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Introduction

We consider the well-posedness for the Cauchy problem of the Kadomtsev-
Petviashvili 1I (KP II) equation:

(1) $\partial_{\dot{x}}(\partial_{t}u+\partial 3ux+\partial_{x}(u)2)+\partial_{y}2u=0,$ $(t,x, y)\in[-T,T]\cross \mathbb{R}^{2}$ ,

(2) $u(0, x, y)=u0(_{X,y)},$ $(X, y)\in \mathbb{R}^{2}$ ,

where the unknown function $u$ is a real valued and $T$ gives a time interval
to be determined later.

While the equation (1) is known as the KP II equation, the following
equation corresponds to the KP I:

$\partial_{x}(\partial_{t}u+\partial^{3}u+x\partial x(u^{2}))-\partial 2\mathrm{o}yu=$ .
These KP equations describe a propagation of a weakly nonlinear dispersive
long wave which is essentially one dimensional with a weak transverse effect
[3].

Our purpose of $\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{S}$ note is to consider the well-posedness for the Cauchy
problem of the KP 1I equation in a weak class. As usual, we rewrite the
Cauchy problem (1)$-(2)$ as the integral equation and use the contraction
argument. The usual contraction argument seems meet with the difficulty
of the derivative loss which stems from the derivative nonlinearity of the
equation (1).

Known results
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There are alarge amount of work for the Cauchy problem (1)$-(2)$ (see e.g.,
[2,5,6,7] $)$ . Recently J. Bourgain [2] showed the time local well-posedness in
$L^{2}(\mathbb{R}^{2})$ . By the conservation law of the $L^{2}$ norm, the time global well-
posedness was also obtained in the same space.

$\ln$ this note we consider the equation (1) in the integral form. On the other
hand, N. Tzvetkov [6] considered the following equation in the distribution
sense instead of the equation (1):

(3) $\partial_{t}u+\partial_{x}^{3}u+\partial_{x}(u^{2})+\partial_{x}^{-12}\partial_{y^{u}}=0$ .

For the Cauchy problem (3)$-(2)$ , the time local well-posedness was shown in
$\tilde{H}_{x,y}^{s_{1^{S_{2}}}}$

, for $s_{1}>-1/4$ and $s_{2}\geq 0[6]$ , where $\tilde{H}_{x^{1}y}^{s},’ S_{2}$ is the anisotropic Sobolev
space with the following norm:

$||f||_{\overline{H}_{x^{1^{s}2}}}s,\nu’=||(1-\partial_{x}^{2})^{s}1/2(1-\partial_{y}2)s_{2}/2f||_{L}2x,\nu+||(-\partial_{x}2)-1/2(1-\partial_{y}^{2})s_{2}/2f||_{L^{2}}x,y$ .

In [6], the condition $(-\partial_{x}^{2})^{-}1/2(1-\partial^{2})^{S}y2/2u0\in L^{2}(\mathbb{R}^{2})$ is necessary. This
homogeneous Sobolev space of index-l in $x$ variable seems natural for the
equation (3). But even if the equation is considered in the integral form (1)
instead of the differential form (3), the proof of [6] seems to require the use
of the homogeneous Sobolev space of negative index. We remark [6] does
not cover, nor be covered by [2].

Results of this note

To state our theorems, we give some notations.

Definition 1. Let $\sim g(\tau,\xi, \eta)$ denote the Fourier transformation of $g(t, x, y)$

in the time and the space variables, i.e.,

$\sim g(\tau,\xi, \eta)=\int\int\int_{\mathrm{R}^{3}}\exp(-it\tau-ix\xi-iy\eta)g(t,X,y)dtdxdy$ .

Let $\psi\in C_{0}^{\infty}(\mathbb{R})$ denote a smooth cut off function such that $\psi=1$ on [-1, 1]
and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\psi\subseteq(-2,2)$ . For $\delta>0$ , we put $\psi_{\delta}(t)=\psi(t/\delta)$ . Let

$k( \tau,\xi,\eta)=\tau-\xi 3+\frac{\eta^{2}}{\xi}$ .

For $s_{1},$ $s_{2}\in \mathbb{R}$ , we define the anisotropic Sobolev space $H_{x^{1}y}^{S,s},2$ with the
following norm:

$||f||_{H}s,’ sx^{1}y2=||(1-\partial_{x}2)s1/2(1-\partial_{y}^{2})s_{2}/2f||_{L_{x,y}^{2}}$ .
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For $s_{1},$ $s_{2},$ $b\in \mathbb{R}$ , we define the space $X_{s_{1},S_{2}},b$ to be the completion of the
Schwartz function space on $\mathbb{R}^{3}$ with the following norm:

$||g||xs_{1^{s}2^{b}},,=||g||_{S_{1},S_{2}},b+||g||_{-}3/4,S_{2},3/4$ ,

where
$||g||s_{1},S2)=b||\langle\xi\rangle^{s}1\langle\eta\rangle^{S_{2}}\langle k(\mathcal{T},\xi, \eta)\rangle^{b\sim}g(\mathcal{T},\xi,\eta)||_{L_{r,\xi,\eta}^{2}}$ .

Theorem 1. Let $s_{1}>-1/4$ and $s_{2}\geq 0$ . Then there exists $b>1/2$ with the
following properties. For any $u_{0}\in H_{x,y^{S}}^{s_{12}}$

) , there exist $T>0$ and a unique
solution $u$ of the Cauchy problem (1) $-(\mathit{2})$ in the time interval $[-T,T]$ such
that

$u\in C([-\tau,\tau]:H^{Ss}1_{),y}2)x,’\psi\tau(t)u\in xs_{1},S_{2},b$ .

For any $T’\in(0, T)$ , there exists $\epsilon>0$ such that the map $v_{0}\mapsto v$ is Lipschitz
from $\{v_{0} : ||v_{0}-u_{0}||H_{x,y}s1’ s_{2}<\epsilon\}$ to $||v-u||L\infty(\tau’ y’)H_{x^{1^{s}2}}^{\theta},+||\psi\tau’(v-u)||X_{\theta}1^{s_{2^{b}}}$

”.

In $addition_{f}$ if $u_{0}\in H_{x^{1}y}^{s’,s_{2}’}$

, with $s_{1}’\geq s_{1}$ and $s_{2}’\geq s_{2;}$ then the above result
holds with $s_{1}$ and $s_{2}$ replaced by $s_{1}’$ and $s_{2}’$ , respectively, in the same time
interval $[-T,T]$ .
Remark 1. The admissible values of $(S_{1}, s_{2})$ achieved by Theorem 1 are the
same as in [6]. In Theorem 1, we do not require the use of the homogeneous
space of negative order (see [6]). Therefore, Theorem 1 recovers the $L^{2}$ time
global well-posedness [2].

Remark 2. Scaling argument. If $u$ solves the Cauchy problem (1)$-(2)$ , so
does

(4) $u_{\lambda}(t,x,y)=\lambda 2(u\lambda 3t, \lambda X, \lambda^{2}y)$,

for any $\lambda\in \mathbb{R}$ with the data $u_{\lambda}(\mathrm{O})=u_{\lambda}(0, X, y)$ . Then the order difference
on $\lambda$ between $\lambda x$ and $\lambda^{2}y$ in (4) suggests that the anisotropic Sobolev space
$H_{x,y}^{s_{1^{S_{2}}}}$

, may be natural for the Cauchy problem (1)$-(2)$ , rather than the usual
Sobolev space $H^{s}(\mathbb{R}^{2})$ . Taking the homogeneous norm, we have

$||u_{\lambda}(\mathrm{o})||_{\dot{H}_{x^{1}\nu}}s,’ s_{2}=\lambda^{S_{1}+2}S_{2}+1/2||u_{0}||_{\dot{H}}x^{1^{s_{2}}}s,y’$ .

Then the norm of $\dot{H}_{x^{1}y^{S}}^{S},’ 2$ is invariant for $s_{1}+2s_{2}+1/2=0$ under the scaling
transformation (4). This argument suggests that the critical values for the
Cauchy problem (1)$-(2)$ in $H_{x^{1}y^{S}}^{s},’ 2$ may be $s_{1}+2s_{2}+1/2=0$ . Note that the
admissible values $(s_{1}, s_{2})$ achieved in Theorem 1 are far from the critical
values.

To state our second theorem of this note, we introduce some notations.
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Definition 2. For $s_{1}>-1/2$ and $s_{2}\in \mathbb{R}$ , we define the anisotropic homo-
geneous Sobolev space $\overline{H}_{xy)}^{s_{1^{S}2}}$

, as follows:

$\overline{H}_{x^{1}y}^{s},’ S_{2}=\{f\in s’(\mathbb{R}2):||f||\overline{H}_{x}^{s,s_{2}},1y<\infty\}$ ,

where
$||f||\overline{H}_{x,y}^{SS}1’ 2=||(-\partial_{x}^{2})s_{1}/2(1-\partial^{2})^{s}y2/2f||L_{x,y}2$ .

For $s_{1},s_{2},b\in \mathbb{R}$ and $a>-1/2$ , we define the space $Y_{S_{1},S_{2},a,b}$ as follows:

$Y_{S_{1},S_{2}},a,b=\{g\in S’(\mathbb{R}^{3}):||g||_{\mathrm{Y}}\epsilon 1,s_{2^{a,b}},=||g||_{s_{1}},S_{2},b+|||g|||a,s2,a+1<\infty\}$ ,

where
$|||g|||_{a}\}S_{2},a+1=|||\xi|a\langle\eta\rangle^{s_{2}}\langle k(\mathcal{T},\xi,\eta)\rangle^{a}+1g\sim(\mathcal{T},\xi,\eta)||L^{2}r,\xi,\eta$ .

Theorem 2. Let $s_{1}>3a+1>-1/2,$ $-1/2<a<-1/4$ and $s_{2}\geq 0$ .
Then there exists $b>1/2$ with the following properties. For any $u_{0}\in$

$H_{x,y}^{\theta_{1_{)}}}s_{2}\cap\overline{H}_{x,y\prime}^{a,s_{2}}$ there exist $T>0$ and a unique solution $u$ of the Cauchy
problem (1) $-(\mathit{2})$ in the time interval $[-T,T]$ such that

$u\in C([-T,\tau]:H_{x,y}s1,s2\mathrm{n}\overline{H}a,S)x,y^{2}’\psi\tau(t)u\in \mathrm{Y}_{Ssa}1,2,,b$ .

For any $T’\in(0,T)_{f}$ there exists $\epsilon>0$ such that the map $v_{0}\mapsto v$ is Lipschitz
from $\{v_{0} : ||v_{0}-u0||H_{x^{1}y}s,’ s2+||v_{00}-u||\overline{H}_{x,y}a,s_{2}<\epsilon\}$ to $||v-u||L^{\infty}T’(H_{x},1’)ss_{2}y+||v-$

$u||_{L_{T’}(\overline{H}^{\mathrm{O}}’}\infty x,ys2)+||\psi_{\tau}’(v-u)||_{\mathrm{Y}}s1,S2,’\circ,b$
.

In addition; if $u_{0}\in H^{s^{l}}x^{1},y’\cap\overline{H}^{a’,S}x,ys_{2}/2$ with $s_{1}’\geq s_{1},$ $-1/4>a’\geq a,$ $s_{1}’>3a’+1$

and $s_{2}’\geq s_{2}$ , then the above result holds with $s_{1}$ , $a$ and $s_{2}$ replaced by $s_{1}’,$ $a’$

and $s_{2f}’$ respectively, in the same time interval $[-T,T]$ .
Remark 3. When $s_{2}=0$ , the scaling argument of Remark 2 suggests that
Theorem 2 may be the best possible result, except for the limiting case
$s_{1}=-1/2$ which remains an open problem. We assume $s_{2}\geq 0$ in Theorems
1 and 2. In the case of $s_{2}<0$ , the well-posedness result remains to be an
open problem.

Remark 4. The algebraic relation (9) below plays an important role to over-
come the difficulty of a loss of the derivative. In the case of the KP I
equation, our method seems useless to avoid this difficulty (see [2, \S 10]).

The proofs of Theorems 1 and 2 are based on the Fourier restriction norm
method $[2,4]$ . This method has been used for the dispersive equation with
the quadratic nonlinearity, such as the $\mathrm{K}\mathrm{d}\mathrm{V}$ and the KP II equations.
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There are several differences between the Cauchy problem for the $\mathrm{K}\mathrm{d}\mathrm{V}$

equation and that for the KP II equation. In the case of the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation,
the following smoothing effect is valid to overcome a loss of the derivative:

$||\partial_{x}\exp(-t\partial_{x}^{3})u_{0||_{L_{x}^{\infty}}}L_{l}^{2}\leq c||u0||L_{x}^{2}$ .

On the other hand, it seems difficult to see such a kind of smoothing effect for
the KP II equation case. Then using an argument similar to that of the $\mathrm{K}\mathrm{d}\mathrm{V}$

equation case, we need to consider the integrability in $\eta$ variable, where $\eta$ is
the Fourier variable in $y$ . To get such the integrability, we define the spaces
$X_{s_{1)}S_{2}b}$, and $\mathrm{Y}_{S_{1^{S_{2)}}}},a,b$ for the proofs of Theorems 1 and 2, respectively. More
precisely, the second terms that $||\cdot||_{-3/4_{S_{2}},3/4}$, and $|||\cdot|||_{a,s_{2},a+1}$ play a role
to get such an integrability for the proofs of Theorems 1 and 2, respectively.
These Fourier restriction norm spaces $X_{S_{1},S_{2}b}$, and $\mathrm{Y}_{s_{1},s_{2},a,b}$ are the essential
difference from $[2,6]$ .

Proofs of Theorems 1 and 2

We regard the Cauchy problem (1)$-(2)$ as the following integral equation:

$u(t)=W(t)u0- \int^{t}0)W(t-S)\partial_{x}(u(S)2d_{S}$ ,

where $W(t)=\exp(-t(\partial_{x}^{3}+\partial_{x}^{-1}\partial 2)y)$ .
First we state the lemma concerning the estimates of the linear and the

nonlinear part of the KP II equation in the function spaces we consider.
Lemma 1. Let $1/2<b<b’<1$ . For $\delta\in(0,1)$ and $s_{1},$ $s_{2}\in \mathbb{R}_{f}$ we have

(5) $||\psi_{\delta}(\cdot)W(\cdot)u0||s1,S_{2},b\leq C\delta^{1/}2-b||u_{0}||H_{x^{1^{\epsilon}2}}\epsilon,y$”

(6) $|| \psi_{\delta}(\cdot)\int_{0}$

.
$W(\cdot-t’)F(t)/d\mathrm{t}’||_{s_{1,2}}S,b\leq c\delta^{1/}2-b||F||_{s}1^{S},2,b-1$ ,

(7) $||\psi_{\delta}(\cdot)F||_{s_{1},s_{2}},b-1\leq c\delta^{b’-}b||F||S_{1},s_{2},b’-1$ .

See [4], for the proof of Lemma 1.
Remark 5. Lemma 1 holds with $||\cdot||_{s_{1},s_{2},b}$ and $||\cdot||_{H_{x,\nu}^{s_{1},s}}2$ replaced by $|||$ .
$|||_{S_{1)}S_{2},b}$ and $||\cdot||_{\overline{H}_{x,y}^{s_{1},s_{2}}}$ , respectively.

The following two propositions play an important role in the proofs of
Theorems 1 and 2, respectively.
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$\mathrm{P}\mathrm{r}o$position 2. Let $s_{1}>-1/4$ and $s_{2}\geq 0$ . Then there exist $b>1/2$ and
$\theta>0$ with the following properties. For $T\in(\mathrm{O}, 1)_{f}$ we have

(8) $||\psi_{\tau}\partial_{x}(u^{2})||s1,s_{2},b-1\leq C\tau\theta(Tb-1/2||u||S_{1^{S_{2}}},,b+T^{1/}4||u||-3/4,s_{2},3/4)$

$\cross T^{b-1/2}||u||s_{12},sb1$
’

$||\psi_{\tau}\partial_{x}(u^{2})||-3/4_{S_{2}},,3/4-1\leq cT\theta(\tau b-1/2||u||S_{1},s_{2},b)2$ .

Proposition 3. Let $s_{1}>3a+1>-1/2,$ $-1/2<a<-1/4$ and $s_{2}\geq 0$ .
Then there exist $b>1/2$ and $\theta>0$ with the following properties. For

$T\in(\mathrm{O}, 1)_{f}$ we have

$||\psi_{T}\partial_{x}(u2)||_{S}1,s2\}b-1+|||\psi_{\tau^{\partial}}x(u2)|||_{a},s_{2},a$

$\leq cT\theta(\tau b-1/2||u||S_{1},S_{2},b+\tau^{a}+1/2|||u|||a,s2\prime a+1)\tau^{b}-1/2||u||_{sS_{2},b}1,\cdot$

For the proofs of Propositions 2 and 3, we use the following identity [2]:

$k(\tau,\xi, \eta)-k(\mathcal{T}_{1},\xi_{1}, \eta_{1})-k(\tau-\mathcal{T}1,\xi-\xi_{1}, \eta-\eta 1)$

$3|\xi(\xi-\xi 1)\xi_{1}|^{2}+|\xi\eta 1-\xi 1\eta|^{2}$

$=-\overline{\xi(\xi-\xi 1)\xi_{1}}$
.

This identity implies

(9) $\max\{|k(\mathcal{T},\xi,\eta)|, |k(\mathcal{T}1,\xi_{1}, \eta 1)|, |k(\mathcal{T}-\mathcal{T}_{1},\xi-\xi 1,\eta-\eta_{1})|\}$

$\geq|\xi(\xi-\xi 1)\xi 1|+\frac{|\xi\eta_{1}-\xi_{1\eta}|^{2}}{3|\xi(\xi-\xi 1)\xi_{1}|}$ .

Using this inequality, we overcome the difficulty of the derivative loss and
get the integrability in $\eta$ variable. $\ln$ the following, we only give a sketch of
the proof of (8) in Proposition 2.

Proof. For simplicity we consider (8) for the case of $s_{2}=0$ . We first consider
the following:
(10)

$( \int\int\int_{\mathrm{R}^{3}}\frac{|\xi|^{2}\langle\xi\rangle 2s_{1}}{\langle k(\tau,\xi,\eta)\rangle 2(1-b’)}$

$( \iiint_{\mathrm{R}^{3}}|u(\mathcal{T}_{1},\xi 1, \eta 1)||u(\mathcal{T}-\tau_{1},\xi-\xi 1,\eta-\eta 1)|d\mathcal{T}1d\xi 1d\eta 1)^{2}d_{\mathcal{T}d\xi)}d\eta 1/2$,
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where $2b-1/4<b’<1$ . For briefly we only consider (10) in the following
case:

(11) $|\xi_{1}|\leq 1$ and $|k( \tau_{1},\xi_{1}, \eta_{1})|\geq\max\{|k(\tau,\xi, \eta)|, |k(\tau-\tau 1, \xi-\xi_{1}, \eta-\eta_{1})|\}$ .
Using the Schwarz inequality, we have that (10) is bounded by
(12)

$|\xi|\langle\xi\rangle^{s_{1}}$

$c \sup_{\tau,\xi,\eta}\overline{\langle k(\tau,\xi,\eta)\rangle^{1-}b’}$

$-$

$\cross(\int\int\int \mathrm{R}^{3},\frac{\langle\xi_{1}\rangle^{3/2}\langle\xi-\xi 1\rangle-2s_{1}}{\langle k(\mathcal{T}_{1}\xi_{1,\eta_{1}})\rangle 3/2\langle k(\tau-\tau_{1},\xi-\xi_{1},\eta-\eta 1)\rangle^{2}b}d_{\mathcal{T}}1d\xi_{1}d\eta 1)1/2$

$\cross||u||-3/4,0,3/4||u||_{S_{1},0},b$ .

We use (9) first, integrate in $\tau_{1}$ variable and use the change of the variable
$\eta_{1}$ as $\mu=(\xi\eta_{1}-\xi_{1\eta})2/\xi(\xi-\xi 1)\xi 1$ . Noting that for the points in (11),
$\langle\xi\rangle\sim\langle\xi-\xi_{1}\rangle$ , we have that the contribution of the region (11) to (12) is
bounded by

$c \frac{|\xi|}{\langle k(\tau,\xi,\eta)\rangle 1-b’}(\int_{1\xi 1}|\leq 1\int^{\infty}-\infty\frac{|\xi_{1}|^{1/2}}{\langle|\xi(\xi-\xi_{1})\xi_{1}|+|\mu|\rangle 3/2|\mu|^{1/2}}d\mu d\xi_{1})1/2$

$\cross||u||_{-}3/4,0,3/4||u||_{s_{1},0},b$

$\leq c\frac{|\xi|}{\langle k(\tau,\xi,\eta)\rangle 1-b’}(\int_{1\xi|\leq 1}1\frac{d\xi_{1}}{\langle\xi\rangle^{2}|\xi_{1}|^{1}/2})^{1}/2-||u||3/4,0,3/4||u||_{s_{1}},0,b$

$\leq c||u||_{-3/4,0,\mathrm{s}}/4||u||S_{1},0,b$ .

Combining the above argument with (7) of Lemma 1, we have that the left
hand side of (8) restricted to the region (11) is bounded by

$cT^{b’-b}||u||_{-}3/4,0,3/4||u||_{s_{1},0},b$

$\leq cT^{b^{r}-2}b+1/4(\tau^{1}/4||u||-3/4,0,3/4)(\tau b-1/2||u||s_{1},0,b)$ .
$\square$

Proof of Theorem 1.
We put $r=||u_{0}||H_{x^{1^{s}2}}s,y$’ for $s_{1}>-1/4$ and $s_{2}\geq 0$ . For $T\in(0,1)$ and

$b\in \mathbb{R}$ , we put $||w||x\tau=\tau^{b-1}/2||w||s1\mathrm{J}2S,b+\tau^{1/4}||w||_{-}3/4S_{2}3/$
} ’

$4$ . Now for
$T\in(\mathrm{O}, 1)$ , we define

$\mathfrak{B}(r)=\{w\in Xs_{1},S_{2},b : ||w||\mathrm{x}\tau\leq 2cr\}$ ,
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$\Phi(u)(t)=\psi\tau(t)W(t)u0-\psi\tau(t)\int_{0}^{t}W(t-S)\psi\tau(s)\partial x(u(S)^{2})ds$.

We choose $b$ same as in Proposition 2. Thus by (5)$-(6)$ of Lemma 1 and
Proposition 2, we have

$||\Phi(u)||\mathrm{x}T$

$\leq c||u_{0}||_{H_{x,y}^{s}}1’ s2+c||\psi\tau\partial x(u2)||s1^{S},2,b-1+C||\psi\tau\partial x(u2)||-3/4_{S},2,\mathrm{s}/4-1$

$\leq cr+CT^{\theta}||u||_{X}^{2}T$

$\leq cr+cT\theta r^{2}$ ,

for $u\in \mathfrak{B}(r)$ , where $\theta>0$ is the same as in Proposition 2. Similarly, if
$u,v\in \mathfrak{B}(r)$ , we obtain

$||\Phi(U)-\Phi(V)||X^{T}\leq cT^{\theta}r||u-V||X^{\tau}$ .

Then we conclude that if we choose $T>0$ sufficiently small, then $\Phi$ is
a contraction map. Then we obtain the unique local existence result in
$X_{s_{1},s_{2},b}$ of the Cauchy problem (1)$-(2)$ by the contraction argument. $\square$

Replacing Proposition 2 by Proposition 3 in the proof of Theorem 1, we
obtain Theorem 2.
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