{2N}-o\overline{e}1N)$ , where $\sim c_{1}=(4/N_{0}+2/N)-1/2$ and $\sim c_{2}=(2/N)^{-}1/2$ . Then,
for given $S_{m},$ $y$ is distributed as $N_{p}(^{\sim}C_{1}\delta^{\star}, I)p$ when $\pi_{0}=\pi_{1}$ and as $N_{p}(-C_{1p})\sim_{\delta^{\star},I}$ when
$\pi_{0}=\pi_{2}$ , and $z$ is distributed as $N_{p}(-C_{2}\delta^{\star}\sim, I_{p})$ . Let $W=\nu\Sigma^{-1/2}s_{m^{\Sigma}}-1/2$ . Then $W$

is distributed as $W_{p}(\nu,I_{p})$ . Note that we have $e_{12}=P(y’W^{-1}Z>0)$ when $\pi_{0}=\pi_{1}$

and $e_{21}=P((-y)\prime W-1_{\mathcal{Z}}>0)$ when $\pi_{0}=\pi_{2},$ $.\mathrm{i}.\mathrm{e}$ . $e_{1\mathit{2}}=e_{21}$ .
For the case that $p=1$ , we have from (2.3) that

$e_{12}(=e_{21}) \leq E\{\Phi(\frac{1}{\sqrt{2}}\frac{1}{\sqrt{\frac{2}{N_{0}}+\frac{1}{N}}}\frac{d}{\sigma})\Phi(-\frac{1}{\sqrt{2}}\sqrt{N}\frac{d}{\sigma}\mathrm{I}$

$+ \Phi(-\frac{1}{\sqrt{2}}\frac{1}{\sqrt{\frac{2}{N_{0}}+\frac{1}{N}}}\frac{d}{\sigma})\Phi(\frac{1}{\sqrt{2}}\sqrt{\mathit{1}\mathrm{V}}\frac{d}{\sigma})\}$ .

Moreover, from $(3.2)-(3.3)$ with $g_{p,m}(\alpha)=g$ , we obtain

in view of the definition of $g$ in (3.4). For the case that $p\geq 2$ , we let $\tilde{y}=\Gamma y=$

$(y_{1},\tilde{y}_{2}’)’\sim,\tilde{z}=\Gamma z=(^{\sim}z_{1,\mathit{2}}\tilde{z}’)’$ and $\overline{W}=\Gamma W\Gamma’$ , where $\Gamma$ is the same as in (2.2).
Then, for given $S_{m},\tilde{y}$ and $\tilde{z}$ are independently distributed as $N_{p}((c_{1}\triangle\sim, 0)’,$$I_{p}’)$ and
$N_{\mathrm{p}}((-C2\Delta\sim,)\mathrm{o}’I’,p)$ , respectively. We $\tilde{\mathrm{a}}\mathrm{l}\mathrm{s}\mathrm{o}$ have

$\overline{W}^{-1}\equiv(\frac{\tilde{w}}{w}1112$ $\frac{\overline{w}_{1}’}{W}222)^{-1}$

$=$. (3.7)

Let $\overline{w}_{1\cdot 2}=\tilde{w}_{11}-\overline{w}’\overline{W}\overline{w}_{12}122-21,\tilde{u}=y_{1^{-\overline{w}_{1222}’}}\overline{W}^{-1}\tilde{y}\sim 2$ and $h=\tilde{y}_{2}-(\tilde{u}/\tilde{w}_{1\cdot 2})\overline{w}_{1}2$ . Then
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we have from Lemma 1 that

$y’W^{-1_{Z}}=\tilde{y}’\overline{W}\tilde{z}1$

$= \frac{\tilde{u}}{\tilde{w}_{1\cdot 2}}z_{1}+h’\overline{W}^{-1}\tilde{z}_{2}\sim \mathit{2}2^{\cdot}$

Since $y’W^{-1}z$ is distributed as $N(-(\tilde{u}/\tilde{w}1\cdot 2)^{\sim}C_{2}\Delta,$ $(\tilde{u}/\tilde{w}_{1\cdot 2})^{2}+h’\overline{W}_{22}^{-}h)\mathit{2}$ for given $\tilde{y}$

and $\overline{W}$ , we obtain that

Now, $\tilde{u}$ is distributed as $N(^{\sim}c_{1}\Delta-\overline{w}_{1}\overline{W}_{2}^{-1}\tilde{y}\prime 22\mathit{2}’ 1)$ for given $\tilde{y}_{2}$ and $\overline{W}$ . Noting that

$e_{12}(=e_{21})$ is a decreasing function of $\Delta$ and that $\Delta\geq\sqrt{\tilde{w}_{12}/\nu}\sqrt{d^{2}/\ell_{m}}$ in view of (3.7)

and Lemma 1, we have

$e_{1\mathit{2}}(=e_{21}) \leq 1-E\{\Phi(\frac{1}{\sqrt{\nu}},1(^{\sim}v_{1}/\sqrt{\tilde{w}_{12}})^{\sim}\sqrt{(v_{1}/\sim\overline{w}_{1}\mathit{2})^{2}+\tilde{h}_{1}\overline{W}_{221}-2\tilde{h}}c_{2}\sqrt{d^{\mathit{2}}/\ell_{m}}\}$,

where $\tilde{h}_{1}=\tilde{y}_{2}-(v_{1}/\sim)\tilde{w}_{1\cdot \mathit{2}}\overline{w}12$ and $v_{1}\sim$ has $N(^{\sim}c_{1}\sqrt{\tilde{w}_{12}/\nu}\sqrt{d^{2}/l_{m}}-\overline{w}_{1}\overline{W}_{2}^{-1}’\tilde{y}\mathrm{z}22’ 1)$ .

Since $e_{12}(=e_{21})$ is a decreasing function of $(C_{1},C_{2})\sim\sim$ and it holds from $(3.2)-(3.3)$ with

$g_{\mathrm{p},m}(\alpha)=g$ that

we conclude that

where $\tilde{h}_{2}=\tilde{y}_{2}-(v_{2}/\sim)\tilde{w}_{1\cdot \mathit{2}}\overline{w}_{1}\mathit{2}\mathrm{a}..\mathrm{n}\mathrm{d}v_{2}\sim$ has $N(g\sqrt{1/(2\sqrt{2})}\sqrt{\tilde{w}_{12}/\nu}-\overline{w}\overline{W}’-1\tilde{y}12\mathit{2}2\mathit{2}’ 1)_{-}$
.

The proof is complete in view of the definition of $g$ in (3.5).

Table 2 gives values of $g_{p,m}(\alpha)$ for $p=$ 1(1)5 and $m=5(5)20(10)50,$ 100 when

$\alpha=.01$ and.05. These values were computed by solving the equations (3.4) for $p=1$

and (3.5) for $p\geq 2$ via the bisection method. The expectation in (3.5) was computed

by the Monte Carlo method with 10,000 independent trials. Note $\mathrm{t}\mathrm{h}\mathrm{a},\mathrm{t}g_{p,m}(\alpha)arrow g_{p}(\alpha)$

as $marrow\infty$ .
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TABLE 2. Values of $g_{p,m}(\alpha)$

$\prime \mathrm{v}=\cap 1$

$rv=- \mathrm{n}.\epsilon$

4. EFFICIENCY

In this section, let us discuss the efficiency of the proposed $\mathrm{d}\mathrm{i}\mathrm{S}\mathrm{c}\mathrm{r}\mathrm{i}_{\mathrm{I}}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ rule in
Section 3. Under the assumption that $m=m(d)$ :

$m(d)arrow\infty,$ $d^{\mathit{2}}m(d)arrow 0$ as $darrow \mathrm{O}$ , (4.1)

we have

THEOREM 2 The two-stage procedure based on $(\mathit{3}.\mathit{2})-(\mathit{3}.\mathit{3})$ is asymptotically effi-
$cient_{J}i.e$ .

$\lim_{darrow 0}\frac{E(N_{0+}2N)}{n_{0}^{*}+2n^{*}}--1$ .

PROOF From $(3.2)-(3.3)$ we have

$(1+ \sqrt{2})(1+2\xi^{-1})\frac{g_{p,m}^{2}(\alpha)}{d^{2}}E(\ell_{m})\leq E(N_{0}+2N)$ (4.2)

’ $\leq(2+\xi)m+(1+\sqrt{2})(1+2\xi^{-1})\frac{g_{p,m}^{2}(\alpha)}{d^{2}}E(l_{m})$ .
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Since $n_{0}^{*}+2n^{*}=(1+\sqrt{2})(1+2\xi^{-1})g^{2}p(\alpha)\lambda/d^{\mathit{2}}$ from (2.5), it holds that

$\frac{g_{p,m}^{2}(\alpha)\backslash }{g_{p^{2}}(\alpha)}\frac{E(\ell_{m})}{\lambda}\leq\frac{E(N_{0}+2N)}{n_{0}^{*}+2n^{*}}\leq\frac{\xi md^{2}}{(1+\sqrt{2})g_{p^{2}}(\alpha)\lambda}+\frac{g_{p,m}^{2}(\alpha)}{g_{p^{2}}(\alpha)}\frac{E(\ell_{m})}{\lambda}$.

Since $E(\ell_{m})arrow\lambda$ as $marrow\infty$ and $g_{p,m}(\alpha)arrow g_{p}(\alpha)$ as $marrow\infty$ , we obtain the result

under (4.1). $\blacksquare$

(4.3)

REMARK 1 From the left hand side of (4.2), it appear that

$E(N_{0}+2N)\geq n_{0}^{*}+2n^{*}$ ,

since $E(\ell_{m})\geq\lambda$ and $g_{p,m}(\alpha)\geq g_{p}(\alpha)$ from Tables 1-2. It has not been possible to

show theoretically that $g_{p,m}(\alpha)\geq g_{p}(\alpha)$ .

To compare with another discrimination rule proposed by Srivastava (1973), we

consider the following two-stage procedure: After computing the maximum latent

root $\ell_{m}$ of $S_{m}$ with $\xi=1$ in (3.1), the sample size of two-stage procedure is defined by

$\overline{N}=\max\{m,$ $[ \frac{6\tilde{g}_{p_{1}m}^{2}(\alpha)}{d^{2}}\ell_{m}]+1\}$

for $\pi_{i}.’ i=0,1,2$ . The constant $\tilde{g}_{p,m}(\alpha)=\tilde{g}$ is given as a solution to the equation

where $\lambda_{p,m}$ is the minimum latent root of a $W_{p}(\nu, I_{p})$ matrix and $\nu=3(m-1)$ . At the

second stage, the additional samples $x_{im+1},$ $\ldots,$ $x_{i\tilde{N}}$ are taken from $\pi_{i},$ $i=0,1,2$ , and
$\overline{x}_{i\tilde{N}}=\Sigma_{\mathrm{j}=1}^{\overline{N}}x_{ij/\overline{N}}$ is computed for each $\pi_{i}$ . Then, the population $\pi_{0}$ is classified into
$\pi_{1}$ if

$(\overline{x}_{0\tilde{N}} - \overline{x}_{1\tilde{N}})’s_{m}-1(\overline{x}0\tilde{N}^{-}\overline{x}_{1})\tilde{N}\leq(\overline{x}_{0\tilde{N}}-\overline{x}_{\mathit{2}})^{\prime s^{-1}(}\tilde{N}m\overline{x}_{0\tilde{N}}-\overline{x}_{2\tilde{N}})$ (4.4)

and into $\pi_{2}$ otherwise. The discrimination rule (4.4) was originally given by Srivastava

(1973) along the line of sequential multistage methodology and it was simplified in

the present way of two-stage methodology by Aoshima and Aoki (1997) while main-

taining the same efficiency asymptotically. The discrimination rule (4.4) satisfies the

requirement (1.1) asymptotically when $darrow \mathrm{O}$ .
We evaluate the efficiencies of two discrimination rules (2.1) and (4.4) in terms of

the sample size and the associated classification probability (i.e. $1- \max(e_{12},$ $e_{21})$ ) by
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computing the average nunbers of $k=10,000$ independent trials via the Monte Carlo
simulation. For $p=3$ , the simulation was carried out with $\pi_{i},$ $i=0,1,2$ , generated by
three independent sequences of pseudo normal random numbers which have the mean
vectors $\mu_{1}=(\mathrm{d}+.01,0,0)’,$ $\mu_{2}=(0,0,0)$ ’ and $\mu_{0}=\mu_{1}$ or $\mu_{2},$ .and the covariance matrix
$\Sigma=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(3,1,1)$ . Let $n^{**}=n_{0}^{*}+2n^{*}$ . We set $\alpha=.05$ and $d=1.346,$ $.952,$ $.777$ . Then,
the pairs $(n_{0}^{*}, n^{*})$ of the fixed-sample sizes are (41.4, 29.3), (82.8, 58.6) and (124.3,
87.9), so that $n^{**}=100,200$ and 300, respectively, since $g_{p}(\alpha)=3.22$ from Table 1
with $(p, \alpha)=(3, .05)$ . The initial sample sizes of the two-stage procedures were set as
$m=10,15,20,30$ . Then, with $(p, \alpha)=(3, .05),\tilde{g}_{p},m(\alpha)=2.14,2.01,1.94$ and 1.87 from
Table 1 in Aoshima and Aoki (1997) and $g_{p,m}(\alpha)=3.58,3.43,3.39$ and 3.31 from Table
2, for $m=10,15,20$ and 30. For values of $n^{**}$ and $m,$ $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{P}^{\mathrm{O}\mathrm{S}}\mathrm{e}$ that the sample size from
each $\pi_{i}$ is estimated by the observed values $n_{j}\dot{.},$ $i=0,1,2$ , in the $j^{th}$ replication, and
let $p_{j}=1$ or $0$ according as the discrimmination rule classifies $\pi_{0}$ correctly or not in the
$j^{th}$ replication, $j=1,$ $\ldots,$

$k.$ Let $\overline{n}_{i}=k^{-}1_{\Sigma_{j1}^{k}=n.jS^{2}(\overline{n}_{i})}.,=(k^{2}-k)-\mathrm{J}\sum^{k}j=1(nij-\overline{n}i)^{2}$ ,
$i=0,1,2,$ $\overline{CP}=k^{-1}\Sigma_{j}^{k}=1p_{j}$ and $S^{2}(\overline{CP}\rangle=\overline{CP}(1-\overline{CP})/k$ .
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TABLE 3. Comparison of the proposed discrimination rule (2.1)

with the discrimination rule (4.4)

We observe from Table 3 that the proposed discrimination rule (2.1) works well as

expected. Also, it seems to classify $\pi_{0}$ more correctly than the rule (4.4) even though

it requires smaller total sample size. Therefore, we recommend to make use of the

discrimination rule proposed in this paper for the present purpose positively.
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