MAPPING CLASS GROUPS OF 3-DIMENSIONAL HANDLEBODIES AND MERIDIAN DISKS

SUSUMU HIROSE 進(佐賀大 廣瀬 理工) 1. INTRODUCTION

A genus g handlebody, H_g , is an oriented 3-manifold, which is constructed from a 3-ball with attaching g 1-handles. Let $Diff^+(H_g)$ (resp. $Diff^+(\partial H_g)$) be the group of orientation preserving diffeomorphisms on H_g (resp. ∂H_g), \mathcal{H}_g (resp. \mathcal{M}_g) be a group which consists of isotopy classes of $Diff^+(H_g)$ (resp. $Diff^+(\partial H_g)$). Generators of \mathcal{H}_g are given in [11] and [7]. Wajnryb gave a presentation for \mathcal{H}_g in [12]. In this note, we give a presentation for \mathcal{H}_g with using other method. When $g \geq 3$, we use a simplicial action of \mathcal{H}_g on simplicial complex (which is a subcomplex of a contractible complex defined by McCullough [10]) defined as follows: its vertices are isotopy classes of meridian disks in H_g (essential 2-disks properly embedded in H_g), and its simplex is a system of isotopy classes of meridian disks which are represented by disks, which are disjoint and non-isotopic each other and whose complements is connected. This complex is (g-2)-connected, especially, if $g \ge 3$, it is simply connected. (When g = 2, unfortunatelly, this complex is not simply connected, hence we use a contractible complex defined in [10].) This is subcomplex of a complex Xdefined by Harer in [5]. Since the orbit space of the former one by \mathcal{H}_g is identical with the latter one by \mathcal{M}_g , our method can be applied to giving a presentation for \mathcal{M}_g without using a complex defined by Hatcher and Thurston [4].

This note is a summary of a paper [6].

¹⁹⁹¹ Mathematics Subject Classification. 57N05, 57N10.

Key words and phrases. 3-dimensional handlebody, mapping class group. This research was partially supported by Grant-in-Aid for Encouragement of Young Scientists (No. 10740035), Minsitry of Education, Science, Sports and Culture, Japan

FIGURE 1

2. A presentation for \mathcal{H}_g

Before we state a presentation for \mathcal{H}_g , we set notations used there. Sometimes, we indicate an element of \mathcal{H}_g by a figure. In Figure 1, the left hand side figure denotes an element given in the right hand side figure. The symbol \rightleftharpoons means commute with. For example, if L, M, N are any elements of \mathcal{H}_g , a relation $L \rightleftharpoons M, N$ means that LM = ML, LN = NL. The commutator of A and $B, A^{-1}B^{-1}AB$, is denoted by [A, B]. In this paper, we consider that the group \mathcal{H}_g acts on \mathcal{H}_g from the right: for any elements ϕ_1, ϕ_2 of $\mathcal{H}_g, \phi_1\phi_2$ means apply ϕ_1 first, then apply ϕ_2 .

Theorem 2.1. Let a_1, k_1, d_i $(2 \le i \le g), t(2)_{21}, r(2)_{21}$ be the elements of \mathcal{H}_g indicated in Figure 2. The group \mathcal{H}_g admits a presentation with generators a_1, k_1, d_i $(2 \le i \le g), t(2)_{21}, r(2)_{21}$ and defining relations: if $g \ge 4$,

$$egin{array}{ll} d_m^{-1}a_md_m&=a_{m-1}, & d_m^{-1}a_{m-1}d_m=a_m, \ d_m^{-1}k_md_m&=k_{m-1}, & d_m^{-1}k_{m-1}d_m&=k_m, \ where \ 2\leq m\leq q, \end{array}$$

(A1)

 d_i

t(2)₂₁

r (2)₂₁

(A2)
$$r_g = \begin{cases} d_2 d_3 \cdots d_g k_1^{-1} k_2^{-1} \cdots k_{g-1}^{-1}, & g \text{ is odd,} \\ d_2 d_3 \cdots d_g k_1^{-1} k_2^{-1} \cdots k_g^{-1}, & g \text{ is even} \end{cases}$$

(A3)
$$d_1 = r_g^{-1} d_2 r_g,$$

(A4)
$$r(m)_{1j} = k_m r(m)_{2j} k_m^{-1}, \quad t(m)_{1j} = k_m t(m)_{2j} k_m^{-1},$$

(A5)

$$egin{aligned} r(m)_{ij} &= d_j k_{j-1}^{-1} r(m)_{i,j-1} k_{j-1} d_j^{-1}, \ t(m)_{ij} &= d_j k_{j-1}^{-1} t(m)_{i,j-1} k_{j-1} d_j^{-1}, \end{aligned}$$

where $m = 1, \cdots, g$, i = 1, 2, $j \neq m, m - 1$, and index j is given modulo g,

(B4)

$$r(m)_{ij} = d_m k_{m-1}^{-1} r(m-1)_{i,j} k_{m-1} d_m^{-1},$$

$$t(m)_{ij} = d_m k_{m-1}^{-1} t(m-1)_{i,j} k_{m-1} d_m^{-1},$$

where $m = 1, \dots, g$, i = 1, 2, $j \neq m, m - 1$, and index j is given modulo g,

(A7)
$$c(m)_i[j, j+1, \cdots, j+k] = (\prod_{n=0}^k [t(m)_{i,j+n}, r(m)_{i,j+n}^{-1}])a_m^{-(2k+1)},$$

where i = 1, 2, and index j is given modulo g,

(A8)
$$A_m = k_m^{-2}, \text{ where } 1 \le m \le g,$$

(A9)
$$t_1 = t(2)_{21}k_1^{-1}a_2,$$

(B1)
$$d_i \rightleftharpoons d_j, \text{ where } |i-j| \ge 2,$$
$$d_i^{-1}d_{i-1}^{-1}d_id_{i-1}d_i = d_{i-1} \text{ where } 2 \le i \le g,$$

(B2)
$$k_1 \rightleftharpoons k_2, \\ a_1 \rightleftharpoons a_2, \end{cases}$$

(B3)
$$a_1, k_1 \rightleftharpoons d_i, \text{ where } 3 \le i \le g,$$

 $a_g, k_g \rightleftharpoons d_j, \text{ where } 2 \le j \le g-1,$

 $k_1 \rightleftarrows a_1, a_2,$

(B6)
$$t(3)_{11}, r(3)_{11} \rightleftharpoons t(3)_{22}, r(3)_{22},$$

(B7)
$$t(2)_{21}A_2t(2)_{11}A_2^{-1}t(2)_{21}^{-1} = t(2)_{11},$$
$$t(2)_{21}A_2r(2)_{11}A_2^{-1}t(2)_{21}^{-1} = a_2^{-2}A_2r(2)_{11}$$
$$r(2)_{21}A_2t(2)_{11}r(2)_{21}^{-1} = a^{-2}t(2)_{11}$$
$$r(2)_{21}A_2r(2)_{11}A_2^{-1}r(2)_{21}^{-1} = r(2)_{11}$$

(B8)
$$k_1^{-1}t(2)_{21}k_1 = t(2)_{21}^{-1}r(2)_{21}t(2)_{21}^{-1}r(2)_{21}^{-1}t(2)_{21}, \\ k_1^{-1}r(2)_{21}k_1 = t(2)_{21}^{-1}r(2)_{21}^{-1}t(2)_{21},$$

(B9)
$$a_1 \rightleftharpoons r(2)_{21}, a_1^{-1}t(2)_{21}a_1 = (r(2)_{21})^{-1}t(2)_{21}$$

(B10)
$$a_2 \rightleftharpoons t(2)_{21}, r(2)_{21},$$

$$(B11) d_2 \rightleftarrows r(2)_{21}(a_1)^{-1}$$

(B12)
$$a_3, k_3 \rightleftharpoons t(2)_{21}, r(2)_{21},$$

(B13)
$$t(2)_{2,1}, r(2)_{2,1} \rightleftharpoons t(4)_{2,3}, r(4)_{2,3},$$

(B14)

$$\begin{split} t(2)_{2,1}^{-1}t(3)_{2,1}t(2)_{2,1} &= (t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2})^{-1}t(3)_{2,1}(t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2}), \\ t(2)_{2,1}^{-1}t(3)_{2,1}r(3)_{2,1}t(2)_{2,1} &= a_3^{-1}t(3)_{2,1}^{-1}r(3)_{2,1}(t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2}), \\ t(2)_{2,1}^{-1}t(3)_{2,2}t(2)_{2,1} &= a_3^{-1}t(3)_{2,2}t(3)_{2,1}^{-1}(t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2}), \\ t(2)_{2,1} &\rightleftharpoons r(3)_{2,2}, \end{split}$$

$$(B15) \begin{array}{l} r(2)_{2,1}^{-1}t(3)_{2,1}r(2)_{2,1} = a_3^{-1}(t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2})^{-1}t(3)_{2,1}, \\ r(2)_{2,1}^{-1}r(3)_{2,1}r(2)_{2,1} = (t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2})^{-1}r(3)_{2,1}(t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2}), \\ r(2)_{2,1}^{-1}t(3)_{2,2}r(2)_{2,1} = a_3^{-1}t(3)_{2,2}r(3)_{2,1}^{-1}(t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2}), \\ r(2)_{2,1} \rightleftharpoons r(3)_{2,2}, \end{array}$$

(B16)
$$d_{2}^{2} = a_{2}^{-4} \{ (t(2)_{11})^{-1} r(2)_{11} t(2)_{11} (r(2)_{11})^{-1} \} k_{2}^{2} \{ (t(2)_{21})^{-1} r(2)_{21} t(2)_{21} (r(2)_{21})^{-1} \} k_{1}^{2},$$

(B17)

$$r(g)_{2,g-1}, t(g)_{2,g-1} \rightleftharpoons d_i \text{ where } 2 \leq i \leq g-2,$$

$$r(g)_{2,1}, t(g)_{2,1} \rightleftharpoons d_i \text{ where } 3 \leq i \leq g-1,$$

$$t(2)_{2,1}, t(2)_{2,1} \rightleftharpoons d_i \text{ where } 4 \leq i \leq g,$$

(B18)
$$d_{2}^{-1}r(3)_{2,1}d_{l} = t(3)_{2,1}^{-1}r(3)_{2,1}t(3)_{2,1}r(3)_{2,1}^{-1} \times t(3)_{2,2}^{-1}r(3)_{2,2}^{-1}t(3)_{2,2}$$
$$\times r(3)_{2,1}t(3)_{2,1}^{-1}r(3)_{2,1}^{-1}t(3)_{2,1},$$
$$d^{-1}t(3)_{2,2}d_{2}$$

$$\begin{array}{l} =t(3)_{2,1}^{-1}r(3)_{2,1}t(3)_{2,1}r(3)_{2,1}^{-1}\times t(3)_{2,2}^{-1}r(3)_{2,2}t(3)_{2,2}^{-1}r(3)_{2,2}^{-1}t(3)_{2,2}\\ \times r(3)_{2,1}t(3)_{2,1}^{-1}r(3)_{2,1}^{-1}t(3)_{2,1}, \end{array}$$

(B19)
$$(d_2^{-1}t_1d_2t_1)^3 = d_2^2,$$

(B20)
$$A_g = \prod_{i=1}^{g-1} [t(g)_{2,i}, r(g)_{2,i}^{-1}] a_g^{-2(g-1)},$$

(B21)
$$r(2)_{11} = r(1)_{12}a_1a_2^{-1}$$

(B22)

$$t(2)_{11}t(2)_{21}A_2a_2^2 = \prod_{i=3}^g \{t(i)_{2,1}^{-1}t(i)_{1,1}^{-1}c(i)_2[2,\cdots,i-1]c(i)_1[2,\cdots,i-1]A_i^{-1}a_i^{-4}\},\$$

(B23)
$$k_1^2 A_2 = \prod_{i=3}^g \{ c(i)_2 [2, \cdots, i-1] c(i)_1 [2, \cdots, i-1] A_i^{-1} a_i^{-2} \},$$

and if g = 3, the above relations except (B13) and (B17) are satisfied and sufficient, and if g = 2, (A1), (A4), (A8), (A9), (B2), (B4), (B7), (B8), (B9), (B10), (B11), (B20) and

(B16')
$$d_2^2 = 1,$$

(B19')
$$(d_2^{-1}t_1d_2t_1)^3 = 1,$$

(B21')
$$r(2)_{11}r(2)_{21}A_2a_2^2 = 1,$$

(B22')
$$t(2)_{11}t(2)_{21}A_2a_2^2 = 1,$$

(B23')
$$k_1^2 A_2 = 1,$$

6

are satisfied and sufficient.

In this presentation, (A^*) 's are the relations which define some generators from a_1 , k_1 , d_i $(2 \le i \le g)$, $t(2)_{2,1}$, and $r(2)_{2,1}$ (these are indicated in the sequal of this paper by Figures). (B^{*})'s are easily checked by drawing some figures. From here to the end of this paper, we will show sufficiency of these relations.

3. DISK COMPLICES

Let H_g be a three dimensional handlebody of genus g, E_1, \ldots, E_l be mutually disjoint 2-disks embedded in ∂H_g . By a disc in $(H_g, \{E_1, \ldots, E_l\})$ we mean a properly imbedded 2-disc $(D, \partial D) \subseteq (H_g, \partial H_g)$ which is disjoint from $E_1 \cup \cdots \cup E_l$. The disc D is called meridian disc in $(H_g, \{E_1, \ldots, E_l\})$ when $H_g - D$ is connected. Define the nonseparating disc complex of H_g to be the simplicial complex $L'(H_g, \{E_1, \ldots, E_l\})$ whose vertices (0-simplices) are the isotopy classes of meridian discs in $(H_g, \{E_1, \ldots, E_l\})$, and whose simplices are determined by the rule that a collection of n+1 distinct vertices spans an *n*-simplex if and only if it admits a collection of representative which are pairwise disjoint. Define the comlex $Y(H_g, \{E_1, \ldots, E_l\})$ to be the subcomplex of $L'(H_g, \{E_1, \ldots, E_l\})$ whose n-simplex is determined by n+1 distinct vertices represented by pairwise disjoint discs D_0, D_1, \ldots, D_n such that $H_g - D_0 \cup D_1 \cup \cdots \cup D_n$ is connected. If there is no distinguished discs $\{E_1, \ldots, E_l\}$ on ∂H_g , we denote these complices by the notation $L'(H_g)$ and $Y(H_g)$. We call a system of meridian discs the set of mutually disjoint and nonisotopic meridian discs in $(H_g, \{E_1, \ldots, E_l\})$. Each simplex of $L'(H_g, \{E_1, \ldots, E_l\})$ is represented by a system of meridian disks. The definition of $L'(H_g, \{E_1, \ldots, E_l\})$ is a modification of the *disc complex* defined in section 5 of [10]. The following theorem is proved by a slight modification of the proof for Theorem 5.2 of [10].

Theorem 3.1. $L'(H_g, \{E_1, \ldots, E_l\})$ is contractible. \square

We will show the following theorem.

Theorem 3.2. $Y(H_g, \{E_1, \ldots, E_l\})$ is (g-2)-connected.

FIGURE 3

FIGURE 4

This comlex $Y(H_g, \{E_1, \ldots, E_l\})$ resembles complices X defined in [5] and Y defined in [3]. We prove the above theorem as in the proof of Theorem 1.1 of [5] and the proof of Propositon of [3].

Proof. We prove this theorem by the induction of genus g.

At first, we prove $Y(H_2, \{E_1, \ldots, E_l\})$ is connected (0-connected). By 3.1, $L'(H_2, \{E_1, \ldots, E_l\})$ is connected. As is indicated in Figure 3, there is two types of edges in $L'(H_2, \{E_1, \ldots, E_l\})$. The first one is in $Y(H_2, \{E_1, \ldots, E_l\})$. The second one is not in $Y(H_2, \{E_1, \ldots, E_l\})$, but there is a bypass in $Y(H_2, \{E_1, \ldots, E_l\})$ given in Figure 4. Hence, $Y(H_2, \{E_1, \ldots, E_l\})$ is connected.

We assume, for any integer k smaller than g, $Y(H_k, \{E_1, \ldots, E'_l\})$ is (k-2)connected. Let *i* be an integer smaller than or equal to g-2, and $f: S^i \longrightarrow$ $Y(H_g, \{E_1, \ldots, E_l\})$ be a continuous map. Since $L'(H_g, \{E_1, \ldots, E_l\})$ is contractible,
there is a continuous map $\tilde{f}: D^{i+1} \longrightarrow L'(H_g, \{E_1, \ldots, E_l\})$ such that $\tilde{f}|_{\partial D^{i+1}} = f$.

We may assume \tilde{f} is piecewise linear with respect to some triangulation of D^{i+1} . If $\tilde{f}(D^{i+1})$ is contained in $Y(H_g, \{E_1, \ldots, E_l\})$, this means that f is mull-homotpic. We assume $\tilde{f}(D^{i+1})$ is not contained in $Y(H_g, \{E_1, \ldots, E_l\})$. Then, there is a simplex σ of D^{i+1} such that $\tilde{f}(\sigma)$ is not contained in $Y(H_g, \{E_1, \ldots, E_l\})$, and this means that there is a representative $\{D_0 \cup \cdots \cup D_j\}$ of $\tilde{f}(\sigma)$ with disconnected complement. Let G_{σ} be a graph defined as follows. Each vertex corresponds to components of $H_g - D_0 \cup \cdots \cup D_j$. Each edge corresponds to one of D_0, \ldots, D_j and connecting vertices corresponding to the components containing this disc. Since $D_0 \cup \cdots \cup D_j$ has disconnected complement, G_{σ} has at least two components. There is a nonempty subgraph of G_{σ} whose edges connects distinct vertices. Let \mathcal{D} be the subsystem of $\{D_0, \ldots, D_j\}$ which corresponds to the edges of this graph. This system \mathcal{D} satisfies the following property:

(*) Let $\mathcal{D} = \{D'_0, \ldots, D'_m\}$. Each $D'_a \in \mathcal{D}$ separetes $H_g - \bigcup_{n \neq a} D'_n$.

A system of meridian discs which satisfies property(*) is called *purely separating* system of meridian discs, and a simplex of $L'(H_g, \{E_1, \ldots, E_l\})$ is called *purely separating* if it is represented by a purely separating system of meridian discs. \mathcal{D} represent a face of $\tilde{f}\sigma$, so there is a simplex τ of D^{i+1} such that $\tilde{f}(\tau)$ is purely separating. In general, we have shown the following lemma.

Lemma 3.3. Each simplex in $L'(H_g, \{E_1, \ldots, E_l\})$ has a face which is purely separating.

Let σ be a simplex of D^{i+1} of maximal dimension p such that $\tilde{f}(\sigma)$ is purely separating. This simplex σ is not contained in ∂D^{i+1} , hence, Link σ is homeomophic to S^{i-p} . Let $\{D_0, \ldots, D_p\}$ be a system of meridian discs which represents $\tilde{f}(\sigma)$, and let $M = H_g - D_0 \cup \cdots \cup D_p$. We define the complex Y(M, *) for $(M, \{E_1, \ldots, E_l, \text{discs which are emerged as a cut end along <math>D_0 \cup \cdots \cup D_p\})$ in the same manner as $Y(H_g, \{E_1, \ldots, E_l\})$. Then, each disc which represents each vertex of Link σ does not separate M. In fact, if some vertex v of Link σ separates M, then

FIGURE 6

 $\tilde{f}(v * \sigma)$ is purely separating, and this fact contradicts the maximality assumption of p. Hence, each vertex of $Link \sigma$ is mapped into Y(M, *) by \tilde{f} . If there is a simplex ρ of $Link \sigma$ such that $\tilde{f}(\rho)$ separetes M, then, by 3.3 there is a face τ of ρ such that $\tilde{f}(\tau)$ is purely separating. Then $\tilde{f}(\tau * \sigma)$ is purely separating, and $\tau * \sigma \subset Link \sigma \subset D^{i+1}$. This fact contradicts the maximality assumption of p. Hence, $\tilde{f}(Link \sigma) \subset Y(M, *)$. By the way, M is a disjoint union of handle bodies, and the total number m of these genera is at least g-p. Y(M) is a join of Y's of each components of M. Hence, by the hypothesis for the induction, Y(M) is (m-2)-connected. Here, we remember that $i \leq g-2$, then we can see $i-p \leq g-2-p \leq m-2$. This shows that $\tilde{f}|_{Link \sigma}$ is null homotopic in Y(M), hence, in $Y(H_g, \{E_1, \ldots, E_l\})$. Therefore, we can homotope \tilde{f} such that $\tilde{f}(Link \sigma) \subset Y(H_g, \{E_1, \ldots, E_l\})$. We do the same way for other simplices whose images are purely separating, then \tilde{f} is homotoped to a continupus map whose image is in $Y(H_g, \{E_1, \ldots, E_l\})$. \Box

4. Obtaining a presentation from the action of \mathcal{H}_g on $Y(H_g)$

For each element ϕ of \mathcal{H}_g and simplex $([D_0], \ldots, [D_n])$ of $Y(H_g)$ (resp. $\Delta'(H_g)$), $([\phi(D_0)], \ldots, [\phi(D_n)])$ is also a simplex of $Y(H_g)$ (resp. $\Delta'(H_g)$). Hence, we

can define a right action of \mathcal{H}_g on $Y(H_g)$ (resp. $\Delta'(H_g)$) by $([D_0], \ldots, [D_n])\phi = ([\phi(D_0)], \ldots, [\phi(D_n)])$. We can see that, if g = 2, each of $\{2\text{-simplices of }\Delta'(H_2)\}/\mathcal{H}_2$, $\{1\text{-simplices of }\Delta'(H_2)\}/\mathcal{H}_2$ and $\{\text{ vertices of }\Delta'(H_2)\}/\mathcal{H}_2$ consists of one element, each of which is represented by $([D_0], [D_1], [D_2])$, $([D_0], [D_1])$, and $([D_0])$, where D_0, D_1, D_2 are indicated in Figure 5, and if $g \geq 3$, each of $\{2\text{-simplices of }Y(H_g)\}/\mathcal{H}_g$, $\{1\text{-simplices of }Y(H_g)\}/\mathcal{H}_g$ and $\{\text{ vertices of }Y(H_g)\}/\mathcal{H}_g$ consists of one element, each of which is represented by $([D_0], [D_1], [D_2]), ([D_0], [D_1]), \text{ and } ([D_0]), \text{ where } D_0, D_1, D_2$ are indicated in Figure 6. If stabilizer of each vertex is finitely presented, and if that of each 1-simplex is finitely generated, we can obtain a presentation for \mathcal{H}_g as in the way of [9], [12]. Here, we will mension these method. The action of \mathcal{H}_2 on $\Delta'(H_2)$ is similar to the action of \mathcal{H}_g on 2-skelton of $Y(H_g)$ when $g \geq 3$.

We fix a vertex v_0 of $Y(H_g)$, fix an edge (= a 1-simplex with orientation) e_0 of $Y(H_g)$ which emanates from v_0 and fix a 2-simplex f_0 of $Y(H_g)$ which contains v_0 . Let D_0, D_1 and D_2 be meridian disks indicated in Figure 6, we set $v_0 = [D_0]$, $e_0 = ([D_0], [D_1])$ and $f_0 = ([D_0], [D_1], [D_2])$. We choose an element r_0 of \mathcal{H}_g which switches the vertices of e_0 , in our situation, we set $r_0 = d_g$. By this notation, we see $e_0 = (v_0, (v_0)d_g)$ We denote the stabilizer of v_0 by $(\mathcal{H}_g)_{v_0}$, that of e_0 by $(\mathcal{H}_g)_{e_0}$ and an infinite cyclic group generated by d_g by $< d_g >$. The free product $(\mathcal{H}_g)_{v_0} * < d_g >$ with the following three types of relation define a presentation for \mathcal{H}_g .

(Y1) d_g^2 = a presentation of d_g^2 as an element of $(\mathcal{H}_g)_{v_0}$.

(Y2) For each element t of $(\mathcal{H}_g)_{e_1}$,

 $(d_g)^{-1}($ a presentation of t as an element of $(\mathcal{H}_g)_{v_0})d_g$

= a presentation of $(d_g)^{-1}td_g$ as an element of $(\mathcal{H}_g)_{v_0}$.

(Y3) For the loop ∂f_0 in $Y(H_g)$, we define an element W_{f_0} in the following manner. ner. The loop ∂f_0 consists of three vertices v_0, v_1, v_2 and three edges e_1, e_2, e_3 such that $e_1 = (v_0, v_1), e_2 = (v_1, v_2), e_3 = (v_2, v_0)$. There is an element h_1 of $(\mathcal{H}_g)_{v_0}$ such that $e_0h_1 = e_1$ i.e. $e_1 = (v_0, (v_0)d_gh_1)$, then $e_2(d_gh_1)^{-1}$ is an edge emanating from v_0 . Hence, there is an element h_2 of $(\mathcal{H}_g)_{v_0}$ such that $e_0h_2 = e_2(d_gh_1)^{-1}$ i.e. $e_2 = ((v_0)d_gh_1, (v_0)d_gh_2d_gh_1)$, then $e_3(d_gh_2d_gh_1)^{-1}$ is an edge emanating from v_0 . So, there is an element h_3 of $(\mathcal{H}_g)_{v_0}$ such that $e_0h_3 = e_3(d_gh_2d_gh_1)^{-1}$ i.e. $e_3 = ((v_0)d_gh_2d_gh_1, (v_0)d_gh_3d_gh_2d_gh_1)$. We define $W_{f_0} = d_gh_3d_gh_2d_gh_1$. This element W_{f_0} fixes v_0 , so the following is a relation for \mathcal{H}_g . W_{f_0} = a presentation of W_{f_0} as an element of $(\mathcal{H}_g)_{v_0}$. If $g \geq 3$, then this type of relation is $d_gd_{g-1}d_g = d_{g-1}d_gd_{g-1}$, and if g = 2, then this type of relation is $(d_2^{-1}t_1d_2t_1)^3 = 1$, where $t_1 = t(2)_{2,1}k_1^{-1}a_2$.

For subsets A_1, \ldots, A_n of H_g , we define $Diff^+(H_g, A_1, \ldots, A_n) = \{\phi \in Diff^+(H_g) | \phi(A_1) = A_1, \cdots, \phi(A_n) = A_n\}$. We can see $(\mathcal{H}_g)_{v_0} = \pi_0(Diff^+(H_g, D_0))$, and $(\mathcal{H}_g)_{e_0} = \pi_0(Diff^+(H_g, D_0, D_1))$ Let $\Sigma_g = \partial H_g$ and let $F_n \Sigma_g$ be the space of all ordered *n*-tuples of distinct points of Σ_g : $F_n \Sigma_g = \{(p_1, \cdots, p_n) | \text{ each } p_i \in \Sigma_g, \text{ and } p_i \neq p_j \text{ if } i \neq j\}$. We define the *n*-string pure braid group $P_n(\Sigma_g)$ to be the fundamental group of $F_n \Sigma_g$. Let p_1 and p_2 be points on ∂H_{g-1} , and $p_{0,1}, p_{0,2}, p_{1,1}$, and $p_{1,2}$ be points on ∂H_{g-2} .

We can get a presentation for $(\mathcal{H}_g)_{v_0}$ by investigating the following three exact sequaences:

(1)
$$P_2 \Sigma_{g-1} \xrightarrow{\beta} \pi_0(Diff^+(H_{g-1}, p_1, p_2)) \xrightarrow{\alpha_{\#}} \mathcal{H}_{g-1}(= \pi_0(Diff^+(H_{g-1}))) \longrightarrow 0,$$

(2)
$$0 \longrightarrow \pi_0(Diff^+(H_{g-1}, p_1, p_2)) \xrightarrow{\delta} \pi_0(Diff^+(H_{g-1}, \{p_1, p_2\})) \xrightarrow{\gamma} \mathbb{Z}_2 \longrightarrow 0,$$

$$(3) \qquad 0 \longrightarrow \mathbb{Z} \longrightarrow \pi_0(Diff^+(H_g, D_0)) \xrightarrow{\lambda} \pi_0(Diff^+(H_{g-1}, \{p_1, p_2\})) \longrightarrow 0.$$

We can get a set of generators of $(\mathcal{H}_g)_{e_0}$ by investigating the following three exact sequences:

(6)
$$0 \longrightarrow \mathbb{Z} \times \mathbb{Z} \longrightarrow \pi_0(Diff^+(H_g, D_0, D_1)) \\ \xrightarrow{\lambda} \pi_0(Diff^+(H_{g-2}, \{p_{0,1}, p_{0,2}\}, \{p_{1,1}, p_{1,2}\})) \longrightarrow 0.$$

We can give relations of type (Y1) and (Y2) by drawing some figures.

For details please see [6].

ACKNOWLEDGEMENTS

The author would like to express his gratitude to Prof. D. McCullough and Prof. B. Wajnryb for sending their papers to him.

References

- 1. J. Birman, On braid groups, Com. Pure and App. Math., 22(1969), 41-72
- 2. J. Birman, Mapping class groups and their relationship to braid groups, Com. Pure and App. Math., 22(1969), 213-238
- 3. A. Hatcher, Homological stability for automorphism groups, Comm. Math. Helvetici, 70(1995), 39-62
- 4. A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology, 19(1980), 221-237
- 5. J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121(1985), pp. 215-249.
- 6. S. Hirose, A presentation for a mapping class group of a 3-dimensional handlebody, preprint.
- 7. K. Johannson, Topology and combinatorics of 3-manifolds, Lecture Notes in Math., 1599 (1995), Springer-Verlag
- 8. D. L. Johnson, Presentation of groups, London Math. Soc. Stu. Texts 15
- 9. F. Laudenbach, Présentation du groupe de difféotopies d'une suface compact orientable, Exposé 15 de "Travaux de Thurston sur les surfaces", Astérisque 66-67(1991)
- 10. D. McCullough, Virtually geometrically finite mapping class groups of 3-manifolds, J. Diff. Geom., 33(1991), 1-65
- S. Suzuki, On homeomorphisms of a 3-dimensional handlebody, Can. J. Math., 29(1977), 111– 124
- 12. B. Wajnryb, Mapping class group of a handlebody, to appear in Fundamenta Math.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ENGINEERING, SAGA UNIVER-SITY, SAGA, 840 JAPAN

E-mail address: hirose@ms.saga-u.ac.jp